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Purpose: Rotor stability and meandering are key mechanisms determining and

sustaining cardiac fibrillation, with important implications for anti-arrhythmic drug

development. However, little is yet known on how rotor dynamics are modulated by

variability in cellular electrophysiology, particularly on kinetic properties of ion channel

recovery.

Methods: We propose a novel emulation approach, based on Gaussian process

regression augmented with machine learning, for data enrichment, automatic detection,

classification, and analysis of re-entrant biomarkers in cardiac tissue. More than 5,000

monodomain simulations of long-lasting arrhythmic episodes with Fenton-Karma ionic

dynamics, further enriched by emulation to 80 million electrophysiological scenarios,

were conducted to investigate the role of variability in ion channel densities and kinetics

in modulating rotor-driven arrhythmic behavior.

Results: Our methods predicted the class of excitation behavior with classification

accuracy up to 96%, and emulation effectively predicted frequency, stability, and

spatial biomarkers of functional re-entry. We demonstrate that the excitation wavelength

interpretation of re-entrant behavior hides critical information about rotor persistence

and devolution into fibrillation. In particular, whereas action potential duration directly

modulates rotor frequency and meandering, critical windows of excitability are identified

as the main determinants of breakup. Further novel electrophysiological insights of

particular relevance for ventricular arrhythmias arise from our multivariate analysis,

including the role of incomplete activation of slow inward currents in mediating tissue

rate-dependence and dispersion of repolarization, and the emergence of slow recovery

of excitability as a significant promoter of this mechanism of dispersion and increased

arrhythmic risk.

Conclusions: Our results mechanistically explain pro-arrhythmic effects of class Ic

anti-arrhythmics in the ventricles despite their established role in the pharmacological

management of atrial fibrillation. This is mediated by their slow recovery of excitability

mode of action, promoting incomplete activation of slow inward currents and therefore
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increased dispersion of repolarization, given the larger influence of these currents in

modulating the action potential in the ventricles compared to the atria. These results

exemplify the potential of emulation techniques in elucidating novel mechanisms of

arrhythmia and further application to cardiac electrophysiology.

Keywords: rotors, arrhythmias (cardiac), fibrillation, excitability, refractoriness, emulation, machine learning,

Gaussian process regression

1. INTRODUCTION

Self-sustaining patterns of aberrant excitation in the heart, re-

entries, are the cause of dangerously accelerated heartrates

(tachycardia) and complete losses of synchronized action
(fibrillation) (Wit and Cranefield, 1978). Re-entrant circuits

often form around unexcitable anatomical features such as
veins, with the properties of these obstacles then primarily
defining the resulting excitation behavior (Gough et al., 1985;
Cherry et al., 2007). However, so-called “functional” re-entries
can also develop and sustain themselves in unimpeded tissue
(Moe and Abildskov, 1959; Allessie et al., 1977), manifesting
as spiral waves that are clinically known as rotors (Pandit
and Jalife, 2013). The behavior of functional re-entries depends
on the electrophysiological properties of the cells composing
cardiac tissue, which vary considerably among population
members (Sims et al., 2008) and in different regions of the
heart (Feng et al., 1998). Understanding the impact of this
variability on the generation and persistence of arrhythmic
events, and the corresponding implications for success or failure
of anti-arrhythmic treatments, is a critical challenge in cardiac
electrophysiology (Sobie, 2009; Sarkar et al., 2012; Muszkiewicz
et al., 2016; Passini et al., 2017).

Arrhythmic risk is commonly analyzed in terms of “excitation
wavelength” (Smeets et al., 1986; Rensma et al., 1988; Tse and
Yan, 2017), the product of conduction velocity (CV) and the
effective refractory period (ERP) or action potential duration
(APD). This determines the minimum length for which re-
entrant circuits will sustain electrical activity, and thus increasing
wavelength discourages re-entry formation and maintenance
(Wiener and Rosenblueth, 1946), and explains the mechanism
of action for many anti-arrhythmic drug therapies (Wang et al.,
1992). However, anti-arrhythmic drugs that increase wavelength
by prolonging APD/ERPmay also be pro-arrhythmic (Wolbrette,
2003; Elming et al., 2004), and class I anti-arrhythmic agents
that decrease CV (and hence wavelength) are successfully used
for rhythm control of atrial fibrillation (Nattel et al., 2003;
Kneller et al., 2005). This points to a subtle and still poorly
understood interplay between refractoriness and excitability in
modulating re-entry. Of particular interest is post-repolarization
refractoriness, given confounding evidence that suggests it as
both an anti-arrhythmic and pro-arrhythmic mechanism (Kanki
et al., 1998; Kirchhof et al., 1998; Muñoz et al., 2007; Coronel
et al., 2012; Franz et al., 2014; Cabo, 2015).

Given the expense of experimentation in the heart, and
the lack of direct and independent control over properties
of interest (such as cell-level electrophysiological properties),

in silico modeling serves as a critical tool for the understanding
of arrhythmia (Zhou et al., 2018). Parameters encoding
experimentally elusive properties can be systematically varied
by the modeler, and large-scale interrogation of cardiac model
output for different values of their parameters has enabled studies
of variability (Sobie, 2009; Sarkar et al., 2012; Pathmanathan et al.,
2015), parameter inference (Wallman et al., 2014; Johnstone
et al., 2016), and the construction of in silico populations (Britton
et al., 2013; Muszkiewicz et al., 2016; Passini et al., 2017;
Lawson et al., 2018). With regard to the complex spatiotemporal
dynamics of cardiac rotors, however, previous research has
mostly focused on the variation of only one or two parameters
at once (Efimov et al., 1995; Fenton and Karma, 1998; Qu et al.,
2000; Pandit et al., 2005; Bartocci et al., 2011; Sánchez et al., 2012).
Only a small number of studies have considered simultaneous
variation in larger numbers of model parameters (Lee et al.,
2016; Liberos et al., 2016), but mainly vary ionic current densities
and not the kinetic properties of channel recovery. Quantitative
understanding of how cell-level electrophysiological properties
modulate the complex interactions between refractoriness and
excitability when mediated by tissue coupling therefore remains
severely lacking.

