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ABSTRACT

DNA bending plays an important role in many bio-
logical processes, but its molecular and energetic
details as a function of base sequence remain to
be fully understood. Using a recently developed
restraint, we have studied the controlled bending
of four different B-DNA oligomers using molecular
dynamics simulations. Umbrella sampling with
the AMBER program and the recent parmbscO
force field yield free energy curves for bending.
Bending 15-base pair oligomers by 90° requires
roughly 5kcalmol™, while reaching 150° requires
of the order of 12kcalmol™'. Moderate bending
occurs mainly through coupled base pair step
rolls. Strong bending generally leads to local kinks.
The kinks we observe all involve two consecutive
base pair steps, with disruption of the central base
pair (termed Type Il kinks in earlier work). A detailed
analysis of each oligomer shows that the free
energy of bending only varies quadratically with
the bending angle for moderate bending. Beyond
this point, in agreement with recent experiments,
the variation becomes linear. An harmonic analysis
of each base step yields force constants that not
only vary with sequence, but also with the degree
of bending. Both these observations suggest that
DNA is mechanically more complex than simple
elastic rod models would imply.

INTRODUCTION

DNA molecules can undergo strong bending in many
protein/DNA complexes (1-3), in looped DNA (4) and
in nucleosomal complexes (5,6). The predisposition of
certain DNA sequences to adopt the particular shapes
required for complex formation with proteins or smaller,
ligands, notably curvature, contributes to specific rec-
ognition via so-called indirect readout (7-10). Recent

cyclisation experiments on short DNA fragments indi-
cated that significantly stronger bending than expected
from a simple elastic rod model of DNA could occur
spontaneously (11). Other experimental techniques includ-
ing molecular force sensors (12), fluorescence energy
transfer (13), and atomic force microscopy (14) have
also suggested that strong bending of DNA is easier
than expected and theoretical models have been developed
that attempt to reproduce this behaviour (14-17). These
results make it important to understand the molecular
mechanism of strong DNA bending and, in particular,
to determine whether such bending results in sharp
kinks or rather involves a smoothly distributed deforma-
tion of DNA.

Sharp kinking of DNA was first proposed by Crick and
Klug in 1975 on the basis of physical models of the double
helix (18). Strong bending has also been proposed to occur
via a series of smoother deformations with 45° bending to
the major groove (19) or 22.5° bending towards both
grooves, alternating with the helix phase (20). Other pro-
positions invoked flipped-out bases (21,22) or the forma-
tion of local bubbles (17,23). The Crick—Klug type kink
was observed in recent simulations of DNA minicircles
(24,25) and termed a type I kink. It is characterized by a
high roll (of the order of 90°) at a particular junction
leading to the unstacking of a single base pair (bp) step,
with little disturbance of the neighbourhood. A second
type of kink, also observed in the minicircle simulations
and termed a type II kink involves three successive base
pairs. In this case, the Watson—Crick hydrogen bonding of
the central base pair is broken and each base stacks on
its 5 neighbour. This base pair disruption is characterized
by very large propeller (roughly 120°) and stagger
parameters.

Bent and kinked DNA molecules correspond to non-
equilibrium conformations of DNA that may occur only
transiently and are therefore difficult to study experimen-
tally. Molecular dynamics simulations are in principle
well suited to study such deformations at high spatial
and temporal resolution. However, at current timescales
(typically tens of ns) unrestrained MD simulations are not
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really sufficient to sample the bending fluctuations of
free DNA and are certainly incapable of reproducing the
severe bends seen in some protein—DNA complexes. These
restrictions can however be overcome by using restraints
to induce sampling to the desired conformations.

The present study has two objectives. First, we use
our recently developed bending restraint approach (26)
to obtain the bending free energy of short DNA fragments
as a function of base sequence and, secondly, we charac-
terize DNA bending dynamics at the base pair level.
Interestingly, in the regime of weak bending (up to 50°),
the bending free energy closely follows a quadratic curve
which is consistent with the experimentally measured
DNA persistence length. For larger bend angles the
slope of the free energy as a function of the bending
angle decreases and is consistent with recent AFM experi-
ments (14). This bending regime is accompanied by the
creation of sharp, sequence-dependent kinks.

