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Abstract: Xanthan is an important polysaccharide with many beneficial properties. Sulfated xanthan
derivatives have anticoagulant and antithrombotic activity. This work proposes a new method for the
synthesis of xanthan sulfates using sulfamic acid. Various N-substituted ureas have been investigated as
process activators. It was found that urea has the greatest activating ability. BBD of xanthan sulfation
process with sulfamic acid in 1,4-dioxane has been carried out. It was shown that the optimal conditions
for the sulfation of xanthan (13.1 wt% sulfur content) are: the amount of sulfating complex per 1 g of
xanthan is 3.5 mmol, temperature 90 ◦C, duration 2.3 h. Sulfated xanthan with the maximum sulfur
content was analyzed by physicochemical methods. Thus, in the FTIR spectrum of xanthan sulfate, in
comparison with the initial xanthanum, absorption bands appear at 1247 cm−1, which corresponds to
the vibrations of the sulfate group. It was shown by GPC chromatography that the starting xanthan
gum has a bimodal molecular weight distribution of particles, including a high molecular weight
fraction with Mw > 1000 kDa and an LMW fraction with Mw < 600 kDa. It was found that the Mw
of sulfated xanthan gum has a lower value (~612 kDa) in comparison with the original xanthan gum,
and a narrower molecular weight distribution and is characterized by lower PD values. It was shown
by thermal analysis that the main decomposition of xanthan sulfate, in contrast to the initial xanthan,
occurs in two stages. The DTG curve has two pronounced peaks, with maxima at 226 and 286 ◦C.

Keywords: polysaccharides; sulfation; xanthan; structure; xanthan sulfate

1. Introduction

Polysaccharides isolated from plant, animal, and bacterial raw materials have biocom-
patible, non-toxic, and biodegradable properties. Due to these qualities, they are actively
used in pharmaceutical, biomedical, food, and cosmetic purposes [1].

Xanthan gum (XG) is a natural extracellular heteropolysaccharide produced by fer-
mentation from Xanthomonas campestris [2]. The structure of XG contains a glucose molecule
(β-1,4 glycosidic units) and also has acetate and pyruvate groups on the inner and terminal
parts of the side chain, respectively [3–5]. Modification of XG with various functional
groups opens up new possibilities for its use.

Among the well-known xanthan derivatives we distinguish: O-carboxymethyl XG [6],
cationic [7,8] and amphoteric XG [9], hexadecyl XG [10], deacetylated XG [11], octyl
XG [12], butyl XG [13], succinoyl XG [14], various forms of oxidized XG [2,15–17], and
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others. Modification of xanthan leads to the production of derivatives with specified
characteristics of hydrophilic-hydrophobic properties for use in various fields.

It should be noted that among the various methods for the modification of xanthan,
only one presents the sulfation method. Rafigh et al., 2020, carried out sulfation of xan-
than with the dimethylformamide—sulfur trioxide (DMF-SO3) complex—and also carried
out a detailed physicochemical study of the resulting product. The anticoagulant and
antithrombotic activity of highly substituted xanthan sulfates have been shown [18].

Despite the obvious novelty in the preparation of xanthanum derivatives, the method [18]
used the aggressive sulfating agent DMF-SO3 complex, obtained by adding chlorosulfonic
acid to dimethylformamide. Currently, there is an alternative to the traditional method for the
preparation of polysaccharide sulfates, based on the use of sulfamic acid in the presence of
organic bases, both in the presence of organic solvents [19,20] and without them [21–23].

In this work, the xanthan sulfation process was optimized, the process activators
based on urea were investigated, the initial and sulfated xanthan gum was analyzed by
FTIR spectroscopy, XRD, AFM, thermal analysis, and GPC.

2. Materials and Methods

All chemicals were purchased from commercial suppliers. We used xanthan man-
ufactured by Sigma-Aldrich (St. Louis, MO, USA). Sulfamic acid, 1,4-dioxane, and urea
(Khimreaktivsnab, Republic of Bashkortostan, Ufa, Russia) were used in this work. Ethyl
urea (Alfa Aesar, ThermoFisher GmbH, Kandel, Germany), methyl urea (J&K Scientific
GmbH, Pudong District, Shanghai, China), and hydroxyethyl urea (Flourochem Ltd.,
Derbyshire, UK) were also used in this work.