Emulation is a powerful technique for greatly reducing the
computational cost associated with exploration of parameter
variability in complex models that are time-intensive to simulate,
with a history in climate modeling (Holden and Edwards,
2010) and engineering design (Simpson et al., 2001). In cardiac
electrophysiology, while emulators have proved successful in
the prediction of electrophysiological properties for single cells
(Chang et al., 2015; Johnstone et al., 2016), and for the forward
ECG problem (Geneser et al., 2008; Swenson et al., 2011;
Johnston et al., 2017), their capabilities remain largely unexplored
for the spatiotemporal dynamics of excitation. Only an initial
study by the authors did emulate excitation waves in tissue, but
in the context of predicting the shapes of steady state wavefronts
(Lawson et al., 2017), with no consideration of the far more
complex excitation patterns that define arrhythmia.

Here we present an emulation technique, specifically designed
for models of cardiac electrophysiology, that significantly
reduces the computational cost of exploring variability across
many parameters and streamlines the analysis process. We
demonstrate and validate our technique by emulating a suite
of spatial biomarkers directly related to arrhythmic risk,
and apply it to investigate the generation and persistence of
rotor-derived tachycardic and fibrillatory excitation behaviors
when all important factors modulating tissue excitability
and refractoriness are allowed to simultaneously vary. New
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electrophysiological insights associated with the cardiac
excitation wavelength and of particular relevance for ventricular
arrhythmias emerge, including the identification of increased
risk of wave breakup in response to slower recovery of fast
inward channels, and differential effects of decreasing slow
inward current or increasing slow outward current despite
both changes increasing ERP. Our method extends naturally to
biophysically detailed models and realistic heart anatomies.

2. METHODS

2.1. Simulated Arrhythmias
Our study focuses on the impacts of variability in cell-level
properties on the induction and persistence of re-entry in cardiac
tissue. To avoid the impacts of other conflating factors we work
in one of the simplest settings for simulating tachycardia and
fibrillation. This is a two-dimensional layer of isotropic tissue,
allowing for use of the monodomain formulation (Sundnes et al.,
2006),

∂u

∂t
= D∇2u+ Iion + Istim. (1)

Here the membrane potential (expressed in terms of
dimensionless variable u) spreads by tissue coupling with
associated constant D, kinetics of cellular excitation and
repolarization are encoded in the Iion term, and the external
supply of stimulus is represented by Istim. For the description of
excitation and repolarization kinetics we selected the reduced
Fenton–Karma model (Fenton and Karma, 1998) (hereafter FK
model), given its relative speed of simulation and the rich set
of re-entrant behaviors that it is capable of replicating (Fenton
and Karma, 1998; Fenton et al., 2002). Importantly, the model
has been shown to capture the essential tissue-scale properties
governing re-entry, being capable of reproducing the re-entrant
patterns of more physiologically detailed models for human

cardiocytes in the atria (Lombardo et al., 2016), and with slight
modifications to also fit action potential (AP) morphology, in
the ventricles (Bueno-Orovio et al., 2008). As a reference, we
select the parameters for the FK model (Table 1) that correspond
to modified Beeler–Reuter dynamics (Beeler and Reuter, 1977;
Courtemanche and Winfree, 1991), given the body of work
examining the dynamics of waves of excitation in this model
(Efimov et al., 1995; Courtemanche, 1996). Full model equations
are provided in the Supplementary Material.

Simulation software was written in MATLAB, using a high-
order numerical stencil as described in Bueno-Orovio et al.
(2006). Briefly, a second-order Strang splitting (Strang, 1968)
is used in time to separate the reaction and diffusion terms
of the monodomain equation. The diffusive component is then
integrated exactly in Fourier space using a cosine expansion to
impose the required non-flux boundary conditions, whereas the
reaction term is solved by the modified Euler method (with
gating variables integrated by the Rush–Larsen scheme Rush
and Larsen, 1978), therefore preserving global second-order time
accuracy. All simulations were conducted on two-dimensional
tissue layers of 15× 15 cm in size to allow sufficient space for
rotor accommodation, with a diffusion coefficient ofD = 1 cm2/s,
constant time step of 0.1 ms, and a space discretization of 512
points in each space direction (∼0.03 cm), allowed by the high-
order convergence of Fourier spectral methods. The accuracy of
the numerical simulations was verified in one-dimensional cables
by halving the time and space integration steps. This resulted in
<1% change in conduction velocity, even in the low excitability
limit.

Re-entries are generated in our simulations via an S1–S2
stimulation protocol, with the S2 stimulus timed to produce
directional block that quickly develops into a phase singularity
(rotor tip). The first stimulus acts at one edge of the domain,
generating a planar wave. Then, when the waveback of this wave
has reached the middle of the domain (as judged by crossing u =

TABLE 1 | The variable parameters, which control the important properties of cell depolarization and repolarization in response to electrical stimulus.

Parameter Base value Variability Description

gfi 3 mS/cm2 ±30% Maximum conductance of fast inward (activation) current

gso 0.02 mS/cm2 ±20% Maximum conductance of slow outward (repolarization) current for activated cell

gso(rest) 0.12 mS/cm2 ±30% Maximum conductance of slow outward (repolarization) current for inactivated cell

gsi 0.0223 mS/cm2 ±20% Maximum conductance of slow inward (plateau) current

τ
+
v 3.33 ms ±50% Time constant for inactivation of fast inward current

τ
−
v1 1,000 ms ±50% Initial time constant for reactivation of fast inward current (cell below activation threshold)

τ
−
v2 19.6 ms ±50% Secondary time constant for reactivation of fast inward current (cell below activation threshold)

τ
+
w 667 ms ±50% Time constant for inactivation of slow inward current

τ
−
w 11 ms ±50% Time constant for reactivation of slow inward current

uc 0.13 – Membrane potential (dimensionless) above which the cell is considered activated

usi 0.85 – Membrane potential (dimensionless) at which the slow inward current activates

uv 0.055 – Membrane potential (dimensionless) at which the rate of fast inward channel recovery switches

k 10 – Steepness of the smoothed step function used in the expression for the slow inward current

Base values for all parameters are those specified by Fenton and Karma for recreating modified Beeler-Reuter dynamics with their model (Fenton and Karma, 1998), except gfi = 3

mS/cm2, chosen in order to better explore the variety of rotor trajectories. Grayed out parameters were not varied in the final exploration of the full model, with variation in τ
−
w removed

after preliminary analysis suggested it was of low importance.
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ucrit at this location), a second stimulus is provided to one whole
quadrant on the wave’s back side. With appropriate selection of
ucrit (here ucrit = 0.05), excitation can propagate in one cardinal
direction and not the other, resulting in the generation of a rotor
tip in the center of the domain, at the corner of the second
stimulated region (Figure 1A). We use the algorithm described
by Fenton and Karma (1998) to track the position of rotor tips.
Each simulation was run for 8,000 ms after the initial induction
of a rotor, but terminated prematurely if all rotor activity died
out.

