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Abstract

Motivation: Chromatographic peak picking is among the first steps in data processing workflows of raw LC-HRMS
datasets in untargeted metabolomics applications. Its performance is crucial for the holistic detection of all metabolic
features as well as their relative quantification for statistical analysis and metabolite identification. Random noise, non-
baseline separated compounds and unspecific background signals complicate this task.

Results: A machine-learning-based approach entitled PeakBot was developed for detecting chromatographic peaks
in LC-HRMS profile-mode data. It first detects all local signal maxima in a chromatogram, which are then extracted
as super-sampled standardized areas (retention-time versus m/z). These are subsequently inspected by a custom-
trained convolutional neural network that forms the basis of PeakBot’s architecture. The model reports if the respect-
ive local maximum is the apex of a chromatographic peak or not as well as its peak center and bounding box. In
training and independent validation datasets used for development, PeakBot achieved a high performance with
respect to discriminating between chromatographic peaks and background signals (accuracy of 0.99). For training
the machine-learning model a minimum of 100 reference features are needed to learn their characteristics to achieve
high-quality peak-picking results for detecting such chromatographic peaks in an untargeted fashion. PeakBot is
implemented in python (3.8) and uses the TensorFlow (2.5.0) package for machine-learning related tasks. It has been
tested on Linux and Windows OSs.

Availability and implementation: The package is available free of charge for non-commercial use (CC BY-NC-SA). It
is available at https://github.com/christophuv/PeakBot.

Contact: christoph.bueschl@univie.ac.at or juergen.zanghellini@univie.ac.at

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Untargeted metabolomics approaches have gained much popularity
in recent years. They aim at holistically detecting all compounds pre-
sent in samples regardless of their chemical identity. Subsequently,
statistical analysis is carried out to select differently abundant com-
pounds between treatment and control conditions for further bio-
logical interpretation (Fiehn, 2002).

The most commonly used analytical technologies for detecting
metabolites in aqueous samples are liquid or gas chromatography (LC
or GC) coupled with high-resolution mass spectrometry (HRMS) and
nuclear magnetic resonance (NMR) spectroscopy. LC-HRMS offers

the most versatility since it can be customized toward the samples or
certain constituents of interest (e.g. polar or non-polar compounds,
lipids or secondary metabolites). GC-MS approaches are mostly used
to study volatile compounds and NMR approaches offer the possibil-
ity for absolute quantification as it is not prone to matrix effects
(Segers et al., 2019).

While in targeted approaches the substances to be investigated
are defined by the experimenters and are typically available as
authentic reference standards, in untargeted approaches novel com-
pounds are also of particular interest. Depending on the metabolic
capabilities of the organism under study, a high number of metabo-
lites can be expected (Alseekh and Fernie, 2018; Peisl et al., 2018).
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This high number of metabolic features combined with multiple ex-
perimental conditions and replicates make it difficult to manually
examine the raw data and integrate each peak. Thus, automated
software tools, which are capable of (i) detecting chromatographic
peaks in the dataset and (ii) integrate them reliably, are of utmost
importance. These two steps are typically carried out simultaneously
yielding an average mass-to-charge-ratio (m/z) and retention-time as
well as a relative abundance (peak area or intensity of most abun-
dant signal contributing to the peak).

The metabolomics community has recognized the need for auto-
mation early on and started developing holistic and reliable (open
source) software approaches. Arguably, the best-known approaches
are XCMS (Tautenhahn et al., 2008) and XCMS-Online
(Tautenhahn et al., 2012), MzMine2 (Pluskal et al., 2010), MS-Dial
(Tsugawa et al., 2020), MetAlign (Lommen and Kools, 2012),
OpenMS (Röst et al., 2016) and Lipid Data Analyzer (Hartler et al.,
2017), among others; see also O’Shea and Misra (2020). These tools
scale well to different chromatographic conditions and MS instru-
ments making them reliable and indispensable. However, as LC-
HRMS methods can be customized (e.g. different chromatography
methods, mass ranges, resolution, separation power, etc.), one soft-
ware or parameter set does not fit all experiments. Furthermore,
optimizing a data processing software for a particular analytical
technique can be a challenging process that requires both an in-
depth knowledge of the analytics as well as the data processing algo-
rithm to assess the performance of different parameter sets.