MATERIALS AND METHODS
DNA oligomers

The present study involves four B-DNA 15-mers, d(CGC
GCGCGCGCGCGC), d(CATATATATATATACQ), d(C
GCGCAAAAACGCGC) and d(CGCGCGCGCAAAA
ACQ) referred to as [GC], [AT], [Atract-1] and [Atract-2]
oligomers, respectively. In each case, simulations were
started using standard B-DNA structures.

DNA bending restraint

The geometric variable associated with global DNA bend-
ing has been presented in detail in a previous publication
(26). Briefly, the global bend angle 6 of a given DNA
oligomer is calculated as an angle between helical axes
defined at either end of the oligomer and referred to as
handles. To obtain each axis, we first calculate screw rota-
tion vectors corresponding to the helical transformation
between successive bases along each strand within a short
fragment of n base pairs (n = 4 in this study). The average
of these vectors yields the best approximation to the local
helical axis and is used as the ‘handle’. During simulations
global bending can then be controlled by a quadratic
restraint on 6. In the present study the direction of bend-
ing is not imposed and the oligomers can bend according
to their sequence dependent preferences.

It has been shown previously (26) that 6 correlates very
well with global bend angle calculated with the program
Curves (27,28), frequently used as the standard method to
define helical and global properties of DNA. The main
advantage of our bending restraint is that it leaves the
intervening base pair steps (seven in the present case, see
below) free to adopt their energetically preferred confor-
mations in terms of the regularity/irregularity of bending
and in terms of bending direction. At the same time, this
restraint leaves the ends of the oligomer free to change
their helical conformation, however it will only function
correctly if these ends remain helical. Base unpairing in the
ends would clearly damage this helicity and so the quality
of base pairing was analysed throughout the simulations.
Base pairing in the ends of the oligomers studied here was
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well-maintained for all bending angles, with the exception
of strong bending of the [AT] oligomer (see below).

Molecular dynamics umbrella sampling

All simulations used the AMBER 99 with the parmbscO
modifications (29), standard Amber 8.0 MD protocols
(30) and the weighted histogram analysis method (31)
for potential of mean force (PMF) calculations. Explicit
solvation with TIP3P water molecules and neutralizing
K™ ions was used as in the original publication on this
force field (29). Further details of protocol can also be
found in (32,33). Bending was induced using a quadratic
biasing potential V(6)= k(0 — 6.r)> with a force constant
k = 0.2kcalmol ™" degree %, where 6 is the angle between
two handle vectors described above and 6, is the refer-
ence value for a given sampling window. Windows were
sampled every 5° from 0° to 150° (26). In order to obtain
sufficient statistics, each window was sampled for 3ns
after an initial equilibration period (comparison was
made with 2ns sampling to check convergence).
Conformations were recorded every 2 ps. The total pro-
duction time for each oligomer was 124ns (producing
almost a quarter of a million conformational snapshots).
Helical analysis of the conformations was performed with
the program Curves (27,28). The conformations along the
MD trajectories were scanned for significant deviations of
local roll, propeller, opening and stagger from canonical
values and selected conformations were then analysed in
more detail.

In order to characterize changes in the stiffness of base
pair junctions with respect to increasing bending, we also
calculated the effective force constant k;; for every base
pair junction i, in each umbrella window j. k; ; was derived
from a simplified harmonic analysis, similar to that used in
(3,34,35) using the inverse of the variance of the local
bending angles a;; (36,37), defined as:

a;; =/ (roll? i+ tilt; )

kij= %kB T((a,}/ - aollj)_z)

a;; corresponds to the bending angle for the junction i
over the window j which generally presents unimodal
(Gaussian) distributions as discussed in the results section.
a0;; corresponds to its most probable value. Angular
brackets denote averaging over a given sampling window.

