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Abstract

In the luminance domain, studies show that perceived contrasts of plaids are a nonlinear

summation of their components. In the disparity domain, perceived depth has been studied by

using a depth adaptation paradigm with simple surfaces; however, the relationship between depth

adaptation between plaids and their components has not been investigated. To clarify this,

combinations of disparity-defined horizontal corrugation (marked as horizontal) and disparity-

defined plaids as adaptor-probe pairs were used. Three experiments were performed: The first

two compared the aftereffects between horizontal-horizontal and plaid-horizontal pairs

(Comparison 1) and between horizontal-plaid and plaid-plaid pairs (Comparison 2).

Experiments 1 and 2 controlled the plaids to have the same and doubled peak-to-trough

amplitudes as the horizontal corrugation, respectively. In Comparison 1, the horizontal or

horizontally oriented component of the plaids was adapted. In Comparison 2, the plaid adaptor

or horizontally oriented component of the plaid test stimuli was adapted. Thus, depth adaptation

may be linked to cyclopean-oriented depth-from-disparity bandpass filters. The depth adaptation

degree was determined by the adaptation of amplitudes of the similar oriented channels between

the adaptation and test stimuli. Experiment 3 compared the aftereffects between noise-horizontal

and horizontal-horizontal pairs. Since the noise adaptor contained multispatial frequency channels,

only the channels with similar spatial frequencies as the horizontal corrugation were adapted, thus

causing smaller depth aftereffects.

Keywords

cyclopean-oriented filter, depth adaptation, disparity-defined plaids, disparity-defined gratings,

stereopsis

Date received: 15 September 2017; accepted: 14 August 2018

Corresponding author:

Shufang He, 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan.

Email: shufang.he@outlook.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further

permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

i-Perception

2018 Vol. 9(5), 1–18

! The Author(s) 2018

DOI: 10.1177/2041669518799763

journals.sagepub.com/home/ipe

https://doi.org/10.1177/2041669518799763
journals.sagepub.com/home/ipe


Introduction

An adaptation effect refers to the change of perception after exposure to a specific stimulus
and can be used to explore underlying mechanisms involved in visual processes (Carandini,
2000). The adaptation paradigm has been used in numerous studies of depth perception for
decades (Ryan & Gillam, 1993; Schumer & Ganz, 1979). Domini, Adams, and Banks (2001)
manipulated the viewing distances of adaptation and test stimuli to investigate whether depth
adaptation to curved surfaces is a second-order disparity-specified or percept-specified shape-
level process. Based on the principle that perceived curvature from certain disparity stimuli is
distance dependent, these researchers examined depth aftereffects using four combinations of
20 - and 80-cm viewing distances as adaptor-probe pairs. If the process is disparity specified, a
change in the viewing distance between the adaptor and test stimuli will not cause a significant
difference in the aftereffects; if the process is a shape-level process, there will be a significant
difference. Their experimental results showed that there were significant differences in
aftereffects between pairs that had different adaptor or probe viewing distances, suggesting
the distance-dependent process and indicating that shape-level adaptation was involved.
Similarly, Berends, Liu, and Schor (2005) examined the mechanism of stereo-slant
perception based on the principle that percept-specified slant adaptation is viewing distance
dependent. These researchers fixed the adaptation stimulus at a distance of 57 cm and changed
the position of the test stimulus to various distances. Results showed that different aftereffects
were induced with different viewing distances, suggesting that percept-specified adaptation
occurred. Both studies therefore demonstrated the shape-level depth adaptation process.
In regard to disparity-specified adaptation, Berends and Erkelens (2001) manipulated the
adapting stimuli to be perceived as a fronto-parallel plane by changing the vertical disparity
while fixing the horizontal disparities and used test stimuli with only horizontal disparity.
Although the perceived adaptation stimuli were fronto-parallel, the test stimuli to be
perceived as fronto-parallel were significantly different from zero horizontal disparity. These
researchers concluded that the disparity per se, not the perceived depth, was adapted by the
visual system. Yan and Shigemasu (2015) dynamically changed the location, size, and depth of
spherical adaptation stimuli and found that both disparity- and percept-specified processes
were involved in stereo-curvature adaptation.

Although these studies investigated the disparity or shape-level depth adaption with simple
stimuli, the relationship of depth adaptation between objects and their components has not
been investigated. In the luminance domain, Georgeson and Shackleton (1994) investigated
the thresholds of perceived contrast of luminance-defined gratings and luminance-defined
plaids and found the perceived contrast of plaids was a nonlinear summation of their
different-oriented components. In the disparity domain, Hibbard and Langley (1998) used
disparity-defined plaids, and their component sinusoidal gratings to detect the slant and
inclination thresholds, and found that the thresholds of plaids could be predicted by the
thresholds of their components. Moreover, Bowd, Donnelly, Shorter, and Patterson (2000)
used two moving square-wave gratings to produce plaid test stimuli and compared the
adaptation coherence ratio by adapting to plaids and gratings within or across luminance
and disparity domains. Results showed that there was a cross-domain coherence adaptation,
which meant using moving disparity-defined plaids or their components as adaptor and
luminance-defined plaids as test stimuli, could cause a certain amount of coherence
aftereffects. This provided evidence for a common underlying mechanism of perceived
motion in luminance and disparity domains.