Machine-learning has recently gained attention for the task of
peak-picking with for example, NeatMS (Gloaguen et al., 2020). It
does not perform peak-picking itself, but classifies peaks detected
with other tools and rates the quality of the detected peaks (high
quality, acceptable, noise). Thus, it can easily be integrated into
existing workflows. Another machine-learning approach is
peakOnly (Melnikov et al., 2020), which performs both classifica-
tion and peak border estimation with the help of deep-learning.
Both approaches utilize centroid data mode.

Here, we seek to explore the possibility of using machine-
learning convolutional neural networks (CNN) models for the task
of detecting chromatographic peaks in profile-mode chromato-
grams. In contrast to most algorithmic approaches (e.g. XCMS, MS-
Dial, etc.), which rely on the optimization of method parameters,
the presented method uses a series of user-provided references (i.e.
chromatographic peaks and different background types) to custom-
train a machine-learning model that can recognize such chromato-
graphic peaks and calculate their respective analytical properties dir-
ectly in the raw profile-mode data.

2 Approach

PeakBot is a python package that imports LC-HRMS datasets, pre-
processes them and returns a list of detected chromatographic peaks.
Figure 1 illustrates PeakBot’s processing pipeline. Unlike most avail-
able tools for chromatographic peak picking, PeakBot uses profile-
mode data instead of centroided data. Moreover, the presented ap-
proach does not have a classical region-of-interest (ROI) generation
step as for example XCMS or MSDial that bins similar m/z values
across the chromatogram, but rather directly enumerates all local
maxima (or a reduced subset), exports areas around this local max-
ima as standardized, super-sampled areas of the chromatogram and
tests these for the presence of chromatographic peaks in their cen-
ters. If the CNN model detects a chromatographic peak, PeakBot
also calculates the peak’s center and bounding box (retention-time
and m/z dimension). PeakBot’s CNN model can also be trained for
other categories of local maxima such as ‘walls’ that are constant
chemical or electronic noise signals and thus span rather large parts
of the chromatogram with only minimal random changes in inten-
sity (Supplementary Fig. S1).

2.1 Data processing
The main steps of detecting chromatographic peaks with PeakBot
are illustrated in Figure 1 in the left panel. First, the profile-mode

LC-HRMS data is loaded from files in the mzXML/mzML format.
For fast polarity switching data each polarity mode of MS1 data is
processed separately and MS2 data is ignored by default. All local
maxima [i.e. individual m/z signals that are more abundant than
their 8-neighboring m/z signals (1 scan earlier/later in the chromato-
graphic domain and preceding/succeeding m/z signal with an offset
less than the median difference between typical neighboring m/z sig-
nals of a profile mode peak), Moore neighborhood] are detected. At
this stage, the detection is carried out regardless of whether the apex
signals represent a true chromatographic peak or not.

All detected local maxima are exported as standardized LC-
HRMS areas consisting of a pre-set number of HRMS scans (default
32) and a pre-set number of m/z signals (default 128). These pre-set
defaults can be increased for example for chromatographic peaks with
a high number of data points (the size of HRMS scans in the standar-
dized area should be at least 2–3 times the average number of scans
that map to a typical chromatographic peak). Because on HRMS
instruments slight variations in the accuracy of the m/z signals occur,
even on adjacent MS scans, these standardized areas are super-
sampled. This means that an exact, equally spaced number of refer-
ence m/z values relative to the respective local maximum is generated
with the local maxima being in the center of this area. Finally, the
standardized area is scaled to a maximum abundance of value one.

As the number of local maxima in an LC-HRMS sample can be
quite high (e.g. due to high-frequency noise), an optional pre-
processing step of PeakBot is a basic gradient descend-based peak
detection approach. This pre-processing starts from each detected
local maximum. Adaptive EICs are calculated for each local max-
imum (Supplementary Fig. S2). A fixed m/z value is not used but ra-
ther the EIC adapts from the previous m/z value of the previous scan
thereby accounting for small shifts between the profile-mode signals.
Each EIC is smoothed with a Savitzky–Golay filter. Starting from
each local maximum the pre-processing algorithm moves left and
right on the retention-time axis until the inflection points are
reached (strictly monotonically decreasing EIC). Then each EIC is
feather traveled until either a scan has an increase in the intensity
relative to its predecessor or until the intensity relative to the peaks’
apex (the local maximum) undercuts 1%. If this pre-processing step
is used, only local maxima with a minimum peak width are further
used and exported, while the others are prematurely discarded.