RESULTS AND DISCUSSION
DNA bending free energies

The free energy changes associated with the global bend-
ing of each DNA duplex were calculated for 2ns and 3 ns
sampling for each 5° step (Figure 1). The overlapping of
the distributions in the consecutive windows was carefully
checked (Figure 1S in Supplementary Data). The curves
for both simulation times are very similar suggesting
good convergence of the conformational ensembles.
Partial studies of unbending were also performed by
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Figure 1. Calculated free energy for bending the four DNA oligomers
are plotted for 3ns sampling per 5° window (bold full lines), with
corresponding error bars. The bending free energy deduced from
AFM experiments (14) is shown by open squares. A quadratic energy
function derived from the experimental equilibrium persistence length is
shown for the [GC] oligomer (dotted line). Note the departure from
quadratic energy variation for larger bending angles.

decreasing the bending restraint, again in 5° steps, with
limited 1ns sampling per window. It was found that
unbending followed the same free energy curves, with
the exception of the [AT] sequence (see below), if unbend-
ing began from 100°, again suggesting good convergence
(Figure 2S in Supplementary Data). Beyond this point, all
unbending curves showed hysteresis due to base pair
disruption.

Sequence effects are already visible for small bending
angles. For the [GC] and [AT] oligomers the global free
energy minimum occurs at 10° bending, while for [Atract-
1] and [Atract-2] it is shifted to roughly 20°. This is in
agreement with experiments indicating intrinsic bending
of such sequences in solution (38). The overall shape of
the bending free-energy curves is similar for the four
sequences. For small bending angles (up to 50°) the free
energy curves are close to being quadratic and correspond
well to the curve derived from the persistence length of
DNA (indicated as dotted line for [GC] in Figure 1).

Global bending beyond this point is clearly not qua-
dratic and flattens out to an almost linear increase of the
free energy with the bending angle. It is interesting to note
that this almost linear dependence for strong bending of
DNA corresponds to recent experimentally measured
values for individual DNA molecules on same length
scale (50 A) obtained with high resolution atomic force
microscopy (14). In Figure 1 squares indicate the data
reproduced from Figure 2c of ref. (14), omitting first
two points. The agreement between the experimental
results and our values is very good, especially for the alter-
nating sequences which are expected to behave like an
‘average’ DNA. This would suggest that amber ff99
with parmbscO modifications is capable of reproducing
the dynamic behaviour of the B-DNA double helix.
Bending up to 90° requires a total free energy change of
~4.5kcalmol ' for A-tract sequences and ~5.5kcal mol !
for alternating [GC] and [AT] sequences, compared to

Skcalmol ' from the AFM measurements (14). For
higher bending, up to 150°, which was not probed by
the AFM experiments, we obtained the values of roughly
12 kcalmol ' for [GC] and [Atract-2] and 10 kcalmol ' for
[Atract-1]. A structural explanation for this difference in
bending free energy between the two A-tract containing
oligomers is given in the next section. Note that the [AT]
oligomer could not be bent beyond 80° because of AT
base pair disruption at one end of the oligomer. This
unpairing (despite the CG capping base pairs) indicates
that for strong bending, breaking the terminal base pairs
to escape the imposed restraint becomes energetically
favourable.

It is possible to make a linear fit to the free-energy
curves for bending angles in the roughly linear regime
above 60°. We obtain slopes of 7.4 [Atract-2], 6.9 [GC]
and 5.7 [AT] and [Atract-1] in kcal mol ' radian ' (the cor-
responding values in kcalmol ' degree ' are 0.13, 0.12 and
0.09 respectively). These values are in good agreement
with the experimental value of 6.8kcalmol 'radian ',
found by averaging over a large number of samples with
diverse base sequences (14). They can be used for describ-
ing sequence-specific bending elasticity in the sub-elastic
chain (SEC) models of DNA recently developed (16,17).