Tyler (1975) demonstrated hierarchical processes of neural adaptation, which involved the
retinal level luminance adaptation, contrast adaptation, cyclopean depth adaptation, and
hypercyclopean adaptation. In his study, he used sinusoidal corrugations as stimuli to
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investigate the adaptation, but he mainly focused on the disparity-defined hypercyclopean
adaptation such as tilt or size-related adaptation or the cyclopean depth adaptation of
sinusoidal corrugation per se. The relationship of depth adaptation between plaids and
their components has not been investigated.

In this study, we aim to investigate the relationship between plaids and their component
gratings within the amounts of depth adaptation. Three experiments were conducted:
For Experiments 1 and 2, we used combination of disparity-defined horizontal corrugation
(marked as horizontal) and disparity-defined plaids as adaptor-probe pairs, and compared the
aftereffects between the horizontal-horizontal pair and the plaid-horizontal pair and the
aftereffects between the horizontal-plaid pair and plaid-plaid pair. The disparity-defined
plaids are a combination of two orthogonal gratings (horizontally and vertically oriented);
thus, the peak-to-trough amplitude was doubled after combination. In Experiment 1, we
controlled the plaids that had the same peak-to-trough amplitude as the horizontally
oriented gratings; thus, each component had only half the peak-to-trough amplitude.
In Experiment 2, the plaids had double the peak-to-trough amplitude as the horizontally
oriented grating. This meant that each component of plaids had the same peak-to-trough
amplitude as the horizontally oriented gratings. We quantitatively changed the peak-
to-trough amplitude of the plaids and investigated how the amount of depth aftereffects
changed. In Experiment 3, we verified whether differences in depth aftereffects were
induced by the adaptors with or without certain surfaces. To do so, we used horizontally
oriented corrugation and noise-shape as adaptors and manipulated the two adaptors that had
the same peak-to-trough amplitudes and the same crossed and uncrossed disparities, but the
noise-adaptor had randomly distributed disparity dots without a certain surface. In all
experiments, we dynamically changed the phase of the stimuli to prevent local slant and
curvature adaptation.

We hypothesize that either the amount of depth adaptation is linked to cyclopean-oriented
depth-from-disparity bandpass filters or it is linked to the peak-to-trough amplitude of the
pooled stimuli. For the former hypothesis, since the plaids consist of two orthogonal gratings
(the horizontally and vertically oriented gratings), the oriented disparity-defined bandpass
filters determine that, in the horizontally oriented test stimulus condition, the horizontally
oriented adaptor or the horizontally oriented component of the plaid adaptor will be
adapted. In the plaid test stimulus condition, the plaid adaptor will be adapted in the
plaid-plaid condition, while the horizontally oriented component will be adapted in
the horizontal-plaid condition. As a result, in Experiment 1, the half plaid-horizontal
pair and half plaid-half plaid pair will cause smaller amounts of aftereffects than the
horizontal-horizontal pair and horizontal-half plaid pair, respectively. In Experiment 2,
the plaid-horizontal pair and plaid-plaid pair will cause similar amounts of aftereffects as
the horizontal-horizontal pair and horizontal-plaid pairs, respectively. In Experiment 3,
since the noise-adaptor was random white noise, which contained multiple spatial
frequencies and limited amplitude for each spatial frequency channel, during adaptation,
only the channels with similar spatial frequency to the horizontally oriented test stimuli
will be adapted. Thus, the noise-horizontal pair will cause less adaptation than the
horizontal-horizontal pair. However, if the latter hypothesis is true, in Experiment 1, the
half plaid-horizontal pair and half plaid-half plaid pair will cause similar amounts of
aftereffects as the horizontal-horizontal pair and horizontal-half plaid pair, respectively,
because of the same peak-to-trough amplitude in each comparison pair. In Experiment 2,
the plaid-horizontal pair and plaid-plaid pair will cause larger amounts of aftereffects than
the horizontal-horizontal pair and horizontal-plaid pair, respectively, because of the larger
amounts of peak-to-trough amplitude in the plaid adaptor.
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Experiment 1

Methods

Participants. Ten students aged 20 to 35 years (5 men, mean age: 21.7) from Kochi University
of Technology were recruited as participants. All had normal or corrected-to-normal vision.
Nine of them passed the stereo perception and stereo acuity test (less than 1 arcmin) with
our own program; one male participant had a relatively low score on the stereo acuity test
(< 50% correct rate) and was excluded from the data analysis. All participants were naı̈ve to
the purpose of the experiment. All experiments and procedures were approved by
the Research Ethics Committee of Kochi University of Technology and conformed to the
tenets of the Declaration of Helsinki. Written informed consent was obtained from all
participants prior to experiments.

Apparatus. Visual stimuli were presented on a 22-in. CRT color display (RDF223H;
Mitsubishi, Tokyo, Japan) with 1024� 768 resolution and 120Hz frame refresh rate.
The luminance of the display was measured using a CS-100A colorimeter (Minolta,
Japan) and linearized using look-up table method. We created a program using Matlab
(Mathworks, Natick, MA, USA) with PsychToolbox Version 3 to present the experimental
stimuli (Brainard, 1997; Pelli, 1997). During the experiments, participants sat in a dark room
fronto-parallel to the surface of the display and observed the stimuli via a pair of stereoscopic
wireless LCD glasses (NuVision 60GX; MacNaughton, Inc., OR, USA). The refresh rate of
the LCD glasses was 120Hz, so the frame rate was 60Hz for each eye. No flicker was
reported. A chin rest was used to prevent head movement.