2.2. Data Generation and Biomarker Choice
Training and test data used to construct and validate emulators
were generated by running the model for different combinations
of parameter values across the space of interest, with the design

of these computational experiments selected via Latin hypercube
sampling (Mckay et al., 1979) by MATLAB’s lhsdesign function.
This provides data that is better distributed across the parameter
space, improving classifier and emulator performance.

We created two sets of in silico data in order to explore
the impacts of variability in electrophysiological parameters.
Firstly, we introduced variability into two model parameters, gfi
and gso, which are the two current conductances most directly
controlling CV and APD, respectively. Such data allowed us to
explicitly visualize and thus better demonstrate the effectiveness
of our classification and emulation techniques. The second
set of in silico data allows eight model parameters to vary,
including the main current conductances and time constants
regulating excitability and repolarization in the model (see
Table 1). The reduced dataset was composed of 2,000 simulated

FIGURE 1 | Behavior of rotor-driven re-entries varies significantly in response to electrophysiological variability. (A) Induction of a rotor via cross field S1–S2 stimulus,

as demonstrated by the membrane potential field 5 and 125 ms after the S2 stimulus. The S1 stimulus creates a planar wave traveling to the right, and the square

region stimulated by the S2 stimulus overlaps with the waveback of the initial wave, creating directional block. While excitation propagates upwards, tissue to the right

eventually recovers and allows for excitation to curl into this region, forming the beginning of a rotor-driven re-entry. (B) Example rotor trajectories and the

corresponding excitation field for different choices of some model parameters. All snapshots are taken at 3,000 ms (except for the helix, which terminates early). The

last 1,200 ms of rotor tip movement in each case is visualized in red. Values for the spatial biomarkers maximum distance (MD), dominant frequency (DF), and

organization indices (OI) are also presented.
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electrophysiological scenarios, and the full dataset involved
3,500 due to the higher-dimensional parameter space requiring
additional data to be resolved to sufficient accuracy. Variability
was accounted as uniform distributions on model parameters
(Britton et al., 2013), with ranges of variability as detailed in
Table 1. These are consistent with the larger ranges of variability
considered in previous studies (Britton et al., 2013; Liberos et al.,
2016; Muszkiewicz et al., 2016; Zhou et al., 2016), given the
normalized magnitude of the transmembrane potential in the FK
model.

Depending on the specific choice of values for these
electrophysiological properties, simulations exhibited a range of
behaviors. When tissue excitability is too weak, excitation does
not propagate and no rotor can form. A rotor also fails to
form if cell refractoriness is too long, as the tissue stimulated
by the S2 stimulus remains unexcitable and blocks the rotation
of the rotor tip, forcing it to collide with the domain boundary
and be eliminated. Rotors that are successfully induced can
either persist, wander the domain until they are eliminated by
a boundary, or devolve into wave breakup corresponding to
fibrillation. Figure 1B shows the main rotor behaviors that could
be observed. We represented the output of each simulation as
a classification of the overall behavior observed, and a set of
“spatial biomarkers” that serve as quantitative measures of rotor
dynamics and the associated arrhythmic risk. As detailed by
Table 2, model output was classified into the four categories
suggested above, namely a lack of rotor formation, formation
of a stable rotor, formation of a transient rotor, or fibrillatory
dynamics. This classification becomes important for constructing
predictive emulators, as we explain below.

For biomarkers, we measured steady-state CV and APD prior
to the establishment of re-entry, given that they are key properties
in determining the cardiac wavelength. These were measured
using the S1 stimulus, and so refer to the CV and APD of planar
waves in the tissue. We term these the “tissue-level” biomarkers,
given that they can be experimentally measured at this scale.
For stable rotors, we recorded the greatest distance between any
two points on the rotor’s trajectory (after it had been given a
chance to stabilize), and the organization index derived from the
main peak in power spectrum (OI1), as measures of the critical
size of tissue substrate required to support such a rotor, and the
complexity of its trajectory, respectively. Additionally, we created
several virtual probes throughout the domain at regular intervals,
that measured the time course of the membrane potential at
their location. The power spectrum of each of these signals was
averaged, and then used to calculate the standard organization
index using the main four peaks in power spectrum (OI4), as well
as the dominant frequency (DF). These provide a measure of the
level of chaos present in the rotor dynamics, and the effective rate
of induced tachycardia, respectively. Each of these biomarkers,
along with more detail regarding their calculation, is provided
in Table 3. The values of these biomarkers for different types of
rotor behavior are also included in Figure 1B.

2.3. Gaussian Process Emulation
For emulation, we make use of Gaussian process (GP) regression,
as introduced for the emulation of computer models by Sacks

et al. (1989). GP regression creates an approximation to the
model’s response surface for each of the spatial biomarkers, by
making use of the generated training data. A good reference for
this approach is Rasmussen and Williams (2006). Separate GPs
are used for each of the biomarkers, with these GPs characterized
by a function µ(θ) that defines the mean of the process (in the
absence of data) at any point in the parameter space, θ , and a
covariance function, k(θ , θ ′) that defines the covariance between
any two points in the parameter space, θ and θ

′. For the basic
forms of these functions, we select for the mean function a linear
trend, and for the covariance function theMatern-5/2 covariance,

k(θ , θ ′) = σ 2

(

1+
√
5r +

5r2

3

)

exp
(

−
√
5r

)

+ σ 2
n δθ ,θ ′ ,

r =

√

√

√

√

D
∑

i=1

(θi − θ ′i )
2

l2i
. (2)

This function simply dictates that GP predictions at two sets
of parameter values θ and θ

′ become more correlated as the
two points in parameter space become closer, but with this
measure of “closeness” defined such that each dimension in
the parameter space can contribute differently (encoded by the
choice of li’s). The values of these li’s are determined during the
training process, and thus the method automatically determines
the relative importance of each variable in θ toward the output
being emulated (known as automatic relevance determination).
Here σ controls the overall amount of variance (and covariance)
of the process, and σn the noise in the data (with the Kronecker
delta used to ensure it contributes to variance at any point, but
not covariance). In the case of emulation, the data is output from
a deterministic computer simulation and so technically σn = 0,
but its inclusion can regularize the process and we here do not
assume σn = 0.