Each standardized area is subsequently used as the input for the
CNN model, which tests it for the presence of a chromatographic
peak in its center. PeakBot reports detected chromatographic peaks
either as solitary peaks or such having left and/or right isomeric
neighboring peaks (partly overlapping chromatographic peaks). If
the local maximum and thus the standardized area does not contain
a chromatographic peak, but for example background walls, no
peak will be reported but rather the category wall or background.
For local maxima designated to contain chromatographic peaks,
PeakBot will also calculate the peaks’ center (which will mostly be
the center of the standardized area) as well as a bounding-box in
both the retention-time and m/z dimension.

Chromatographic peaks areas are calculated by summing up all
signal intensities that are within the reported boundaries (of the par-
ticular polarity). This also applies to partly-co-eluting or shoulder
peaks, as the boundaries of such peaks are automatically updated
during the training instance generation (see next section).

Finally, detected chromatographic peaks are exported to a tsv-
file and as a featureML file that can be used to visualize the results
e.g. with TOPPView (Sturm and Kohlbacher, 2009).

2.2 Training of PeakBot
The main steps of training a new PeakBot-CNN model are illus-
trated in Figure 1. To train a new PeakBot model from scratch, ref-
erence LC-HRMS chromatograms and a list of reference features
must be provided by the user. The reference chromatograms do not
need any special characteristics, however the list of reference fea-
tures provided by the user must only consist of features that repre-
sent single, isolated ions with as little background as possible. Partly
co-eluting isobaric or isomeric compounds are not supported yet
and cannot be used as reference features, however, such overlapping
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types are automatically generated from the others. In a typical untar-
geted metabolomics experiment compiling such a list should be easy
using standard compounds, QC samples and even unknown metab-
olites. This list of reference features can also be extended by the dif-
ferent isotopologues of already available compounds determined by
the user. For each reference feature, the user must specify the peak
center (retention-time and m/z value) and its bounding box in the
retention-time and m/z dimension. Furthermore, the user must spe-
cify a couple of background-regions that contain backgrounds.

Once specified, PeakBot first recognizes the features in the differ-
ent samples and calculates their properties directly from the data
(weighted-average m/z and apex retention-time) thereby accounting
for small shifts and drifts. For this refinement step, the basic
gradient-descend pre-processing algorithm is utilized.

PeakBot uses this user-curated input to generate many diverse
instances, which are used as the input for training a new PeakBot-
CNN model. Specific characteristics of the LC-HRMS dataset and
especially those of the references provided by the user (narrower/
broader chromatographic peaks, deviation of related m/z signals,
saturation effects, etc.) are retained in the automatically generated
training instances. Each such instance has a ground-truth center rep-
resenting the local-maximum. This ground-truth can be either a fea-
ture or a background and the respective area in the chromatogram is
super-sampled identically to the super-sampling carried out during
the detection phase of PeakBot. To avoid over-fitting and to auto-
matically generate many training instances (data augmentation), this
ground-truth and super-sampled area are iteratively combined with
randomly selected other features/background signals (decoys) from
the user’s input thereby simulating a diverse neighborhood of the
local maximum and even overlapping chromatographic peaks.
These other features/background signals are randomly placed into
the standardized area of the ground-truth. A variable degree of over-
lap (maximum 50% on the peak width and maximum 33% on the
peak-area intersection over union IOU) is allowed to simulate non-
baseline separated chromatographic peaks. The peaks’ boundaries
are automatically updated when another peak is placed next to a
chromatographic peak as these two form a partly co-eluting or
shoulder peak. During training the numbers of these different classes
of training instances (i.e. baseline separated, overlapping peaks and
backgrounds) are tried to be kept similar. In addition, all signals are
randomly varied (multiplied with a random value, default within the
range of 0.9–1.1) to simulate intensity-deviations caused by the
instrument.

Each such generated and augmented training instance is then
used by PeakBot to optimize the CNN model with the aim of cor-
rectly detecting the training instance, classify it and calculate its
properties.