Stimuli. Random dot stereograms with horizontal disparity were used for the stimuli.
Anti-aliased pseudo-random white dots (29.7 cd/m2) were presented on a gray background
(9.9 cd/m2). Because of the low contrast and gray background of the stimuli, the cross-talk
effect was negligible. The dot patterns of the adaptation stimuli were randomly changed every
200ms, and the density of the dot pattern was 30.6 dots/deg2.

At the center of the display, a nonius fixation with lower part T- and upper part reversed
T-shape was shown to the left and right eyes separately. To ensure eye vergence, participants
were asked to maintain the vertical lines of the two T parts collinearly, and the horizontal
lines overlapped during the entire experimental procedure. With the correct vergence, the
nonius was perceived as a cross. The lengths of both the horizontal and vertical lines were
1.17 arcdeg.

Procedure. In Experiment 1, we aimed to investigate the relationship of depth adaptation
between disparity-defined plaid pattern and their components. Combinations of horizontally
oriented corrugation and plaids were used as adaptor-probe pairs and the changes in depth
between horizontal-horizontal and plaid-horizontal pairs were compared as the horizontally
oriented test stimulus condition (Figure 1(a)), and the changes in depth between plaid-plaid and
horizontal-plaid pairs as the plaid test stimulus condition (Figure 1(b)). The plaids are the
combination of two orthogonal gratings; thus, the amplitude (of the disparity between
peak and trough) will be doubled when the two orthogonal components are linearly added
up. To control for plaids with the same peak-to-trough amplitude as the horizontal
corrugation, we defined the amplitudes of the horizontally and vertically oriented
components as half the amplitude of the horizontal corrugation. To differentiate the plaids
used here with those used in Experiment 2, we used the term half plaid in Experiment 1 to
represent the plaid stimuli.
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Figure 1. A schematic representation of the test procedure in Experiment 1. (a) The horizontally oriented

test stimulus condition and (b) half plaid test stimulus condition. In all conditions, both adaptors were

presented for 6 s. After a 0.5-s time interval during which a blank gray background was displayed, the test

stimulus was presented on one side, and a comparison stimulus was presented on the other side for 0.5 s

simultaneously. The comparison stimulus had a fixed amplitude (12.1 arcmin), whereas the test stimulus had

nine levels of amplitudes (9.1–15.2 arcmin with constant intervals) and were presented in a random order. No

one could predict what would be presented in the next trail. The positions of the test and comparison stimuli

were presented on the left and right sides of the display in a counterbalanced random order. Each participant’s

task was to judge which side had the larger amplitude and to report their choice by button press based on

two-alternative forced-choice methods. No feedback on correctness was given. After participants made their

choice, the next trial was triggered automatically. ISI¼ Inter Stimulus Interval.
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Therefore, the horizontally oriented grating and the half plaid are shown in Equations (1)
and (2), respectively:

SHor ¼ A� sin 2�yþ ’ð Þ ð1Þ

Shalfplaid ¼ 0:5�A� sin 2�yþ ’ð Þ þ sin 2�xþ ’ð Þð Þ ð2Þ

where A is the amplitude with the value shown in Table 1 at different stimulus conditions; x
and y are the horizontal and vertical positions on the CRT display, respectively, and the
spatial frequencies of horizontal corrugation and plaid components were 0.25 cpd; ’ is
the phase, which randomly changes each 200ms. The size of the stimuli on each side was
14.0� 14.0 arcdeg.

For the left and right eye inputs to produce each kind of stimulus, we shifted a certain
amount of disparity to produce a stereo image after binocular fusion. For example, for the
horizontally oriented stimulus, the left and right eye inputs were shown as Equations (3) and
(4), respectively.

SL ¼ SHor þ�d=2 ð3Þ

SR ¼ SHor ��d=2 ð4Þ

where �d represents the disparity.
The parameters of the horizontal corrugation and half plaid stimuli are shown in Table 1.
In each adaptor-probe pair, there were large-small and medium-medium adapting

amplitude conditions. In each condition, both adaptors were presented for 6 s. After a
0.5-s time interval that included exposure to a blank gray background, the test stimulus
was presented on one side, and the comparison stimulus was presented on the other side
for 0.5 s simultaneously. The comparison stimulus had a fixed amplitude (12.1 arcmin),
whereas the test stimulus had nine levels of amplitudes (9.1–15.2 arcmin with constant
intervals) and were presented in a random order. No one could predict what would be
presented for next trial. The positions of test and comparison stimuli were presented on
the left and right sides of the display in a counterbalanced, random order. A participant’s
task was to judge which side had larger amplitude and to report their choices by pressing a
button based on a two-alternative forced-choice method. No feedback of correctness was
given. After participants made their choice, the next trial was triggered automatically.

In the large-small adaptor condition, after adaptation, the side with the large-amplitude
adaptor should cause the amplitude of the probe to appear smaller than the actual value,
whereas the side with a small-amplitude adaptor should cause the amplitude of the probe to

Table 1. Parameters of the Horizontal Corrugation and Half Plaid Stimuli.