Given a set of values for the hyperparameters l = (l1, l2, ..., lD),
σ and σn, the likelihood of generating the training data
with the corresponding GP may be analytically calculated
(Rasmussen and Williams, 2006). Thus, we may choose these
hyperparameters, along with those specifying the mean function,
by maximizing this likelihood using MATLAB’s built-in function
fitrgp. Importantly, maximization of this likelihood naturally
corresponds to optimizing a balance between data fit and model
complexity, discouraging over-fitting (Rasmussen and Williams,
2006).

Once the GP’s hyperparameters have been determined,
predictions can then be made using simple matrix-matrix
and matrix-vector products, if the inverse of the covariance
matrix (covariances between all training points) is stored during
the training process. Emulator predictions are thus extremely
rapid, and the optimization problem involved with training the
emulator can be greatly accelerated by the use of derivative
information, which can be calculated at very little additional
computational cost (Rasmussen and Williams, 2006). The
primary cost remains running the simulator in order to generate
the initial training data, but this is easily performed in parallel.
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TABLE 2 | The four classifications used to separate different model behaviors, and the conditions used to automatically classify simulation output into each.

Name Classification conditions Interpretation

No rotor No rotor forms, or fails to complete at least one rotation, as judged

by detecting APs at probes close to each corner of the domain

Tissue excitability is too weak to propagate signals, or APD is too

long for a rotor to rotate after S2 stimulus

Stable rotor Rotor activity persists for full simulation time and conditions for

Fibrillation are not met

Persistent rotor-driven tachycardia

Transient rotor Rotor activity ceases before simulation end, and conditions for

Fibrillation are not met

Transient rotor-driven tachycardia that self-terminates

Fibrillation At least five individual rotor tips (phase singularities) that each exist

for at least 50 ms form during simulation

Wave breakup that produces a transient or persistent episode of

fibrillation

Five phase singularities are required to confidently identify wave breakup, as interactions with the initial condition can occasionally produce multiple rotors even when electrophysiological

dynamics do not support wave breakup. The last two classifications are combined in much of the work into a single classification, labeled “Chaotic.”

TABLE 3 | The biomarkers used to characterize simulation behavior, and their interpretations with regard to arrhythmias.

Biomarker name Measurement Interpretation

Conduction velocity Time taken for S1 pulse to cross two markers Affects inherent rotation rate, wavelength

Action potential duration Time taken for tissue stimulated by the S1 pulse to return to ucrit after

depolarisation

Affects availability of excitable tissue, wavelength

Maximum distance Maximum distance between any two points on the rotor tip’s trajectory Critical size required for rotor persistence

Dominant frequency Location of largest peak in the power spectrum of the signal recorded by

virtual probes

Severity of resultant tachycardia

Organization index 1 Proportional contribution of the largest peak in the power spectrum of a

single rotor’s trajectory to the total power contained in that spectrum

Complexity of a stable rotor’s trajectory

Organization index 4 Proportional contribution of the four largest peaks in the power spectrum

recorded by virtual probes, to the total power contained in that spectrum

Regularity of rotor circulation

2.4. Emulator Partitioning
GP regression assumes a smooth response of each output to
changes in the parameters. Predictions thus suffer when there are
critical values of the parameters that cause a sudden change in
any of the outputs. Our simulations of rotor dynamics certainly
exhibit this property, due to sharp transitions, for example,
from simulations that generate a single rotor to simulations
that fail to propagate, and from single persistent rotors to wave
breakup. It thus becomes necessary to divide the parameter
space into separate regions that can then each be emulated by
their own Gaussian process. Some previous approaches to this
problem in the literature have allowed the boundaries between
regions to also be determined during the training process, by
defining their locations either using regression trees (Gramacy
and Lee, 2008) or Voronoi tesselations (Kim et al., 2005) and
then exploring this augmented space via Bayesian sampling
techniques. The power of these approaches in detecting where
boundaries should be located, without any specification from
the user about model behavior (unsupervised learning), comes
at the cost of a much longer training process and the risk of
determining incorrect boundary locations. In our case, we classify
model outputs according to a compact number of general rotor
behaviors (Table 2), and hence can take a supervised learning
approach. Supervised learning has been used previously in the
context of spiral waves in cardiac tissue, but for the separate
problem of detecting rotors from image data (Grosu et al., 2009).

With the training data classified into the different behaviors
in Table 2, multi-class classification techniques can then be

used to predict which category of behavior any given set
of parameter values is expected to produce. As long as the
regions that correspond to the different behaviors can be
well-separated, this leads to distinct regions that can each
be assigned their own GP emulator. For a classification
model, we use a set of support vector machines (SVM)
(Cortes and Vapnik, 1995) that each individually make binary
classification predictions, but together form an ensemble that
performs multi-class classification. Gaussian kernels (radial basis
functions) are used, with hyperparameters selected to optimize
performance under five-fold cross validation by MATLAB’s
fitcecoc. The “coding design” used to perform multi-class
classification is also selected as part of this optimization
process, between either one-against-one or one-against-all (see
Hsu and Lin, 2002 for a comparison of these and other
designs).

2.5. Calculation of Mean Effects
In using our emulator to explore the dynamics of the full model,
we calculate the mean effect of each of its parameters upon our
spatial biomarkers, a type of global sensitivity analysis (Oakley
and O’Hagan, 2004; Chang et al., 2015). These are calculated by
averaging over the effects of variability in all other parameters,
providing a sense of how a single given parameter affects the
output in question among a variable population. Denoting our
partitioned emulator Y and using Monte Carlo integration to
perform this averaging, the mean effect of a variable θi on a given
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model output y is given by

y(θi) ≈
1

N

N
∑

j=1

Y(λj, θi). (3)

Here each λj is a random realization of all other parameters in θ ,
selected according to their distributions. For the model outputs
that can take on null values, we choose to calculate the average
over only those sampled points where the emulator predicts
non-null values.