2.1. Sulfation of Xanthan

A three-necked flask (100 mL) equipped with a thermometer, a glycerol bath, and a
mechanical stirrer was used for the xanthan sulfation process, according to a modified
procedure [19]. Xanthan (2.0 g), sulfamic acid, 1,4-dioxane (50 mL), and activator (urea,
methyl urea, ethyl urea, hydroxyethyl urea) was stirred at 80–90 ◦C for 0.5–3.0 h (in
accordance with the sulfation conditions given in Table 1). After the sulfation, the reaction
mixture was cooled to room temperature and neutralized with 25% ammonia solution.

Table 1. Influence of the activator of the sulfation reaction with sulfamic acid on the sulfur content in xanthan sulfate
(temperature 90 ◦C, time 3 h, the amount of sulfating complex 3.5 mmol per 1 g of xanthan).

No. Activator Formula Sulfur Content % wt.

1 Without activator - 3.2

2 Urea
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An MF-5030-46 MFPI dialysis bag (USA) (with a pore size of 3.5 kDa) was used for
the purification (by dialysis) of a sulfated xanthan ammonium salt.

2.2. Statistical Analysis of the Sulfation Xanthan Process

Statgraphics Centurion XVI, DOE block (Design of Experiment) was used for the BBD
of the xanthan sulfation process [24,25].

Three factors were included in the study as independent variables (their levels of
variation are in parentheses): X1 is the amount of sulfating complex taken per 1 g of xanthan
(1.5, 2.5, 3.5 mmol); X2 is the temperature of the xanthan sulfation process (70, 80, 90 ◦C),
and X3 is the duration (0.5, 1.75, 3 h). The result of the sulfation process was characterized
by the output parameter: Y1—sulfur content in xanthan sulfate (wt%). The choice of factors
and ranges of their variation is based on [26–31].

The Box–Behnken experimental design (BBD) was used. The designations of the
variables and the levels of their variation are shown in Table 2.

Table 2. Independent factors and output parameters (experimental results).

Factors and Parameters Notation in Equations Range of Variation

Amount of sulfating complex, mmol X1 1.5–3.5
Temperature, ◦C X2 75–85

Duration of process, h X3 0.5–3.0
Sulfur content, wt% Y1 -

When carrying out the ANOVA analysis, we adopted a 95% level of significance
(factors were determined by p < 0.05 values).

2.3. Methods of Physico-Chemical Analysis
2.3.1. Elemental Analysis

For sulfated xanthan, elemental analysis was used via a FlashEA-1112 elemental
analyzer (ThermoQuest, Waltham, Italy).

2.3.2. FTIR

A Shimadzu IR Tracer-100 spectrometer (Shimadzu Corporation, Kyoto, Japan) was
used for obtaining the FTIR spectra of initial xanthan and sulfated xanthan within the
wavelength range of 400–4000 cm−1, as in [32].

2.3.3. XRD

A DRON-3 X-ray diffractometer (CuKα monochromatized radiation (λ = 0.154 nm),
voltage 30 kV, current 25 mA) was used for the X-ray diffraction phase analysis, as in [32].

2.3.4. Gel Permeation Chromatography

An Agilent 1260 Infinity II Multi-Detector GPC/SEC System chromatograph was used
for obtaining data on the average molecular mass (Mn), average molecular weight (Mw), and
polydispersity of the initial and sulfated xanthan. For the separation, three PL aquagel-OH
columns were used. The Agilent GPC/SEC MDS software was used for data analysis, as in [33].

2.3.5. Atomic Force Microscopy

The obtained sulfated xanthan films were separated from the Petri dish with tweezers
and analyzed by atomic force microscopy. The semi-contact AFM study of the sulfated
xanthan films was carried out on an NT-MDT Solver P47 multimode scanning probe
microscope (Moscow). Scanning was performed at no less than 3–4 points in several sites,
as in [33]. The scanning rate was 1.5–2.0 Hz, and the image resolution was 256 × 256 pixels.
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2.3.6. Thermogravimetric Analysis

A NETZSCH STA 449 F1 Jupiter simultaneous thermal analysis instrument (Germany)
was used for the thermogravimetric study, as in [23]. The thermal degradation of the
samples was analyzed in argon in the temperature range from 30 to 600 ◦C; the protective
and purge gas flow rates were 20 and 50 mL/min, respectively. The measurement results
were processed using the NETZSCH Proteus—a Thermal Analysis.5.1.0 software that was
supplied with the instrument.