Stimulus type

Depth amplitude of horizontal

corrugation and half plaid stimuli

Adaptation stimulus

Large 20.2 arcmin

Medium 12.1 arcmin

Small 4.1 arcmin

Test stimulus 9.1–15.2 arcmin (nine levels)

Comparison stimulus 12.1 arcmin
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appear larger. Thus, there will be a perceptual shift. In contrast, in the medium-sized
amplitude adaptor condition, the two adaptors have the same amplitudes, which cause the
same adaptation effects of the test stimuli and therefore will not induce a perceptual shift.

Before the experiment, participants were trained by using our own practice program.
In practice trials, the adaptation step was eliminated to avoid any potential influence on
the experimental results, and only the test stimuli were shown. Feedback on correctness was
given to participants to give them insight on their own perception. There were 36 practice
trials for each stimulus type.

During the experiment, stimuli were presented with two combinations of adaptor-probe
pairs in each test stimulus condition (i.e., horizontal-horizontal and half plaid-horizontal
pairs as the horizontal test stimulus condition, and half plaid-half plaid and horizontal-
half plaid pairs as the half plaid test stimulus condition) and three adaptation-amplitude
types (large-, medium-sized, and small-amplitude adaptation conditions). For each condition,
there were 216 trials to produce 8 repeats at each test point. Different conditions were block
designed and divided into six sessions that were implemented on different days. In each
session, blocks were presented subsequently with a 2-min break between each block.
All the blocks were counterbalanced within and between subjects.

Results

Stimuli were presented with four combinations of adaptor-probe pairs and three adapting-
amplitude types. Figure 2 shows the sigmoidal curves as a psychometric function fitted with
the average data of nine participants by using the generalized linear fitting method (Kingdom
& Prins, 2010) and the Matlab program (Mathworks, Natick, MA, USA).

In the horizontally oriented test stimulus condition as shown in Figure 2(a), the left and
right panels show the horizontal-horizontal and half plaid-horizontal adaptor-probe
conditions, respectively, and in the half plaid test stimulus condition as shown in
Figure 2(b), the left and right panels show the half plaid-half plaid and horizontal-half
plaid adaptor-probe conditions, respectively. In all figures, the horizontal axis represents
the normalized amplitude of test stimulus, which is calculated by Depth of test stimulus

Depth of comparison stimulus

with the depth parameters shown in Table 1. The vertical axis represents the ratio
perceived to be the larger depth amplitude. Since the test and comparison stimuli were
presented randomly after the large or small adaptors in each trial, we separated those
trials with test stimuli after the large adaptor from those after the small adaptor; then for
each amplitude level of test stimuli (nine levels in total), we calculated the ratio perceived to
be a larger depth amplitude than the comparison stimulus. After this calculation, we obtained
the results for the three adapting conditions separately. Each test stimulus point was repeated
eight times for each participant. The average values of the ratio perceived to be larger depth
amplitude after adapting to large-, medium-sized, and small-amplitude adaptors are shown
by circle, triangle, and cross symbols, respectively. The fitted curves are shown by solid line,
dash line, and dot line, respectively. The error bars are the standard errors of the mean by
10 participants’ data. The fitted curves showed that there were shifts among the large-,
medium-sized, and small-amplitude adapting conditions in each adaptor-probe pair.

The 50% point on the fitted psychometric function, namely, point of subjective equality
(PSE), was obtained for each participant by calculating the horizontal-axis value (as amplitude
ratio of test stimulus to comparison stimulus) which corresponded to 0.5 of the vertical-axis value
(this was also the ratio perceived to be the larger depth amplitude) in each condition as shown in
Figure 2 and then subtracting 1 to get the PSE shift accordingly. The results of the PSE shift in
each condition are presented in Figure 3.
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A 2 (adaptor-probe conditions)� 3 (large, medium-sized, and small adaptation
conditions) repeated measure analysis of variance (ANOVA) was used to analyze the PSE
shift of the horizontal and plaid test stimulus conditions separately.

In the horizontal test stimulus condition (Figure 3(a)), ANOVA revealed a significant
main effect on amplitude type, F(2, 16)¼ 19.88, p< .001, generalized �2¼ 0.62, and a
significant interaction between adaptor-probe pair and amplitude type, F(2, 16)¼ 5.06,
p¼ .02, generalized �2¼ 0.11, while no significant difference was found in the PSE shift of
adaptor-probe pairs, F(1, 8)¼ 4.74, p¼ .06, generalized �2¼ 0.03. Significant simple main
effects of the adaptor-probe pairs were noted in the large-amplitude adapting condition,
F(1, 8)¼ 5.48, p¼ .047, generalized �2¼ 0.11, and small-amplitude adapting condition,