We again use LHS to improve the overall coverage over the
parameter space in calculating these expectations, and choose
a large N = 100, 000 to ensure good accuracy in integrating
over the effects of variability in the other parameters. With eight
variables and 100 points used to represent the functions defined
in Equation (3), in total we perform 80 million emulated runs
of the two-dimensional FK model. The necessity of emulation in
performing such analyses for cardiac electrophysiological models
is clear.

3. RESULTS

3.1. Important Features of Rotor-Driven
Re-entry Are Not Explained by CV and APD
Our generated in silico data allows us to rigorously explore
how well the effects of electrophysiological variability on rotor
inducibility and maintenance are captured by the tissue-level
biomarkers that can be more readily measured, the steady-
state values of CV and APD. The large extent of variability
in model parameters resulted in a corresponding amount of

variation in CV and APD, with a good spread across the space of
these biomarkers, as illustrated in Figure 2. Points in this figure
are color-coded according to the type of re-entrant behavior
observed in each simulation, revealing a few distinct regions of
the biomarker space where behavior is consistent.

Especially predictable are the cases where no re-entry could
be induced, suggesting that APD and CV are generally sufficient
in themselves for describing the inducibility of re-entry. This
includes both the case where CV is very low and excitation fails
to properly propagate, and the case where APD is too high and
thus the critical length is too long for the spiral wave’s tip to
successfully rotate before colliding with the simulation boundary.
A faster CV decreases the critical APD value beyond which rotors
fail to form, because the wavetip travels further while waiting
for tissue to recover its excitability. This agrees well with the
known importance of wavelength in defining the critical length of
re-entrant paths (Wiener and Rosenblueth, 1946; Rensma et al.,
1988).

On the other hand, there are large regions of the biomarker
space where similar values for the biomarkers result in wholly
different re-entrant behaviors, highlighting the importance of
finer-scale ionic effects in governing which rotors are likely to
persist, annihilate themselves, or exhibit breakup into fibrillation.
Transient rotors arise most frequently when conduction and
repolarization are both fast, and when APD values are moderate,
slow conduction promotes fibrillation while fast conduction
promotes stable rotors.

On the whole, these tissue-level biomarkers inform well the
critical length required for re-entry establishment, but only
poorly the type of re-entrant behavior will result in the case of
a spiral wave. Variability in the cell properties themselves, ion

FIGURE 2 | The tissue-level biomarkers CV and APD fail to predict rotor-driven re-entry behavior. The classes of model behavior observed for different values of the

tissue-level biomarkers, CV, and APD, with variability in all major model parameters. Classes are assigned according to Table 2, but with the “No Rotor” classification

further separated into failure to propagate excitation and early termination (almost always due to APD being too long to successfully induce a rotor with the S1–S2

stimulus) in order to make the visualization more informative. There are regions of the biomarker space where behavior is largely predictable, but on the whole, the

class of behavior cannot be predicted from these biomarkers alone and clearly depends on further electrophysiological factors. This is best demonstrated by regions

like the one shown in the inset.
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channel conductances and time constants, must be considered
directly in order to properly understand how this variability
manifests in different re-entrant behaviors and the severity of
the arrhythmias that result. Furthermore, these findings highlight
the importance of looking beyond excitation wavelength when
evaluating the anti- or pro-arrhythmic properties of drug
treatments.

3.2. Partitioned Emulation of Spatial
Biomarkers Captures the Complex
Dependence of Re-entrant Behavior on
Ionic Properties
3.2.1. Classifier and Emulator Predictions
In the case where only two parameters are varied, forward
simulation provides enough information about the effects of

variability to validate our classification and emulation techniques.
This additionally allows for emulator predictions to be visualized,
and thus to confirm that our selected spatial biomarkers
appropriately capture the important features of rotor-driven re-
entry.

Figure 3A shows how the automatically-detected class of rotor
behavior changes in response to differences in the excitability
of tissue (via gfi), and the rate of repolarization (via gso). Well-
defined regions of the parameter space that correspond to the
different behaviors can be clearly observed, but no boundaries
can be drawn to separate the different classes in the top
right of the parameter space. This issue is largely addressed
by combining the “fibrillatory” and “transient rotor” classes
together into a single “chaotic” rotor class, after which SVM
classification successfully identifies the different regions and
attains an accuracy of 96% on the data not used for training. The

FIGURE 3 | The class of re-entrant behavior exhibits complex dependence on ionic properties, but is well predicted by SVM classification. (A) Training and test data

after classification using the rules in Table 2. Distinct parameter regimes that correspond to the different behaviors can be observed, but with small numbers of data

points, predominantly in the fibrillatory region, that disrupt clean separations of the parameter space. (B) Combination of rotors that annihilate themselves with those

that exhibit wave breakup into a single “chaotic” classification allows high-accuracy prediction of rotor behavior by an SVM classifier model. Also displayed are

schematic diagrams indicating the different types of rotor path that can be generated in various regions throughout the parameter space.
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classifier model is thus appropriate for use in defining boundaries
for partitioned emulation.

Despite very complex dependencies of the spatial biomarkers
upon the values of these two channel densities, our partitioned
emulation approach is able to very successfully capture the
response surfaces implied by the data (Figure 4), allowing
prediction of these important re-entrant properties at any point
in the parameter space. The accuracy of these predictions is
confirmed by comparing the data points not used in training
against the emulated surface at those points, with the greatest
majority of points falling very close to the line of equality
(Figure S1). Importantly, the use of our partitioned emulation
technique proves to significantly improve accuracy as compared
to a traditional GP emulation approach using only a single
emulator.

Training of the set of partitioned emulators required
less than seven minutes, but the cost of generating the
2,000 simulations for use as training and test data required
more than 2,000 h of computational time (albeit spread
across multiple cores on our high performance computing
platform). The time required for the emulator to generate
predicted biomarker values at a set of 2,000 additional points
randomly sampled across the parameter space was 0.23 s,
indicating a speedup of eight orders of magnitude when
considering serial implementation. Even making good use of
supercomputer architecture, the speedup was about six orders
of magnitude, indicating the power of emulation for studies of
variability in cardiac electrophysiology models. These immense
savings offered by the emulator allow further simulations
to be generated almost immediately, enabling analyses such
as the one that follows for a larger number of variable
parameters.