3. Results and Discussion
3.1. The Role of the Activator in the Process of Sulfation of Xanthan with Sulfamic Acid

Nitrogen and sulfonated compounds have many beneficial properties [34–37].
The mechanism of sulfation with sulfamic acid has not been previously studied in

detail. There are suggestions [22,38–41] that when activators based on organic bases are
used, a donor–acceptor complex is obtained, which is more capable of sulfating than
the sulfamic acid (Figure 1). The limiting stage of sulfation is the conversion of an acid
molecule with its decomposition to sulfur sodium oxide and ammonia [38,39,42]. Organic
bases activate the process of sulfation of hydroxyl groups. This is due to the fact that the
S–N bond in sulfamic acid is stronger than in the donor–acceptor complex [38,39,42].
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Figure 1. Scheme of the formation of a donor–acceptor complex of sulfamic acid with an organic base.

In studies [38,39,43,44], some activators of this process are given: 1,4-dioxane, Urea,
N,N-dimethylformamide, Morpholine, Piperidine, and Pyridine. In our work, a study of
urea-based activators in the process of sulfation with sulfamic acid for the sulfur content
in xanthan sulfates was performed. 1,4-dioxane was chosen as a solvent, as it showed its
highest efficiency in the sulfation process with sulfamic acid [43,44].

According to the data shown in Table 1, in the absence of a catalyst, the process of
sulfation of xanthan with sulfamic acid proceeds to a lesser extent than in the presence of
activators. Among the studied activators, the lowest sulfur content in xanthan sulfate is
achieved when using hydroxyethyl urea.

When ethyl urea is used, a product is obtained with a sulfur content of 0.6 wt%, more
than when using hydroxyethyl urea. This can be due to several reasons. First, the lower
ability of hydroxyethylurea to form a donor–acceptor complex with sulfamic acid, which
in turn may be related to the basicity of hydroxyethylurea. Secondly, competing reactions
of sulfation of the hydroxyl group of hydroxyethylurea are possible, which can reduce the
content of sulfur trioxide in the reaction mass.

When methyl urea is used as an activator of the process of sulfation of xanthan with
sulfamic acid, the product has a sulfur content of 8.7 wt%.

Thus, the activating ability decreases in the series: urea > methyl urea > ethyl urea >
hydroxyethyl urea. That is, with an increase in the chain of a substituent in urea derivatives,
their reactivity in sulfation reactions with sulfamic acid decreases. The reactivity of urea and
its derivatives can also be associated with a change in the content of hydrogen bonds [45–47].
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3.2. BBD Analysis of Xanthan Sulfation

We studied the effect of the sulfating complex amount, temperature, and duration of
the process on the sulfur content in xanthan sulfates.

The experimental results are present in Table 3.

Table 3. Influence of xanthan sulfation conditions with SAA in 1,4-dioxane with urea on sulfur
content in xanthan sulfates.

No. Sulfating Complex
Amount, mmol Temperature, ◦C Duration of

Process, h
Sulfur

Content, wt%

1 2.5 80 1.75 9.1
2 1.5 70 1.75 5.1
3 3.5 70 1.75 8.8
4 1.5 90 1.75 8.2
5 3.5 90 1.75 13.5
6 1.5 80 0.5 3.7
7 3.5 80 0.5 7.3
8 2.5 80 1.75 9.4
9 1.5 80 3 8.1
10 3.5 80 3 10.2
11 2.5 70 0.5 4.0
12 2.5 90 0.5 7.4
13 2.5 70 3 8.7
14 2.5 90 3 11.1
15 2.5 80 1.75 9.2

An increase in the temperature of the sulfation process should lead to an increase in the
rate of both the addition of sulfate groups and the depolymerization of the polysaccharide
macromolecule, but to a different extent. It is obvious that low molecular weight fractions
of xanthan, which also exhibit high reactivity in the sulfation reaction, are the most prone to
depolymerization (hydrolysis). With an increase in the temperature of the sulfation process, the
amount of low molecular weight product with a high sulfur content begins to increase over time,
which is removed during dialysis cleaning (see “Section 3.5 Gel Permeation Chromatography”).