Figure 2. Fitted psychometric sigmoidal curves in horizontally oriented and half plaid test stimulus

conditions. (a) The horizontally oriented test stimulus condition, in which the left and right panels represent

the horizontal-horizontal and half plaid-horizontal adaptor-probe conditions, respectively and (b) the half

plaid test stimulus condition, in which the left and right panels represent the half plaid-half plaid and

horizontal-half plaid adaptor-probe conditions, respectively. In all figures, the horizontal axis represents the

amplitude ratio of test stimulus to comparison stimulus, and the vertical axis represents the ratio perceived

to be the larger depth amplitude after separating the trials that presented test stimuli after the large adaptor

from trials that presented stimuli after the small adaptor. The average values of the ratio perceived to be

larger depth amplitude after adapting to large-, medium-sized, and small-amplitude adaptors are shown by

circle, triangle, and cross symbols, respectively. The fitted curves after adapting to large-, medium-, and small-

amplitude adaptors are shown by solid line, dash line, and dot line, respectively. The error bars are the

standard errors of the mean by nine participants’ data.
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F(1, 8)¼ 6.05, p¼ .04, generalized �2¼ 0.17. Thus, the absolute values of PSE shift are
significantly larger in horizontally corrugated adaptor than in half plaid adaptor
conditions. No significant difference in the medium-sized amplitude adapting condition
was found, F(1, 8)¼ 2.86, p¼ .13, generalized �2¼ 0.09. Multiple comparison tests showed
significant differences between each two amplitude adapting conditions in the horizontal-
horizontal condition (p< .001 between the large- and small-amplitude adapting conditions,
p< .001 between the large- and medium-sized amplitude adapting conditions, and p¼ .02
between the medium-sized and small-amplitude adapting conditions) and in the half plaid-
horizontal condition (p< .001 between the large- and small-amplitude adapting conditions,
p¼ .02 between the large- and medium-sized amplitude adapting conditions, and p¼ .04
between the medium-sized and small-amplitude adapting conditions).

In the half plaid test stimulus condition (Figure 3(b)), ANOVA revealed a significant main
effect of amplitude type, F(2, 16)¼ 13.56, p< .001, generalized �2¼ 0.52, and a significant
interaction between adaptor-probe pair and amplitude type, F(2, 16)¼ 3.96, p¼ .04,
generalized �2¼ 0.07, whereas no significant difference in adaptor-probe pairs was noted,
F(1, 8)¼ 1.31, p¼ .29, generalized �2¼ 0.01. A significant simple main effect of adaptor-
probe pairs was found in the large condition, F(1, 8)¼ 14.48, p¼ .01, generalized �2¼ 0.19,
whereas no significant difference in the medium-, F(1, 8)¼ 0.10, p¼ .75, generalized
�2¼ 0.003, or small-amplitude adapting conditions, F(1, 8)¼ 0.52, p¼ .49, generalized
�2¼ 0.02, was noted. Thus, the absolute value of the PSE shift was found to be
significantly larger in horizontally corrugated stimuli than in half plaid adaptor stimuli.
Multiple comparison tests showed significant differences in the half plaid-half plaid
condition (p¼ .02 between the medium-sized and small-amplitude conditions, p¼ .04
between the large- and small-amplitude conditions) and in the horizontal-plaid condition
(p< .001 between each of the two amplitude-adapting conditions among the large-,
medium-sized, and small-amplitude adaptors).

Experiment 2

In Experiment 1, we compared the aftereffects of depth adaptation between half plaids and
horizontal corrugation and found significant differences in depth adaptation between
horizontal-horizontal and half plaid-horizontal pairs and also between half plaid-half plaid
and horizontal-half plaid pairs. In this experiment, we did not control the peak-to-trough

Figure 3. The PSE shift in Experiment 1. (a) Horizontally oriented test stimulus condition. (b) Half plaid test

stimulus condition. Significant differences in amplitude-adapting (large-, medium-sized, and small-amplitude

adapting conditions) are found in both adaptation conditions. The standard error bars are shown in all

conditions. PSE¼ point of subjective equality.
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amplitude of the disparity-defined plaids; thus, the components of plaids had the same peak-
to-trough amplitude as that of horizontal gratings. The purpose of this experiment was to
examine whether the component of the plaid was relevant to the adaptation effect.

Methods

Participants. Ten participants (21–31 years, mean: 25.6 years, 6 men) took part in this
experiment. All of them had normal or corrected-to-normal vision and passed the stereo
perception and stereo acuity test (less than 1 arcmin) with our own program. Participants
were naı̈ve to the purpose of the experiment and were compensated for their time.

Apparatus. The apparatus was the same as in Experiment 1.

Stimuli. The peak-to-trough amplitude of disparity-defined plaid adaptors was double the half
plaids in Experiment 1, as shown in Equation (5), whereas the disparity-defined horizontal
gratings were kept the same as those in Experiment 1.

SPlaid ¼ A� sin 2�yþ ’ð Þ þ sin 2�xþ ’ð Þð Þ ð5Þ

where A represents the amplitude with the value shown in the right column in Table 2; x and
y are the horizontal and vertical positions on the CRT display, respectively, and the spatial
frequencies of horizontal corrugation and plaid components were 0.25 cpd; ’ is the phase,
which randomly changes each 200ms. The size of the stimuli on each side was
14.0� 14.0 arcdeg.

Procedure. A schematic representation of the procedure is the same as in Figure 1 except that
all the half plaids were replaced with plaids in Experiment 2. In each condition, there were
216 trials to produce eight repeats of each test stimuli. The time duration and the procedure
were the same as in Experiment 1. Each participant’s task was to judge which side had the
larger amplitude. The experiment was block designed, and each session was conducted on a
different day.