Given the cost of generating the initial data used to construct
our partitioned emulators, a natural question is how classifier
and emulator performance depend upon the amount of training
data used. In terms of accurately predicting the classes of
the data reserved for testing, the strong performance of the
SVM classifier remained even when using much less data for
training (Figure S2). However the more data that is used,
the better the precise locations of the boundaries between
classes can be determined. Emulator performance depended
strongly on the performance of the classifier, and 600 pieces
of training data produced emulators almost as accurate as
those trained with 1,800 pieces of data. It should be noted,
however, that when a larger number of parameters is varied,
a greater amount of training data will likely be required
to successfully resolve classification boundaries and response
surfaces.

3.2.2. Capture of Electrophysiological Dynamics
The emulated surfaces for the biomarkers defining excitation
wavelength, CV, and APD, demonstrate intuitive responses,
to an extent, to variability in the two considered current
densities (Figure 4). CV depends especially on the velocity
of the AP upstroke, and so is especially sensitive to the
conductance of the fast inward current (gfi) and only very
slightly impacted by the conductance of the slow outward

current (gso). APD depends strongly on the strength of
the slow outward current, but importantly only above some
critical level of fast inward current density. This effect arises
because only sufficiently strong excitations are able to drive the
AP upstroke beyond the activation threshold of the model’s
equivalent of the Ca2+ current. “Incomplete” excitations that
fail to significantly activate this current result in very short
APs, the duration of which are not strongly affected by
either gfi or gso.

As the conductance of the fast inward current is increased,
a shift of rotor trajectories from circular to epicycloidal, then
hypocycloidal paths is well established (Efimov et al., 1995;
Fenton and Karma, 1998). We observe this same behavior (see
example trajectories in Figures 1B, 3B), with such information
encoded in the maximum distance and OI1 biomarkers.
Specifically, the tightening of circular trajectories results in a
decrease in core size until trajectories become epicycloidal,
at which point sizes start increasing again, peaking for the
case of traveling helices that collide with the boundary before
paths become hypocycloidal. OI1 has a maximal value for the
circular paths, decreased for epicycloidal and hypocycloidal
trajectories, with severely reduced values for traveling helices
and the high-excitability cases where trajectories meander much
more.

The frequency of re-entry, controlled by the angular velocity
of a spiral wave’s core, depends on both the availability of
excitable tissue and the speed at which re-entry can propagate
into this tissue. Thus tachycardic severity increases in response
to an increase in either of gfi and gso. However, the nature
of this increase depends on the type of rotor-driven re-entry,
with circular rotor cores very sensitive to tissue excitability
while rotors with hypocycloidal or meandering trajectories are
barely affected. The final biomarker, OI4, successfully identifies
what we term rotor “stability,” consistently taking on higher
values when a rotor remains fixed in a single general location,
as opposed to meandering or devolving into fibrillation. This
biomarker thus serves as an indicator for the risk of wave
breakup.

Several interesting observations can be made from the initial
data presented up to this point. Figure 3 shows that rotor
annihilation by antagonizing the outward current invariably
involves first crossing through the chaotic regime. This suggests
that if such treatments fail to sufficiently increase the critical
length, and hence destroy a re-entry completely, they may
instead trigger fibrillation, an effect we explore further in the
analyses that follow. The sharp increase in maximum distance
and decrease in OI1 at the boundary between the stable and
chaotic regions also suggests that rotor meander in general is
an indicator for increased susceptibility to wave breakup. Lastly,
we observe that for all biomarkers (less marked perhaps for
CV) the dependence on either of the two parameters depends
strongly upon the value chosen for the other. Thus we must
consider variability in all properties of interest at once, in order
to ensure that the conclusions drawn are not significantly biased
by the specific set of base parameter values chosen. This is
one of the advantages we achieve in the following section via
emulation.
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FIGURE 4 | Partitioned emulation successfully captures the complex dependencies of important descriptors of re-entry on the electrophysiological substrate. The

response surfaces predicted by the partitioned emulator for each biomarker are shown, along with the training data (red) used in their construction. Null values for

biomarkers are denoted by a value of −1. Performance can be judged by considering the unseen test data (white), which demonstrate great agreement with the

surfaces that indicate the emulator’s predictions. This is achieved despite the complex and non-monotonic nature of the dependence of these biomarkers on the two

varied parameters.
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3.3. Classification and Emulation Identify
Key Ionic Effects Underlying Functional
Re-entry
3.3.1. Partitioned Emulation Is an Important Tool for

Understanding Variability in Cardiac

Electrophysiology Models
The previous section demonstrated the importance of allowing
different electrophysiological properties to vary simultaneously,
in order to properly understand how the effects of variation
in these different properties (including the effects of drug
treatments) together determine re-entrant behavior. However,
when our full set of electrophysiological properties are all allowed
to vary, we lose the ability to use forward simulation to properly
explore the parameter space due to its high dimensionality.
Here the SVM classifier model and associated emulators become
invaluable tools, to enrich the data and to make the calculation
of the main effects of each parameter possible, thus allowing
us to quantify how each individual ionic property contributes
to the type of arrhythmia that develops, as well as its relative
severity. We select the majority of the in silico data (3,200 out
of 3,500 points) to be used for training the classifier model and
emulator, in order to attain the best performance possible when
the emulator is then used outside of the dataset to calculate the
main effects of the parameters.

Although the predictions of the emulators and classifier model
they depend upon cannot be simply visualized when these many
parameters are varied, the test data not involved in the training
process can be used to evaluate their performance. The increased
dimensionality makes both the classification and emulation
problems significantly more difficult, but the SVM classifier still
achieves an accuracy of 81%. Emulation performance is also
diminished as compared to the lower-dimensional problem, but
remains good enough that the emulator is suitable for the efficient
and automatic extraction of hidden data trends (Figure S3). Use
of our partitioning technique resulted in more than a fivefold
decrease in rootmean square error, as compared to traditional GP
emulation. Importantly, the differences incurred by emulation
are not strongly biased, with no consistent under-estimation
or over-estimation. The strong performance of the classifier
and emulator on the two-parameter problem suggests that the
reduction in performance for the eight parameter problem is
simply due to the increased amount of training data required to
fully resolve such complex dynamics across a high-dimensional
space, and thus may be improved simply by further additional
runs of the simulator.