According to Table 3, the highest sulfur content in xanthan sulfate is achieved at a
process temperature of 90 ◦C, duration of 1.75 h, and an amount of sulfating complex of
3.5 mmol. A further increase in both the duration and temperature can lead to hydrolysis
reactions and partial destruction of xanthan molecules under the action of sulfamic acid. It
should be noted that a smaller amount of the sulfating complex leads to lower values of the
sulfur content in xanthan sulfate, which can probably be associated with more regularly
occurring hydrolysis processes [26].

The results of analysis of variance are given in Table 4.

Table 4. The result of the analysis of variance.

Sources of Variance
Statistical Characteristics

F-Ratio p-Value

X1
X2
X3
X1

2

X1X2
X1X3
X2

2

X2X3
X3

3

65.59
56.14
74.81
1.46
1.55
1.37
0.04
0.61

20.28

0.0005
0.0007
0.0003
0.2803
0.2678
0.2952
0.8404
0.4712
0.0064

Df
R2

R2
adj

14
97.8
93.8
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The Box–Behnken optimization has been found to be useful for developing an accurate
experimental model among the significant factors [48]. Analysis of variance (ANOVA) was
used to analyze data on the sulfur content of xanthan sulfates obtained in the experiment
(Table 3). Significant factors were determined by p < 0.05 values. For all independent
variables this factor was <0.0007.

The result showed the regression model used to study the effect of the explanatory
variables on the sulfur content of xanthan sulfates was accurate. This is also indicated by
high values of F > 55 (Table 4). According to Table 4, all explanatory variables contribute to
the overall output parameter variance.

The resulting regression equation (second order polynomial) (Equation (1)), which
explains the normal logarithm of the response as the mean of three factors (independent)
and their functions, despite their significance.

Y1 = −8.76129 + 1.18333X1 − 0.0083333X2 + 7.28933X3 − 0.404167X1
2 + 0.04X1X2 − 0.3X1X3 + 0.00070833X2

2 −
0.02X2X3 − 0.962667X3

2 (1)

ANOVA (Table 4) and a Pareto graph (Figure 2) for the three factors explain that
the Box–Behnken quadratic model can be sufficiently applied to simulate the xanthan (Y)
sulfation process.
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According to Equation (1), the mathematical model is accurate since the points in Figure
3 lie closer to the straight line, which also shows good predictive properties of the equation.
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A graphical display of Equation (1) in the form of a response surface is shown in
Figure 4.
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The dependence of the sulfur content on variable factors—the amount of the sulfating
complex and the temperature of the xanthan sulfation process—in the form of a response
surface has an almost flat appearance without significant bends (Figure 4a). For this
dependence, a maximum is observed at the maximum values of the factors X1 and X2
within the accepted experimental conditions.

The response surface, reflecting the dependence of the output parameter—the sulfur
content on the variable factors—the amount of the sulfating complex, and the duration of
the sulfation process, has the form of a curved plane with maxima for X1 and X3 of 3.5 and
2.3, respectively (Figure 4b).

The dependence of the output parameter (sulfur content in xanthan sulfate) on variable
factors of the temperature and duration of the xanthan sulfation process in the form of a
response surface has the form of a curved plane that reaches a plateau after X3 values of
2.3 h (Figure 4c).

The coefficient of determination is R2
adj = 93.8%. This testifies to the adequacy of

Equation (1) to the observation results and allows using it as a mathematical model of the
process under study.

The calculated optimal conditions for the sulfation of xanthan with sulfamic acid in
1,4-dioxane in the presence of urea (to obtain xanthan sulfate with a sulfur content of 13.1
wt%) are: the amount of sulfating complex per 1 g of xanthan 3.5 mmol, temperature 90 ◦C,
and duration 2.3 h.