2.3 Peakbot-CNN model
PeakBot utilizes a convolutional neural network (CNN) that has a

standardized LC-HRMS area as input (Supplementary Fig. S3).
Then, several convolutional steps and pooling layers follow. Two
convolutional layers are followed by a max-pooling layer and a

ReLu activation. This cascade is repeated four times each time
reducing the intermediate size but increasing the number of com-

puted information gained from the layers. The number and com-
puted information can easily be extended if required by the user.
After the last convolutional layer, the convoluted area is flattened

and the outputs (feature-type, boundaries and center) are calculated.
These outputs are (i) peak type (one-hot-encoded peak category con-

sisting of 6 types in its standard configuration), (ii) peak-center (in-
dices in the retention-time and m/z dimension in the standardized
area) and (iii) peak-bounding-box (start/stop indices in the

retention-time and m/z dimension in the standardized area).
Training is performed with TensorFlow. For optimizing the out-

put of the model, different loss functions are applied for the local-
maximum types (loss: categorical-crossentropy), peak-center (loss:
Huber), peak-bounding-box (loss: Huber), peak mask (loss: binary

crossentropy). Moreover, also the peak accuracy (loss: categorical
accuracy) and the peak-bounding-box intersect over union (loss:

custom) are reported to the user but these two are not used to opti-
mize the model.

2.4 Grouping of results from different chromatograms
To group the detected chromatographic peaks from different LC-
HRMS chromatograms, PeakBot implements a k-nearest-neighbor
approach with a user-defined retention-time and m/z window.

Further details about this algorithm are included in Supplementary
Information S1.

This grouping step can be repeated multiple times with wider
and narrower parameters thereby iteratively aligning the chromato-
grams to each other. If experimental conditions with vastly different

metabolic constituents are analyzed, the different experimental
groups can be aligned independently to create a virtual consensus

sample first and then the results of different experimental conditions
can be merged.

Finally, a comprehensive data matrix is generated consisting of all
detected chromatographic peaks and their abundances in the different
samples. If a chromatographic peak has not been detected in a sample,

the respective cell will be empty (missing value). Furthermore, the
results can be exported to a featureML file for visualization with,

e.g. with TOPPView (Sturm and Kohlbacher, 2009).

Fig. 1. Overview of the detection and training steps of PeakBot. The left panel shows the steps for detecting chromatographic peaks with an already trained PeakBot model,

while the right panel shows the steps of training a new PeakBot model from reference LC-HRMS data
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2.5 Implementation details
PeakBot is implemented in the python programming language (min-
imum 3.8). The machine-learning CNN model is implemented with
the tensorflow package (minimum 2.5.0, https://www.tensorflow.org/).

PeakBot utilizes the numba package (http://numba.pydata.org/)
for GPU compilation to detect local maxima in the LC-HRMS data
and export them to the standardized areas. The generation of the
augmented training instances also benefits from the numba package.
Alternatively, a CPU version with just in time compilation of python
code is available.

PeakBot reads the mzXML/mzML file format for raw LC-
HRMS data.

3 Materials and methods

3.1 Training and validation datasets
To train a new CNN model and monitor PeakBot’s performance dur-
ing the training step, different datasets were generated from the user-
provided reference feature list. Briefly, these were derived from untar-
geted metabolomics experiments of wheat ears (named ‘WheatEar’,
Supplementary Information S2), porcine hepatic microsome incuba-
tion samples (named ‘PHM’, Supplementary Information S3) and four
other datasets obtained from MetaboLights [https://www.ebi.ac.uk/
metabolights; MTBLS1358 (Flasch et al., 2020), MTBLS868
(Mbekeani et al., 2019), MTBLS797 (Raheem et al., 2019)] and the
Metabolomics Workbench [https://www.metabolomicsworkbench.
org/; ST001450 (Zhang et al., 2020)] repositories (Supplementary
Information S4). Separate PeakBot CNN models were trained for
each dataset to evaluate the performance as presented in Section 2.2.
Cross validation (5-fold) with randomly selected peaks for training
and validation was used.

For each such LC-HRMS dataset, four reference-set were gener-
ated for training and verifying the CNN models’ performance.
These sets are:

T: The training set obtained from the training chromatograms

with a list of at least 100 reference features.

V: A validation set obtained from the training chromatograms

(same as for T) but different reference features (no overlap with T).

iT: A validation set obtained from different validation chromato-

grams (no overlap with T), but the same reference features used

for training the model (same as in T).

iV: A validation set obtained from different validation chromato-

grams (no overlap with T) and different reference features (no

overlap with T). As this set neither shares the chromatograms

nor the reference features with the training set T it can be consid-

ered an independent validation set of the model.