Results

Stimuli were presented with four combinations of adaptor-probe pairs and three adaptation-
amplitude types (large-, medium-sized, and small-amplitude adapting conditions). We used

Table 2. Parameters of Horizontally Oriented Corrugation and Plaid Stimuli.

Stimulus type

Depth amplitude of horizontally

oriented stimuli

Depth amplitude of

plaid stimuli

Adaptation stimulus

Large 20.2 arcmin 40.4 arcmin

Medium sized 12.1 arcmin 24.2 arcmin

Small 4.1 arcmin 8.2 arcmin

Test stimulus 9.1–15.2 arcmin (nine levels) 18.2–30.4 arcmin (nine levels)

Comparison stimulus 12.1 arcmin 24.2 arcmin
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the same method as in Experiment 1 to calculate the ratio perceived to be the larger depth
amplitude. Figure 4 shows the sigmoidal curves as a psychometric function fitted with the
average data of 10 participants.

In the horizontally oriented test stimulus condition as shown in Figure 4(a), the left and
right panels show the horizontal-horizontal and plaid-horizontal adaptor-probe conditions,
respectively, and in the plaid test stimulus condition as shown in Figure 4(b), the left and
right panels show the plaid-plaid and horizontal-plaid adaptor-probe conditions,
respectively. In all figures, the horizontal axis represents the normalized amplitude of test

Figure 4. Fitted psychometric sigmoidal curves in horizontal and plaid test stimulus conditions. (a)

Horizontally oriented test stimulus condition and (b) plaid test stimulus condition. (a) The horizontally

oriented test stimulus condition, in which the left and right panels represent the horizontal-horizontal and

plaid-horizontal adaptor-probe conditions, respectively and (b) the plaid test stimulus condition, in which the

left and right panels represent the plaid-plaid and horizontal-plaid adaptor-probe conditions, respectively. In

all figures, the horizontal axis represents the amplitude ratio of test stimulus to comparison stimulus, and the

vertical axis represents the ratio perceived to be the larger depth amplitude after separating the trials that

presented test stimuli after the large adaptor from trials that presented stimuli after the small adaptor. The

average values of the ratio perceived to be larger depth amplitude after adapting to large-, medium-sized, and

small-amplitude adaptors are shown by circle, triangle, and cross symbols, respectively. The fitted curves after

adapting to large-, medium-sized, and small-amplitude adaptors are shown by solid line, dash line, and dot line,

respectively. The error bars are the standard errors of the mean by 10 participants’ data.
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stimulus, which is calculated by Depth of test stimulus
Depth of comparison stimulus with the depth parameters shown in

Table 2. The vertical axis represents the ratio perceived to be the larger depth amplitude.
We also separated those trials with test stimuli after the large adaptor from those after the
small adaptor using the same method as in Experiment 1, and then for each amplitude level of
test stimuli (nine levels in total) calculated the ratio perceived to be larger depth amplitude
than the comparison stimulus. The average values of the ratio perceived to be larger depth
amplitude after adapting to large-, medium-sized, and small-amplitude adaptors are shown
by circle, triangle, and cross symbols, respectively. The fitted curves after adapting to large-,
medium-sized, and small-amplitude adaptors are shown by solid line, dash line, and dot line,
respectively. The fitted curves showed that there were shifts among the large-, medium-sized,
and small-amplitude adapting conditions in each adaptor-probe pair. The error bars are the
standard errors of the mean by 10 participants’ data.

The PSE shift was calculated in the same method as described in the Results section of
Experiment 1 and presented in Figure 5. A 2 (adaptor-probe conditions)� 3(large-, medium-,
and small-adaptation conditions) repeated measure ANOVA was used to analyze the PSE
shifts of the horizontal and plaid test stimulus conditions separately.

In the horizontal test stimulus condition (Figure 5(a)), the ANOVA revealed neither a
significant main effect of adaptor-probe pairs, F(1, 9)¼ 2.16, p¼ .18, generalized �2¼ 0.01,
nor a significant interaction between adaptor-probe pairs and amplitude types, F(2, 18)¼
0.19, p¼ .82, generalized �2¼ .003. However, a significant difference among adaptation
amplitude types was found, F(2, 16)¼ 10.02, p¼ .001, generalized �2¼ 0.45.

In the plaid test stimulus condition (Figure 5(b)), ANOVA revealed neither a significant
main effect of adaptor-probe pairs, F(1, 9)¼ 3.90, p¼ .08, generalized �2¼ 0.01, nor a
significant interaction between adaptor-probe pairs and amplitude types, F(2, 18)¼ 1.34,
p¼ .29, generalized �2¼ 0.03. However, a significant difference among adaptation amplitude
types was found, F(2, 18)¼ 4.85, p¼ .02, generalized �2¼ 0.25.

Experiment 3

In Experiments 1 and 2, we respectively manipulated the peak-to-trough amplitudes of the
half plaids and plaids to investigate how the depth aftereffects changed. In Experiment 3, we
aimed to verify whether changes in depth aftereffects were induced between the adaptors with

Figure 5. The PSE shift in Experiment 2. (a) Horizontally oriented test stimulus condition. (b) Plaid test

stimulus condition. Significant differences in amplitude-adapting (large, medium-sized, and small-amplitude

adapting conditions) are found in both conditions. The standard error bars are shown in all conditions.