3.3. FTIR Spectroscopy

The characterization of the parent and sulfated xanthan was performed by FTIR
analysis (Figure 5). The FTIR spectra of the starting xanthan gum contain functional groups
of carbonyl, carboxyl, and acetal groups in xanthan gum [5,49].
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The main FTIR peaks remained almost unchanged after sulfate modification. The
introduction of a sulfate group into a xanthan molecule changes the FTIR spectra. Thus,
absorption bands appear at 1247 cm−1, which correspond to the vibrations of the sulfate
group. In the FTIR spectrum of sulfated xanthan, in comparison with the initial xanthan,
there is no absorption band at 1735 cm−1, and there is a noticeable decrease in the band at
1624 cm−1, corresponding to the vibrations of the ionized carboxyl group. In addition, in
sulfated xanthan gum, there is an absorption band at ~810 cm−1, which, in comparison
with the band at 801 cm−1, is present in the FTIR spectrum of the starting xanthan gum, has
a high intensity. This change in the nature of the FTIR spectrum confirms the introduction
of the sulfate group into the xanthan molecule. The peak at 810 cm−1 is typical. In addition,
the absorption peak at 810 cm −1 is typical of C–O–S stretching. This absorption band is
associated with bending vibrations of C–O–S bonds [50].

The peak at 1026 cm−1 is due to the stretching vibration of the C–O alcohol groups [51–53].
The absorption band at 2924 cm−1 corresponds to the vibrations of the CH2 group.

The introduction of a sulfate group into a xanthan molecule changes the FTIR spectra.
Thus, absorption bands appear at 1247 cm−1, which correspond to the vibrations of the
sulfate group. In the FTIR spectrum of sulfated xanthan, in comparison with the initial
xanthan, there is no absorption band at 1735 cm−1, and there is a noticeable decrease in the
band at 1624 cm−1, corresponding to the vibrations of the carbonyl group.

A decrease in the intensity of these absorption bands can also be associated with the
partial hydrolysis of the side chains of xanthan gum during the synthesis (see “Section 3.5.
Gel Permeation Chromatography”).

3.4. X-ray Diffractions Analysis

The amorphous structures observed in the xanthan sulfate sample were probably
the result of a structural contribution from the parent xanthan as well (Figure 6). The
amorphous properties of xanthan were confirmed by a broad diffraction peak at 2θ = 22.1◦,
probably as a result of its double helix conformation [16,54]. In the process of sulfation, an
increase in the amorphization of the initial xanthan structure was observed, which was
manifested by a decrease in the intensity in X-ray diffraction patterns from 17◦ to 50◦ 2θ.

It is known [23,43,55–59] that sulfation of polysaccharides leads to greater amorphiza-
tion of their structure. Thus, the data shown in Figure 6 are in good agreement with the
literature.

Polysaccharides with an amorphous structure (Figure 6) are more susceptible to
modification (including hydrolysis) of glycosidic bonds under the action of acids [23].
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3.5. Gel Permeation Chromatography

GPC data of sulfated xanthan shows the decreasing of the sulfated xanthan molecular
weight compared to the original xanthan (Figure 7, Table 5). It is known [23] that glycosidic
bonds in hemicelluloses are destroyed by the action of acids. In our case, under the
action of sulfamic acid, in addition to the addition of the sulfate group, the hydrolysis
reaction is also observed (Figure 7); therefore, the treatment of xanthan with acids causes
its depolymerization.
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Table 5. Number average molecular weight (Mn), weight average molecular weight (Mw), and
polydispersity (PD) of xanthan gum samples and its sulfated derivative.

Samples Mn, Da Mw, Da PD

Xanthan 83,412 620,439 7.44

Sulfated xanthan 261,497 611,935 2.34
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The initial xanthan sample has a molecular weight (Mw) of ~620 kDa and a fairly
high PD value (7.44), which indicates the presence of a large number of branches con-
taining acetate and pyruvate groups on the inner and terminal parts of the side chain,
respectively [18]. It was found that the original xanthan gum has a bimodal molecular
weight distribution of particles (Figure 7), which includes a high molecular weight fraction
with Mw > 1000 kDa and a low molecular weight fraction with Mw < 600 kDa. After
the sulfation process, a redistribution of molecular weights in the sample was observed
(Figure 7). It was found that the Mw of sulfated xanthan gum has a lower value (~612 kDa)
in comparison with the initial xanthan gum and a narrower molecular weight distribution
and is characterized by lower PD values (2.34). At the same time, the proportion of the high-
molecular-weight fraction in the sample decreases noticeably, and the peak corresponding
to the low-molecular-weight fraction becomes less pronounced. This can be explained
by the fact that sulfation of xanthan with sulfamic acid in combination with 1,4-dioxane
and urea can lead to the partial destruction of the XG structure, partial hydrolysis of the
polymer chain in an acidic medium, and the elimination of side branches.