During training, the agreement of the ground truth (i.e. the gen-
erated training instances) and the predictions of the model are sum-
marized in several loss/metric values (Table 1). All validation results
were critically evaluated with respect to the metrics reported by the
training process. Moreover, a subset of all results was also manually
verified by the person training the CNN model.

4 Results and discussion

Humans are exceptionally good at visually recognizing structure in un-
structured data [e.g. object detection and separation, recognition of
(co-eluting) chromatographic peaks]. However, it is not possible for
them to pick many peaks manually as humans are unfortunately very
slow at this task. Thus, reliable, automated peak-picking is important.

Here, PeakBot is presented. It is a CNN-machine learning model
for the detection of chromatographic peaks in LC-HRMS datasets.
As the analytical parameters of different datasets (e.g. chromato-
graphic peak width and/or m/z deviation) can be quite different, the
PeakBot CNN models can be custom-trained for each dataset or
analytical method (e.g. scan rate for UHPLC or TOF instruments).
The trained CNN model then inspects new chromatograms for the

presence of chromatographic peaks or to different types of back-
grounds observed in the dataset.

PeakBot has different outputs namely peak-type, -center and -
bounding-box. Peak-type is a one-hot-encoded class identifier and con-
sists of four types if a true chromatographic peak is predicted to be in
the center of the standardized area. These four peak types are whether
the peak is isolated (no left and right isomeric neighbors) or not. In
Addition, two peak categories also indicate if the local maximum is a
background signal (either a wall or a random signal). If PeakBot consid-
ers the local maximum to be a true chromatographic peak, it will also
calculate the peak’s center and bounding box, which describe the loca-
tion of the peak in the two-dimensional chromatogram. An example of
the detection of local maxima and classification as true chromatograph-
ic peaks and backgrounds is shown in Supplementary Table S1.

4.1 Training and validation of PeakBot
Training of machine-learning models is a difficult process with different
aspects to be considered as otherwise the model might overfit. In this re-
spect overfitting refers to a model that has a minimal error on the train-
ing dataset but does not generalize well with new data not used for the
training process and thus has a poor prediction quality for new data. It
is common practice to test the performance of machine-learning models
during training also with independent validation instances (here iV) to
check for such effects. If the model generalizes well, the validation- and
training-reference-sets have similar loss and metric values.

Three validation datasets are used to verify and judge the trained
model’s performance. For this, at least one independent reference-set
(i.e. same analytical method, but different features and chromato-
grams than used for training) are used. The losses and metrices for the
training and validation for the six demonstration datasets are illus-
trated in Figure 2 and Supplementary Figure S4. The loss and metric
values were similar (less than 5% difference in the metrices) between
the training (T) and the validation reference-sets (V, iT, iV) indicating
that the model was not overfitted to the training data. The model was
able to accurately estimate if a local maximum was indeed a chroma-
tographic peak (accuracy for the peakType and binary classification
for peak or no peak). In this respect, the independent reference-set iV
was most interesting as it was derived from chromatograms and refer-
ence features completely independent of the training data. The trained
PeakBot models were able to recognize chromatographic peaks or
backgrounds with an accuracy of more than 99%
(peakType_ACCPeakNoPeak metric) on average. The peaks’ centers
were similar to the training and other validation reference-set (center_-
loss), while the bounding-box agreed a little less (box_iou).

4.2 Size and composition of reference feature set
PeakBot requires reference features for training of a CNN model.
These reference features must be isolated chromatographic peaks cura-
ted by the user. Moreover, the different reference features should cover
all expected, typical peak shapes of the analytical method.

Table 1. Overview of loss/metric values

Loss/metric Description

box_iou Intersection over union (IOU) of the pre-

dicted and ground-truth bounding

box of a true chromatographic peak.

Higher values indicate a better overlap

between the ground-truth and the pre-

diction (Rahman and Wang, 2016).

center_loss Mean-Squared-Error (MSE) of the pre-

dicted and ground-truth peak center

(retention-time and m/z) of a true

chromatographic peak. Lower values

indicate a better overlap.

peakType_ACCPeakNoPeak Accuracy for correctly reporting a chro-

matographic peak or not. Higher val-

ues indicate a better overlap.
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To investigate the effect of differently sized reference lists upon
the CNN-models performance, subsets of different size were gener-
ated from the initial reference feature list consisting of 2731 refer-
ence features, which were combined to 1 048 576 training instances.
Different sizes (10–2400) of the reference list were used to train sep-
arate PeakBot CNN models and to obtain their metric values.