PSE¼ point of subjective equality.
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and without certain surfaces. To do so, we used horizontal corrugation and noise-shape as
adaptors.

Methods

Participants. The 10 participants of Experiment 1 took part in Experiment 3. We also excluded
the data of one participant because of their low stereo acuity test score as explained in
Experiment 1.

Apparatus. The apparatus was the same as in Experiments 1 and 2.

Stimuli. The noise-shape adaptor had the same peak-to-trough amplitudes and the same
crossed and uncrossed disparities as the horizontally oriented corrugation adaptor, but the
disparity distribution of the noise adaptor was in random positions without a continuous
surface. The horizontal corrugation had the same parameters as presented in Tables 1 and 2.
The schematic representation of the stimuli is shown in Figure 6.

Procedure. A schematic representation of the procedure shown in Figure 7 is the same as that
explained in Figure 1, thus was omitted here. In each condition, there were 216 trials to
produce eight repeats at each test stimuli. The time duration and the procedure were the same
as in Experiment 1. Each participant’s task was to judge which side had the larger amplitude.
The experiment was block designed, and each session was conducted on a different day.

Results

In Experiment 3, the stimuli were presented with two combinations of adaptor-probe pairs
(horizontal-horizontal and noise-horizontal) and three adaptation-amplitude types (large-,
medium-sized, and small-amplitude adapting conditions).

The psychometric sigmoidal curves were fitted, and the PSE shift was calculated from data
of nine participants. Figure 8 shows the fitted psychometric sigmoidal curves from the
average data of participants. The left and right panels show the horizontal-horizontal and
plaid-horizontal adaptor-probe conditions, respectively. In both figures, the horizontal axis
represents the normalized amplitude of test stimulus, and the vertical axis represents the ratio

Figure 6. A schematic representation of the noise and horizontally oriented adaptors. The noise and

horizontally oriented adaptors are shown in dots and a solid line, respectively.
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Figure 7. A schematic representation of the procedure for Experiment 2. (a) Horizontal-adapting condition

and (b) noise-adapting condition. The experimental procedure was the same as explained in Experiment 1 in

Figure 1. ISI¼ Inter Stimulus Interval.

Figure 8. Fitted psychometric sigmoidal curves in horizontally oriented and noise adaptor conditions.

The left and right panels represent the horizontal-horizontal and noise-horizontal adaptor-probe conditions,

respectively. In all figures, the horizontal axis represents the amplitude ratio of test stimulus to comparison

stimulus, and the vertical axis represents the ratio perceived to be the larger depth amplitude after separating

the trials that presented test stimuli after the large adaptor from trials that presented stimuli after the small

adaptor. The average values of the ratio perceived to be larger depth amplitude after adapting to large-,

medium-sized, and small-amplitude adaptors are shown by circle, triangle, and cross symbols, respectively.

The fitted curves after adapting to large-, medium-sized, and small-amplitude adaptors are shown by

solid line, dash line, and dot line, respectively. The error bars are the standard errors of the mean by

10 participants’ data.
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perceived to be the larger depth amplitude calculated with the same method as in
Experiments 1 and 2. The average values of the ratio perceived to be larger depth
amplitude after adapting to large-, medium-sized, and small-amplitude adaptors are shown
by circle, triangle, and cross symbols, respectively. The fitted curves after adapting to large-,
medium-, and small-amplitude adaptors are shown by solid line, dash line, and dot line,
respectively. The fitted curves showed that there were shifts among the large, medium-
sized, and small-amplitude adapting conditions in each adaptor-probe pair. The error bars
are the standard errors of the mean by nine participants’ data.

A 2 (adaptor-probe conditions)� 3(large-, medium-, and small-adaptation conditions)
repeated measure ANOVA was used to analyze the PSE shift of the horizontal and noise
adaptation conditions. The ANOVA revealed a significant main effect of adaptor-probe
pairs, F(1, 8)¼ 5.37, p¼ .05, generalized �2¼ 0.05, amplitude type, F(2, 16)¼ 15.62,
p< .001, generalized �2¼ 0.53, and a significant interaction between the adaptor conditions
and adaptor-probe pairs, F(2, 16)¼ 9.26, p< .001, generalized �2¼ 0.25. Significant simple
main effects of adaptation amplitude type were observed in both adaptation conditions
(horizontal adaptor: F(2, 16)¼ 17.60, p< .001, generalized �2¼ 0.68; noise adaptor:
F(2, 16)¼ 3.81, p¼ .04, generalized �2¼ 0.26). Significant simple main effects of depth
adaptation were found with large-amplitude adapting condition, F(1, 8)¼ 11.44, p¼ .01,
generalized �2¼ 0.28, and small-amplitude adapting condition, F(1, 8)¼ 9.55, p¼ .01,
generalized �2¼ 0.32, whereas no significant difference was observed with medium-sized
amplitude adapting condition, F(1, 8)¼ 3.34, p¼ .10, generalized �2¼ 0.14 (Figure 9).