Weak bending of DNA

For each DNA oligonucleotide, bending up to 100° (or
80° for [AT]) can be considered as ‘smooth’ since it
mainly involves coupled base pair rolls with roll angles
limited to 20°. This is illustrated in Figure 2, which
shows the local bend angle at each base pair step
(mostly roll, since tilt is energetically more costly). For
global bending up to 50°, one can see a clear pattern
with pyrimidine—purine steps (CpG, TpA, CpA) contrib-
uting more than purine-pyrimidine steps (20). This pat-
tern can also be clearly seen in the central region of
the [Atract-2] duplex, which contains CG and GC steps.
For bending in the 50-100° range, the AA steps at the
center of the [Atract-1] show only small local bend
angles (Figure 2). This result points towards a fundamen-
tally different bending mechanism for this oligomer. Weak
bending of [Atract-1] occurs towards the minor groove
at the center, with contributions towards the major
groove mainly at the junctions with the flanking GC-rich
sequences (Figure 3). This is in agreement with earlier
studies of A-tract bending (38—40). In contrast, as the
snapshots in Figure 3 show, weakly bent [GC], [AT] and
[Atract-2] duplexes show bending preferentially towards
the major groove towards the center of the oligomers.

Strong bending and analysis of base pair kinking

For bending angles beyond 100°, localized kinks at indi-
vidual base pair steps are observed. As described earlier,
recent molecular dynamics simulations of short DNA
minicircles (24,25) led to two types of kinks: ‘classical’
type I kinks which unstack a single base pair step and
type II kinks which involve the three base pairs, with dis-
ruption of the hydrogen bonding for the central pair. Both
kinks lead to strong bending (90° or more) towards the
major groove. In our simulations, which use the recent
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Figure 2. Mean hinge angle a (vertical axis, scale 0-50°) and its standard deviation (cross-bars) for the 10 central junctions of the four oligomers
(that is, X3pY4, at the top of the figure, through X12pY13at the bottom) and for three bending angle regimes (weak: 0-50°, medium: 50-100°,
strong: 100-150°). No values for [AT] are given beyond 80° due to base unpairing at one end and the breakdown of the bending restraint.

parmbsc0 force field (29), type I kinks were not observed.
We believe that this is due to changes introduced in the
new force field, aimed at reducing artefacts associated with
o/y transitions in the phosphodiester backbone (33.41),
and, notably, the artificial stabilization of y trans which
occurs during type I kinking (24). In order to verify this
assumption we analysed a simulation of the [GC] oligomer
made with the parm94 force field. Type I kinks were
indeed found to occur in this case. With the new parmbsc(
force field, although no type I kinks are seen, incomplete
and reversible base pair unstacking frequently occurs
(Figure 4). In particular, kinks with mean rolls of
20-50°, directed toward the major groove (and opening
the minor groove) are a frequent, and slowly relaxing,
deformation.

Type II kinks do however occur in our simulations, as
can be seen at base pairs G¢C;Gg in [GC] for bending
beyond 130° and for AgA¢Cy; in [Atract-1] for bending
beyond 120° (illustrated in Figure 4, see also Figure 2). In
the case of the GCG motif, the average propeller is 60°,
the kink closes the local major groove and can induce
bifurcated hydrogen bonds within the base triplet
(Figure 4B). In contrast, the AAC triplet (Figure 4A),
closes the local minor groove, similarly to that found at
a, AGG sequence in earlier work (24). Type II kinking
induces both roll and tilt deformations of neighbouring
base pair steps. A linear axis fitted with Curves to four
base pairs on either side of the motif gives a local bend for
type II kinks of 91° for GCG and 87° for AAC. Figure 4
shows also a small kink towards the major groove, corre-
sponding to roll of 45°, at CsG¢ within [GC] oligomer
(Figure 3).

Figure 3. Representative conformational snapshots of the four duplexes
for weak bending, <50° (left panel for each duplex) and strong induced
bending, >100° (75° for [AT]) (right panel for each duplex). The
nucleotides are colour coded (cytosine in yellow, guanine in orange,
thymine in pale blue and adenine in dark blue). The global helical
axis (black line) was calculated using curves (27,28).

A-tract bending

As indicated above, ApA steps within A-tracts show par-
ticularly small junction bending (mainly roll) for global
bending up to 120° for [Atract-1] and up to 150° for
[Atract-2]. A similar result has already been observed in
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Figure 4. Stereo view of DNA kinks observed during MD simulations.
The central nucleotides around the kink site are shown by bold lines:
(A) Type II kink at AgA¢C; in [Atract-1], directed towards the minor
groove, (B) Type II kink at G¢C;Gg in [GC], directed towards the
major groove, (C) small kink (with a 45° roll) towards the major
groove at CsGg in [GC]. These kinks can be compared to typical

a simulation using the parm94 force field (26). At 120°
bending for [Atract-1], a transition occurs which funda-
mentally alters the pattern of helical parameters. The first
three AA junctions of the A-tract become rolled by
roughly 25° towards the major groove. This corresponds
to a transition from the classical mechanism of A-tract
bending with smooth and phased local bends at specific
junctions, as described in (26), to a new pattern with
small kinks towards the major groove at the 5-end of
the A-tract and a type II kink at the 3’-end, which closes
the minor groove.