In summary, a slight reduction in performance was observed
when fewer reference features were used during the training phase
(Supplementary Figs S5 and S6). A strong change in metric values
was observed at around 100 features. Using a lower number of fea-
tures greatly reduced the performance of the model, while the model
did not noticeably benefit from a higher number of reference fea-
tures. Nevertheless, the different models were still able to differenti-
ate between true chromatographic peaks or backgrounds with a
high certainty. Thus, this investigation showed that at least 100 ref-
erence features (including isotopologue features) should be provided
for training by the user for good performance. Only the approxi-
mate retention-time and m/z values (i.e. within the actual peak’s
boundaries) of the reference features need to be provided by the user
as PeakBot will automatically adapt to the respective properties of
the chromatographic peaks (apex in retention time and apex in m/z
dimension) in the reference chromatograms.

Different sets of reference features were also used for the training
process to simulate researchers likely to assemble unequal lists of
ground-truth data for training. The results are illustrated in
Supplementary Figures S5 and S6. For a fixed training length, a rep-
licate is a randomly selected set of the large training set initially
available. Only minor differences in the performance metrics are
reported for the different repetitions of the training indicating a
good generalization of models’ detection process. Moreover, as only
a certain number of the large instance set was used for training and
the remaining features were used for verification in the iT, V and iV
reference-set, it can also be concluded that PeakBot generalizes well
to similar chromatographic peaks in the dataset. Furthermore, an al-
ready trained and validated model can easily be reused for process-
ing datasets with similar chromatographic peak characteristics (i.e.
data generated with the same analytical method as used for the ini-
tial training of the PeakBot model).

4.3 Comparison of PeakBot with XCMS, MS-Dial and

peakOnly-based peak-picking
To compare the performance of PeakBot with that of other peak-
picking approaches, we compared it to XCMS, MS-Dial and
peakOnly. XCMS and especially its centWave algorithm is a popu-
lar software package for detecting chromatographic peaks in LC-
HRMS data in an untargeted manner (Tautenhahn et al., 2008). It

utilizes a wavelet-based algorithm to detect chromatographic peaks
of different widths. The MS-Dial software is another software for
LC-HRMS data processing (Tsugawa et al., 2020). It uses a
gradient-descend inspired peak detection method and offers the user
a sophisticated graphical user interface for easy data-processing.
Finally, peakOnly is a machine-learning-based peak-detection soft-
ware, similar to PeakBot, and can be employed for peak-picking and
comparison (Melnikov et al., 2020).

The comparison of these peak-picking algorithms was carried
out on the PHM dataset. All four algorithms were independently
optimized to the PHM dataset or a custom-dataset trained PeakBot
CNN model. Then, all detected peaks were compared automatically
to see how well these methods agree in respect to detecting the chro-
matographic peaks in an untargeted manner. It was necessary to
allow for a large retention-time shift of 10 s and a large m/z shift of
10 ppm as the tools calculated the respective values differently.
Supplementary Information S5 provides details of this automated
comparison.

The results of this comparison are illustrated in Supplementary
Figure S7. A high number of features (on average 73%), were suc-
cessfully detected with all four approaches. On average another
12% of the features were not detected with peakOnly but with the
remaining three tools and another 4.7% were detected exclusively
with MS-Dial, peakOnly and PeakBot. The remaining combinations
of two tools or each tool individually resulted in less than 2% add-
itional features on average. This demonstrates that all tools per-
formed well at picking chromatographic peaks in general, although
there are differences between the tools.

The results obtained for one chromatogram (sample
08_EB3391_AOH_p_60) were compared manually using TOPPView
(Sturm and Kohlbacher, 2009) and are illustrated in Figure 3. A max-
imum of 50 features were used from each Venn-intersection. Of the
17 features detected only by PeakBot 82% were true chromatographic
peaks. The features detected only by XCMS, MS-Dial and peakOnly
were mostly incorrectly reported chromatographic peaks and actual
background walls. Moreover, a high number of true chromatographic
peaks were present in any Venn-intersection where PeakBot classified
the respective features as true chromatographic peaks (red ellipse in
Fig. 3). The combination of XCMS and MS-Dial results also showed
a high confidence in the chromatographic peaks detected only with
these two approaches. Interestingly, 28 of these additional peaks were
of high quality and abundance but with almost baseline separated iso-
meric other compounds. The remaining features (between 2 and 16)
were detected by combinations of MS-Dial, XCMS and peakOnly
and represented mostly incorrectly classified backgrounds.