General Discussion

We conducted three experiments to investigate the relationship of depth adaptation between
plaids and their component gratings. In Experiments 1 and 2, we manipulated different peak-
to-trough amplitudes of adaptors and test stimuli to investigate whether the peak-to-trough
amplitude or the component of the plaid was relevant to the adaptation effect. In Experiment 1,

Figure 9. The PSE shift in Experiment 3. Significant differences in adaptation amplitude (large, medium-

sized, and small-amplitude adapting conditions) were found in both adaptation conditions. Significant

differences of depth adaptation were also noted between the two adaptation conditions in both large- and

small-amplitude adapting conditions but not in medium-sized amplitude adapting condition.

PSE¼ point of subjective equality.
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we examined the depth aftereffects between horizontal-horizontal and half plaid-horizontal
pairs and also between half plaid-half plaid and horizontal-half plaid pairs. Results showed
significant differences in the depth aftereffects of each comparison. In Experiment 2, we
investigated the depth aftereffects between horizontal-horizontal and plaid-horizontal pairs
and also between plaid-plaid and horizontal-plaid pairs. Results showed no significant
differences in the depth aftereffects of each comparison.

In regard to the disparity and shape-level depth adaptation, previous studies (Berends
et al., 2005; Domini et al., 2001) used viewing distance dependency to distinguish whether
the adaptation was a shape-level process. In our study, we did not manipulate the different
viewing distances of the adaptation and test stimuli but changed the peak-to-trough
amplitudes of the plaid stimuli. This might cause a change in perception in both disparity
and shape levels, since the average crossed or uncrossed disparities, and also the perceived
shapes (curvatures) of the plaids, were changed at different plaid amplitudes, thus causing
different changes in depth aftereffects. In addition, as the gratings were components of plaids,
it was difficult to differentiate the gratings (or components of the plaids) based on shape or to
demonstrate the disparity or shape-level depth adaptation; we could not identify what
percent was caused by disparity versus the percent caused by the shape-level process.

However, from a cyclopean depth adaptation view, these results might indicate that depth
adaptation was linked to cyclopean-oriented depth-from-disparity bandpass filters, as our
first hypothesis predicts, and the amount of depth adaptation is determined by the relevance
of amplitudes between the adaptation and test stimuli in each channel. In the horizontally
oriented test stimulus condition, the horizontal adaptor or the horizontally oriented
components of the plaid adaptor were adapted to the horizontal test stimuli.
In Experiment 1, the horizontally oriented components of half plaids had half the peak-
to-trough amplitude (20.2/2¼ 10.1 arcmin in the large-amplitude adaptor and
4.1/2¼ 2.05 arcmin in the small-amplitude adaptor conditions) of the horizontally
corrugated adaptor. The 10.1 to 2.05 arcmin in the large-small adaptation pair (half plaid-
horizontal adaptor-probe condition) caused less aftereffects than the 20.2 to 4.1 arcmin in the
large-small adaptation pair (horizontal-horizontal adaptor-probe condition) when using
12.1 arcmin as the amplitude of the test stimuli. However, in Experiment 2, the
horizontally oriented components of plaids had the same peak-to-trough amplitude
(20.2 arcmin with the large-amplitude adaptor and 4.1 arcmin with the small-amplitude
adaptor) as that of the horizontally oriented adaptor and thus caused a similar amount of
depth adaptation. Similarly, in the half plaid-half plaid test stimulus condition in Experiment
1, the adaptor and probe had the same shape and same components (20.2 arcmin with the
large-amplitude adaptor and 4.1 arcmin with the small-amplitude adaptor), and thus the
amount of depth adaptation was similar to the horizontal-horizontal pair. However, for
the horizontal-half plaid pair in Experiment 1, the horizontally oriented components in
half plaids had half the peak-to-trough amplitude (10.1 arcmin with the large-amplitude
adaptor and 2.05 arcmin with the small-amplitude adaptor). This may have caused a
smaller change in depth aftereffect when comparing using the horizontally oriented
adaptor. However, in the horizontal-plaid pair in Experiment 2, the horizontally oriented
component of the plaid adaptor had the same peak-to-trough amplitude as the horizontally
oriented adaptor and thus caused a similar amount of depth aftereffects. Meanwhile, based
on earlier results, we also disproved the second hypothesis, namely, that the amount of depth
adaptation was linked to the peak-to-trough amplitude of the pooled stimuli.

In Experiment 3, we compared the aftereffects between noise-horizontal and horizontal-
horizontal pairs, and the results showed a significant difference in depth adaptation between
these two pairs. The noise-adaptor was random white noise, which contained multiple spatial
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frequencies and limited amplitude for each spatial frequency channel. During adaptation,
only the channels with similar spatial frequency to the horizontally oriented test stimuli were
adapted and thus caused a much smaller depth adaptation when compared with the
horizontally oriented adaptor.

Previous studies (Tyler, 1975; Tyler & Kontsevich, 1995) demonstrated the hierarchical
processes of neural adaptation and used sinusoidal corrugations to examine the cyclopean
depth aftereffect. However, these studies did not investigate the relationship of depth
adaptation between plaids and gratings. In this study, we compared the cyclopean depth
aftereffects between different peak-to-trough amplitudes of plaids and gratings and found
that depth adaptation was linked to cyclopean-oriented depth-from-disparity bandpass
filters. Furthermore, the amount of depth adaptation was determined by the relevance of
amplitudes between the adaptation and test stimuli in each channel.
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