3.3.2. Slower Recovery of Fast Inward Channels Can

Increase Arrhythmic Risk
Using our emulators to rapidly evaluate Equation (3), we quantify
using mean effects how the different parameters controlling
excitability and its recovery impact upon the important features
of our simulated re-entries. We re-iterate that these insights
are not the same as would be obtained by simply varying each
individual parameter in turn, but instead represent the overall
effects of the parameters upon variability in the others. This
improves the generalizability of the conclusions we draw in the

face of both physiological variability and uncertainty in the most
appropriate base values of the parameters in a model.

Figure 5 shows how the spatial biomarkers we use to quantify
re-entry properties depend on the parameters controlling tissue
excitability. Targeting the current density of the fast inward
channels (gfi) largely impacts CV bymodulating upstroke velocity
and AP amplitude, as well as regulating APD owing to the effect
discussed previously where only sufficiently strong excitations
are able to fully activate the slow inward current (Fenton
and Karma, 1998). An increased fast inward channel density
therefore increases the excitation wavelength by simultaneously
augmenting APD and CV. However, the dependence of the
maximum distance traveled by a rotor on this property is quite
complex, where the multiple peaks in this biomarker correspond
to shifts through different types of rotor trajectories (circles into
epicycloids into helices into hypocycloids, as also observed in the
two-parameter case), here further complicated by the variability
in other cell properties. Increased channel density also tends
to increase the complexity of the rotor trajectory (lower OI1),
as the faster propagation causes the rotor to attempt to rotate
more quickly (increased DF), promoting tip-wake interactions.
The risk of breakup (lower OI4) is however reduced, as in these
situations the rotor tip makes longer linear runs along lines of
conduction block. Note, however, that both the complexity of re-
entry and the risk of breakup are reduced (higher OI1 and OI4,
respectively) for decreasing values of gfi, in spite of this implying
a reduction of the excitation wavelength. This corresponds newly
to situations of weak excitability, where the slow inward current
can never activate and the APD rate-dependence is significantly
lost, preventing repolarization heterogeneities that can lead to
wave breakup.

The discussion above additionally applies to fast inward
current inactivation (τ+v ), given its concomitant role in
modulating upstroke velocity and AP amplitude. However, a
slower inactivation of the fast inward current (larger τ+v ) results
in a more marked decrease of the maximum distance traveled by
a rotor, in spite of yielding an equivalent increase of the excitation
wavelength and DF. This increases the chances of wavefront-
waveback interactions, further increasing the complexity of the
rotor trajectories (lower OI1), and risk of breakup (lower OI4).

Increasing the ERP by slowing the recovery of the fast inward
channels (larger τ

−
v2) makes it harder for rotors to rotate, with re-

entrant paths occupying more space and triggering the tissue at
a slower rate in this case. This is captured by the mean effects
of τ

−
v2 for maximum distance and dominant frequency, and is

achieved in the absence of any changes on either steady-state CV
or APD. However, the organization indices show less expected
responses to variability in this parameter. The complexity of rotor
trajectories (OI1) show no significant dependence on recovery of
excitability. More remarkably, the risk of breakup (lower OI4)
actually increases in this case, as the slower recovery of excitability
lengthens the timing window in which the fast inward channels
are only partially recovered andweak excitations can be triggered.
These weak excitations fail to completely activate the slow inward
current, creating large APD discrepancies across the tissue
and thus an increased repolarization heterogeneity and hence
fibrillation. Importantly, this result challenges the hypothesis that
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FIGURE 5 | Sustained re-entries respond more consistently to the recovery of tissue excitability than to fast inward current amplitude, but slowed recovery incurs an

increased risk of wave breakup. Main effects of the parameters controlling tissue excitability and its recovery. Excitability strongly controls the shape of wavetip

trajectories (OI1) and rotor stability (OI4), but has less consistent effect on the critical amount of tissue for sustained re-entry (maximum distance) and re-entrant

frequency. On the other hand, by modulating ERP, recovery of fast inward channels does predictably control core size and frequency in sustained re-entries, but

notably, slower recovery (increased ERP) is linked to an increased risk of wave breakup.

increased ERP may be protective in all cases against fibrillation
by increasing the excitation wavelength (Smeets et al., 1986; Lee
et al., 2013).

3.3.3. APD Modulation of Cardiac Wavelength

Directly Controls Key Re-entry Properties, but Not

Risk of Breakup
Just as in the previous section, we use the mean effects to
quantitatively explore the impacts of variability in the parameters
controlling repolarization on our set of spatial biomarkers, with
the results visualized in Figure 6. Variability in any of the cell
properties governing repolarization has essentially no effect on
CV, whilst APD is strongly affected by the conductances of the
two primary currents active during repolarization (gso and gsi).
Notably, the inactivation of the slow inward current (τ+w ) has
a not insignificant effect on APD (slower inactivation of the
slow inward current prolongs the AP), but this parameter proves
less important in controlling any of the considered re-entry
biomarkers.

Variability in the primary repolarization current modulates
APD and by extension ERP, determining the availability
of excitable tissue for a spiral wave’s tip as it rotates. A
weaker repolarization (smaller gso) increases APD, resulting in
longer critical lengths and slower re-entrant DF. Variability in
repolarization exerts stronger control and with more monotonic
trends over these biomarkers as compared with excitability.
ERP then modulates the overall size and angular velocity of
these trajectories, which for reduced repolarization (smaller gso)
translates into a smaller complexity of rotor trajectories

(increased OI1) and reduced risk of fibrillatory and other
chaotic behaviors (increased OI4), nicely fulfilling the excitation
wavelength hypothesis.

The effects described above are largely mirrored by the
slow inward current, corresponding to its role in opposing
repolarization. An increased current density (larger gsi) prolongs
the AP plateau and therefore APD/ERP, increasing the critical
size and decreasing the DF of re-entry and exerting a more
dominant effect on the shape of rotor trajectories (increased
OI1) compared to the repolarization currents. However, when
the conductance of the slow outward current is increased, a
sharp decrease in rotor stability is observed (reduced OI4),
followed by an approximately level trend, which contradicts the
excitation wavelength hypothesis given the increased ERP. The
de-stabilizing effect of increased conductance of the slow inward
current can be explained by the increased rate-dependence of
the tissue, exacerbating spatial dispersion of repolarization that
may arise and thus promoting wave breakup. In the context of
rotor stability, this control over rate dependence is seen here to be
more important than the current’s control over APD, explaining
some of the failure in using APD and CV to predict the class of
re-entrant behavior that has been previously discussed.