In summary, this overview demonstrates that PeakBot performs
well at detecting and classifying true chromatographic peaks. In

Fig. 2. Overview of training losses and metrices on the training dataset T and the

additional validation sets V, iV, iT
Fig. 3. Comparison of results from PeakBot, XCMS, MS-Dial and peakOnly for a

selected sample of the PHM dataset
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these comparisons it detected on average 94.65% of all features
detected with the different approaches and furthermore its classifica-
tion accuracy was high, especially when the features were only
detected solely with PeakBot or one additional data processing
approach.

4.4 Relative quantification
Reliable peak detection and peak area integration for subsequent
statistical comparison of different experimental conditions are the
main tasks of peak picking. For optimal and reliable peak area inte-
gration, PeakBot automatically derives peak borders for detected
chromatographic peaks. To test how well and repeatable the trained
CNN model was able to integrate the peak areas, the data was a)
manually sighted to confirm correctly detected peak areas, b) a com-
parison of the replicates from the WheatEar study using relative
standard deviation (RSD) was carried out and c) peak areas deter-
mined from PeakBot and XCMS were compared.

The manual, human verification for randomly selected features
confirmed that PeakBot reliably detected the peaks’ borders in the
profile-mode data in both the retention-time and m/z dimension. In
addition, partly co-eluting isomeric peaks have also been inspected
manually. There, PeakBot successfully separated such chromato-
graphic peaks and calculated their boundaries accordingly
(Supplementary Fig. S8).

The RSD values of the replicates from the WheatEar study,
which were technical replicates of injections from the same sample
at different injection volumes, showed small sample-to-sample dif-
ferences including both instrumental and data processing variations.
On average less than 10% RSD was observed for the different fea-
tures and 90% had RSD values lower than 20%, which was well
within the typical ranges of untargeted metabolomics experiments
(Bueschl et al., 2014). The distribution of the RSD values is illus-
trated in Figure 4a.

A comparison between the peak areas determined with PeakBot
and XCMS from the tool comparison in the previous section showed
a linear correlation of features detected with both approaches.
When all features were considered, the R2 value was 0.808. This
rather low R2 value is of no surprise, as outliers (i.e. incorrectly inte-
grated peaks with either method) are expected with every peak-
picking tool. When the bottom and top 5% of features with too dis-
similar peak areas (i.e. 10% of the features in total) were omitted,
the R2 value improved to 0.977. The linear relationship between
PeakBot and XCMS is illustrated in Figure 4b. This comparison also
showed that the peak areas determined with PeakBot were much
higher than the peak areas determined with XCMS, but this was to
be expected as PeakBot operates on profile-mode data. The factor
between the corresponding peak areas were on median 9.96 with
the 25% and 75% percentile being 9.42 and 10.78.

These three investigations confirm that PeakBot accurately deter-
mines the peaks’ boundaries.

4.5 Runtime
CNN models are typically computationally more expensive than the
commonly utilized algorithmic approaches that work with one-
dimensional EIC data. It is thus of no surprise that the data process-
ing with PeakBot takes longer in comparison. However, PeakBot
uses TensorFlow for its machine-learning related tasks and thus it
has the possibility to harness the computational power of graphical
processing units (GPUs) of CUDA-enabled graphics cards. While
such a setup does not allow processing several chromatograms in
parallel, it allows processing many local maxima of a single chro-
matogram in parallel thereby reducing the overall computation
time. As a result, it is recommended to run PeakBot on a PC
equipped with a CUDA-enabled GPU. However, a CPU-only version
that utilizes just-in-time compilation of python to C code with the
numba package (https://numba.pydata.org) is also available, but
processing times are much longer than for the GPU version.

All run-time tests were carried out using either an Nvidia Tesla
V100S or an Nvidia GTX 970 GPU. The first one is currently one of
the best performing CUDA cards available, however, it is typically

installed only in super-computing centers, while the latter one is a
some 6-year-old mainstream/gaming graphics card. On both systems
the CNN-model and the necessary pre-processing routines that are

also implemented with GPU support executed within reasonable
time demonstrating that PeakBot’s pre-processing and CNN model

execute quickly even on older, desktop-PC hardware. The systems
and the runtimes of generating the training reference-set, training a
new PeakBot model, as well as detecting chromatographic peaks in

LC-HRMS samples are summarized in Table 2.