3.6. Thermal Analysis

Analysis of the TG and DTG curves (Figure 8a,b) demonstrates a decrease in the mass
of the initial xanthanum (−8.1%) in the range from 30 to 180 ◦C, which is probably due
to the desorption of moisture from the sample surface and from the bulk, as a result of
the rupture of hydrogen bonds between water molecules and polar functional groups. On
the DSC curve (Figure 8c), this process corresponds to a distinct endothermic peak. The
rate of weight loss for xanthan increases with increasing temperature up to 280.74 ◦C and
then decreases. Thus, the main degradation of xanthan occurs in one step. In the range
of the main decomposition (up to 300 ◦C), xanthan “loses” 46% of the initial sample, and
by 600 ◦C, the weight loss was 64%. On the DSC curve, the main decomposition of the
xanthan structure is characterized by a well-discernible exothermic effect with a maximum
at 281 ◦C.
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For sulfated xanthan, the initial stage of heating (up to 180 ◦C) is characterized by a
less intense weight loss (−7.7%), compared to the original xanthan. The endothermic effect
on the DSC curve of the indicated interval is flatter and not as pronounced.

The main decomposition of xanthan sulfate, in contrast to the original xanthan, occurs in
two stages. The DTG curve has two pronounced peaks, with maxima at 226 and 286 ◦C. The
first stage is probably associated with the decomposition of sulfo groups (weight loss 18.8%).
During the second stage of decomposition (up to 300 ◦C), xanthan “loses” 64%. On the DSC
curve, the decomposition of sulfo groups corresponds to a sharp and rather intense exothermic
peak, with a maximum at 226 ◦C, which, with an increase in the heating temperature, passes
into the endothermic zone. The endothermic effect in this region is probably associated with
the melting of the substance with the simultaneous decomposition of the structure of xanthan
sulfate; the latter statement is confirmed by the slope of the TG curve in this interval. Further
heating of the sample to 600 ◦C leads to aromatization of the structure with the formation of a
carbonized residue (weight loss 79%).

3.7. Atomic Force Microscopy

According to Figure 9, the surface of the xanthan film consists of near-spherical parti-
cles with an average size of 79.6 nm. Sulfation of xanthan leads to an increase in spherical
particles to an average size of 281.9 nm as a result of agglomeration and aggregation. It
was previously reported that the aggregation of a polysaccharide can be increased by
introducing functional groups (for example, sulfate groups) that increase its inter and
intramolecular interactions or polyelectrolyte effects [60–62]. Thus, the results obtained in
our work correspond to the literary sources.
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Figure 9. AFM data on (1) initial xanthan and (2) xanthan sulfate (relief (a), phase contrast (b), 3D relief (c), and particle size
distribution (d)).

According to the phase-contrast data (Figure 9b), the surface of the films of the initial
and sulfated xanthan gum does not contain impurities.

The particle size distribution (Figure 9d) has the form of a normal distribution (Gaus-
sian distribution), both for the original and for sulfated xanthan.

The embedding of a sulfate group into a xanthan molecule decreases its molecular
weight and also leads to an increase in amorphism and aggregation.

4. Conclusions

In this work, we proposed a new method for the synthesis of xanthan polysaccharides
using sulfamic acid upon activation with urea derivatives. It has been shown that urea has
the highest activating activity in the reaction of sulfation of xanthan with sulfamic acid.
The influence of the amount of the sulfating complex, the temperature, and the duration of
the sulfation process on the sulfur content in xanthan sulfate has been established. It has
been shown that the optimal conditions for xanthan sulfation are: the amount of sulfating
complex per 1 g of xanthan is 3.5 mmol, the temperature is 90 ◦C, and the duration is
2.3 h. The reaction product with the maximum sulfur content was analyzed by FTIR
spectroscopy, X-ray diffraction, gel penetration microscopy, thermal analysis, and atomic
force microscopy. According to the data of gel permeation chromatography, a decrease in
molecular weight is observed as a result of sulfation, which also indicates side hydrolysis
reactions. According to thermal analysis, sulfated xanthan is less thermostable than the
parent xanthan; however, the main weight loss for it occurs at temperatures above 226 ◦C,
which makes it acceptable for use as a biologically active substance.

In the future, xanthan sulfates can be used as an anticoagulant and hypolipidemic
substance [63], a polyanion [64], as well as for the preparation of interpolyelectrolyte
complexes [65].
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