It is interesting to note that when the A-tract block is
shifted away from the centre of the oligomer in [Atract-2],
bending arises from small rolls towards the major groove
at the central GpC junctions and towards the minor
groove at the 5-end of the duplex. Comparing the
sequences of [GC] and [Atract-2] shows that an important
difference results from the replacement of a CopGy junc-
tion in the former with CopA g in the latter (see Figure 2).
The CpA junction should be easier to unstack since
the experimental stacking energy for CA is about
—0.55kcalmol! compared to -0.91 for CG (42).
Unstacking indeed occurs in [Atract-2], thus avoiding
the II kink that appears upstream in the [GC] oligomer.

Helical parameters and phosphodiester backbone

It is interesting to see that small kinks (local bending angle
of 20-50°) occur not only at pyrimidine—purine junctions
(CpG, TpA, CpA), but also at some purine—pyrimidine
steps (GpC, ApT), as well as at ApA. An inverse correla-
tion of roll versus twist (20,43,44) was systematically
observed for all kinked base-pair steps. Anisotropic
DNA bending, favouring bending toward the grooves
(2) was also systematic, with tilt close to zero except
within type II kinks. Base pair disruption (excluding the
breakdown of pairing at one end of strongly bent [AT]
discussed above), is easily observable via the helical para-
meters and was limited to the central base pairs of the type
II kinks in the [GC] and [Atract-1] oligomers.

Concerning the phosphodiester backbone, we found no
coupling between strong base pair bends and BI/BII back-
bone transitions, as suggested earlier (45). We however
observed some sequence effects on these transitions,
with a higher population of BII states for GpC junctions.
v backbone dihedral angles (C4—CY5’) in trans conforma-
tions, predicted (18) and observed (24) to be associated
with type I kinks and with the 5-CA of an A-tract (46)
were not observed in our study.

Harmonic analysis of base pair hinges

Bending stiffness, described by effective force constants for
each base pair junction along our oligomers as a function
of global bending, are shown in Figure 5. The quasi-
normal distribution of the amplitudes of the local bending
angle (a;;) for each junction was checked by several

small rolls at pyrimidine—purine steps: (D) 20° roll towards the major
groove at CspAg in [Atract-1], (E) 20° roll towards the minor groove at
C11pG; in [GC]. The same colour coding as in Figure 3 is used (cyto-
sine in yellow, guanine in orange, thymine in pale blue and adenine in
dark blue).
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Figure 5. Bending force constants k;; of each junction for the four
oligomers for each simulation window. k;; is obtained from a harmonic
approximation to the junction hinge angle defined as V/(roll> + tilt?).
The results have been smoothed using a cubic polynomial. Junction
force constants discussed in the text are highlighted by bold lines.
For a CpG several values from other studies are shown in
the figure for [GC]: thermal stability data (50) (pointed line); X-ray
crystallography (3) (solid line) and EPR (51) (dashed line).

techniques for each a;; histogram, including quantile-
quantile normal probability plots, chi-square and
Shapiro—Wilk statistical tests (data available on request).
A simplified quasi-harmonic analysis of local bending
angles (3,34,35) was then performed in each global bend-
ing window (see ‘Materials and Methods’ section).

The effective force constants obtained from this analysis
(Figure 5) show several interesting features. First, for all
oligomers, the force constants decrease with increasing
global bending. This corresponds to the linear dependence
of the free energy on the bending angle, beyond small
deformations, as shown in Figure 1 and observed experi-
mentally. For relaxed structures, and for the [GC] oligo-
mer, both GpC and CpG junctions have similar force
constants around 0.03 kcalmol™ degfz. In contrast, for
the [AT] oligomer, the two types of junctions are clearly
distinguishable, and the ApT force constants can reach
0.06 kcalmol ' deg 2, whereas the TpA values group
around 0.02kcalmol 'deg?. In the two A-tracts, the
lower values for the GC segments and the A-tracts
themselves can easily be distinguished.