4.6 Generation of MSMS exclusion lists
Data dependent acquisition (DDA) of MS/MS spectra is typically
carried out in untargeted metabolomics experiments to support fea-

ture annotation/identification. However, large backgrounds (i.e.
walls) especially in samples with low metabolite ion abundances can
interfere with this acquisition strategy and thus the MS/MS coverage

of the sample’s metabolites is reduced. The degree of the reduction
depends on the background and its intensity. An example of such a

chromatogram where mainly parts of the background have been
used for DDA is shown in Supplementary Figure S9.

In such experiments, PeakBot’s background annotation feature
can be useful for the automated generation of MS/MS exclusion lists
for subsequent measurements. Such exclusion lists can be generated

e.g. from the detected walls in background samples. In the shown
example the use of such an exclusion list increased the MS/MS

coverage of true chromatographic peaks increased from 1356 to
1605 in negative and 855 to 1810 in positive ionization mode, re-
spectively (Supplementary Table S2), which corresponds to an in-

crease of 18% and 112% respectively. Nevertheless, it should be
noted that peaks with the same m/z ratio as such background walls

could potentially be missed with this strategy.

Fig. 4. (a) RSD values of the peak areas of the WheatEar dataset. (b) Comparison of

peak areas integrated with PeakBot and XCMS
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5 Summary

PeakBot is a high-performance machine-learning-based approach
for detecting chromatographic peaks in LC-HRMS profile-mode
datasets. The use of reference features and chromatograms makes it
independent of different parameter settings and thus a newly trained
model can adapt to the dataset’s characteristics such as Gaussian or
non-Gaussian peak shapes, overlapping chromatographic peaks of
different degree, narrower or wider chromatographic peaks, strong
noise and intensity fluctuations and others. Furthermore, the advan-
tage is that PeakBot reports metrices about its training-progress
thereby allowing the user to monitor its performance on an inde-
pendent reference-set not used for training but for validation. To
train a new model, PeakBot provides functions to automatically gen-
erate diverse training instances thereby reducing the number of ref-
erence features to be provided by the user.

For prediction, PeakBot requires only the raw chromatograms in
profile-mode data and an intensity threshold. All local maxima (or
alternatively these with a gradient-descend peak shape) are used as
starting points for the detection of chromatographic peaks. Each
local maximum is then inspected by the reference-feature trained
model for chromatographic peaks or backgrounds.

In our tests, PeakBot showed to be a reliable peak-picking
method and was able to compete with established software tools.
Moreover, PeakBot also reliably integrates the peaks’ boundaries for
relative quantification thereby not introducing a too high data proc-
essing variation.

In addition, as PeakBot also classifies background signals it can
be used for the efficient and reliable generation of exclusion lists for
broad walls, which are often unnecessarily used for MS/MS scans
thereby saving experimentalists time, resources and sample.

PeakBot demonstrated to be a viable and good alternative for
peak picking. As PeakBot requires real LC-HRMS data for its train-
ing, different models can be tuned for certain LC-HRMS character-
istics. As a python package PeakBot also allows programmatic
access to the raw LC-HRMS data and will be of interest for proto-
typing ideas. Furthermore, it can be integrated in other software
tools and the models can easily be reused or shared. In future
releases we want to add machine-learning capabilities also to the
tasks of grouping/aligning detected features from different results,
re-integration, convolution and annotation of features and provide
an easy-to-use graphical user interface for users without coding
experience.

PeakBot and related examples are available free of charge for
academic use at https://github.com/christophuv/PeakBot and https://
github.com/christophuv/PeakBot_example.
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Table 2. Run times of PeakBot for the WheatEar dataset

Workstation PC HPC server

CPU Intel i7-4790K AMD Epyc 7542

Main memory 16 GB 2096 GB

GPU Nvidia GTX 970 Nvidia Tesla v100S

GPU memory 4 GB 32 GB

OS Windows 10 Debian 10.9

Generating training and

validation sets

48 min 8.9 min

Training CNN model 33 min 13.4 min

Average processing time of

31 259 local maxima

45 s 17 s
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