There are a few junctions that reduce their force con-
stants dramatically with bending. In the case of the [GC]
oligomer, these involve the two junctions of the type II
kink G4pC7pGg. The decreased force constants for these
steps are coupled to increases for the neighbouriong steps
CspGg and GopCy;, starting from 120° to 130° of global
bending. The [AT] oligomer presents a different picture.
The ApT steps have much higher force constants than the
TpA steps. While the TpA steps show only small increases
in force constants most of the ApT steps show larger sig-
moidal variations. In [Atract-1], the two descending lines
in Figure 5 correspond to the type II kink formation at
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AgpAopCiy, while G4pCs shows a sigmoidal variation.
Most interestingly in this oligomer, the central junction
AgpA o shows the highest reduction. Finally, in [Atract-
2] the ApA junctions loose their stiffness very rapidly with
bending, but the strongest decrease in stiffness corre-
sponds to a CpG junction and is linked to the generation
of the series of small kinks discussed above.

Note that both junctions of the type II kink in [Atract-
1], AgpA g and A opC;y, show a roughly 10-fold reduction
in stiffness when the kink forms. The smaller 5-fold reduc-
tion for the GgpC-; and C;pGg junctions of the type II kink
in [GC] can be explained by the additional rigidity of
the undeformed A-tract.

CONCLUSIONS

By controlling the overall bending of short DNA oligo-
mers during molecular dynamics simulations we have been
able to calculate the bending free energy of four oligomers
with different base sequences. The results are analyzed in
conformational detail and lead to a better understanding
of bending mechanisms.

The energy change required to form a global bend of
90° for the oligomers we study (which are roughly 50 A in
length) is close to 4.5 kcalmol ' for sequences containing
A-tracts and 5.5kcalmol ! for alternating [GC] or [AT]
sequences. This agrees with earlier simulations using the
parm94 force field (26,47). For bending up to 150°, the
free energy cost is 12kcalmol ' for [GC] and [Atract-2]
and 10kcalmol ' for [Atract-1]. Beyond small bending
angles, we find linear energy dependence on bending
and we have been able to extracted linear coefficients for
different base sequences that could be used in refining
sub-elastic chain models of DNA (14,16).

The structural analysis of oligomer bending shows that
for moderate global bending angles, curvature is distribu-
ted smoothly over the whole oligomer. For strong global
bending, the oligomer behaviour depends on its sequence:
[GC] and [Atract-1] oligomers produce type II kinks, while
[Atract-2] produces a series of small kinks in the GC part
of its sequence.

We do not observe type I kinks, whose appearance in
earlier simulations appears to be related to problems in
representing the behavior of the o/y backbone angles in
the parm94 force field. At the moment it is difficult to say
whether the parmbscO modifications of the parm99 per-
fectly represent the DNA backbone, the trans conforma-
tion of y being strongly disfavoured. The Type II kinks
were observed in both the [GC] and the [Atract-1] oligo-
mers and produce bending of roughly 90°. In [GC] the
kink is associated with local bending towards the major
groove. In [Atract-1], it induces sharper local bending
towards the minor groove. We note that the bending
mechanism of the two oligomers containing A-tracts
depends on the position of the tract.

We have lastly made a harmonic bending analysis of
each oligomer to extract force constants for each base
pair step as a function of overall bending. These values
are commonly used in elastic rod models of DNA
(3,35,48) to interpret large-scale mechanics and dynamics
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(49). Recent experimental measurements of DNA flexibil-
ity on short length scales (11-14) have questioned this
harmonic treatment and suggested that non-linear terms
may be necessary to account for local structural changes
(14-17). Our results on short oligomers show that individ-
ual junctions indeed behave differently as a function of
their sequence context, even before extreme local deforma-
tions occur and as a function of the extent of bending.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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