3.3.4. Critical Windows of Excitability Determine Risk

of Breakup
Our main effect analysis implicates the AP upstroke and the
strength of the slow inward current as key factors controlling the
likelihood that a rotor-driven re-entry devolves into fibrillation,
along with an increased risk associated with slow recovery
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FIGURE 6 | Slow inward current exhibits important effects on re-entrant behavior beyond its control of APD. Main effects of the parameters controlling tissue

repolarization. The conductances of the two currents that control APD are seen to strongly affect the critical size and frequency of rotor-driven re-entry, according to

their modulation of ERP. However, the strengths of both of these currents exhibit a similar effect on rotor stability despite their opposing influences on APD/ERP,

highlighting the importance of subtler restitution effects controlling the risk of breakup. The slow inward current also emerges as an important controller of the

complexity of wavetip trajectory in the case of stable spiral waves.

of excitability. Using the classifier model, we now explore
precisely how these cell properties together determine when
such chaotic dynamics arise. Visualizations are presented in the
form of two-dimensional maps (non-specified parameters held
to base values), although our classifier automatically takes the
simultaneous variability in all parameters into account.

Figure 7 shows how changes in excitability, as modulated by
the conductance of the fast inward current, affects the balance of
slow inward and outward currents in determining rotor stability.
As implied by our former analysis of the main effects of gfi,
when excitation is too weak, all formed rotors remain stable as
the slow inward current is not fully activated, diminishing the
rate-dependence of the tissue. As the density of the fast inward
current increases, the region of chaotic re-entrant behaviors
determined by the balance between the slow inward and outward
currents (which together primarily determine APD except when
excitability is too weak) shifts significantly. This confirms that
APD/ERP does not serve as a suitable predictor for the risk of
fibrillation, and given the complex dependency on excitability
we see here and in the main effects (Figure 5), neither does the
cardiac wavelength as the product of CV and ERP. On the other
hand, regardless of the strength of fast inward current, increased
slow inward current is seen here to always carry a greater risk of
wave breakup (provided APD is not so long that a rotor fails to
be induced). This points to the importance of Ca2+ antagonism
as a potential anti-arrhythmic mechanism (Merillat et al., 1990).

We next further explore our observation that slower recovery
of excitability corresponds to decreased re-entrant stability,
despite increasing ERP. Figure 8 visualizes the effects of different
time constants of fast inward channel recovery (τ−v2) on how

the stability of re-entry is modulated by the two factors
previously identified as critical determinants of fibrillatory
behavior (conductances of the fast inward and slow inward
currents). These parameter maps further support the results
of the previous section, namely that increased slow inward
current increases risk of fibrillation and that there exists a critical
window of fast inward current density for initiation of wave
breakup. The effect of delaying the recovery of excitability is
clearly seen in shifting the high end of this critical window to
higher values of gfi. The stable re-entries that are affected by
this are rotors with cores making long runs followed by rapid
rotations (Figure 3), characteristic of human ventricular rotor
dynamics (Bueno-Orovio et al., 2008). Finally, we note that when
fast inward current inactivation (τ+v ) is varied instead of gfi
(as the additional main determinant of tissue excitability), the
resulting classification maps display all of the same key behaviors
(Figure S4). This strongly suggests that the existence of critical
windows of excitability is not only limited to the density of the
fast inward current (as corroborated by the mean effect analysis
of CV and OI4 presented in Figure 5), with delayed fast inward
inactivation as an additional pro-arrhythmic mechanism of risk
of wave breakup.

4. DISCUSSION

In this work, we provide new mechanistic insights on
the important interplay between cardiac refractoriness and
arrhythmic risk, by identifying that both a slower recovery of
fast inward channels or an increase of slow outward currents
can promote chaotic rotor dynamics and wave breakup. This
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FIGURE 7 | Variability in excitability critically determines the balance of slow current conductances that produces chaotic re-entrant behaviors. Parameter maps as

predicted by the classifier model. As tissue excitability (as controlled by the conductance of the fast inward current) increases, the balance of inward and outward

currents that triggers chaotic re-entry behaviors shifts, highlighting its importance in interpreting APD in terms of fibrillation risk. Increased slow inward current is here

consistently associated with an increased risk of wave breakup.

is in spite of increased ERP in each case, with arrhythmic risk
mediated by an enlarged dispersion of repolarization associated
with rate dependence. Our insights were only made possible by
the development of a novel approach to constructing partitioned
emulators synergistically coupled to cardiac electrophysiological
simulations. This allowed not only data enrichment, but the
automatic detection, classification, and analysis of different
re-entrant behaviors, and quantitative determination of how
the different electrophysiological properties modulating tissue
excitability and refractoriness control the behavior of rotor-
driven arrhythmias.

Steady-state properties of the tissue, APD, and CV, emerged
as good predictors only for the critical amount of tissue required
to sustain a rotor upon induction, but unable to identify chaotic
regimes or susceptibility to wave breakup. The slope of the APD
restitution curve, which quantifies the adaptation of APD to
the pacing rate, has been well studied as a potential means of
predicting rotor break-up (Nolasco and Dahlen, 1968; Karma,
1994; Qu et al., 2000; Nash et al., 2006), appealing because it can
also be readily measured experimentally. However, flattening of
this slope has been proposed as both an anti-arrhythmic target

(Qu et al., 1999; Garfinkel et al., 2000) and a potentially pro-
arrhythmic property (Franz, 2003), and a steep slope provides
no guarantee of fibrillatory activity (Cherry and Fenton, 2004).
Furthermore, recent studies have also demonstrated that APD
restitution slope is primarily determined by steady-state APD
(Bányász et al., 2009; Bárándi et al., 2010), and that normalizing
the restitution curve as percentual changes of steady-state APD
abolishes the differences in restitution slope in a variety of
interventions (Shattock et al., 2017). This reinforces the role
of steady state APD (and therefore excitation wavelength) for
mechanistic investigation of re-entry, but also highlights the
importance of considering the impacts of variation in cell-level
properties directly as we do here, instead of just in terms of their
modulation of tissue-level properties.

Variability in fast inward channel conductance and
inactivation had an inconsistent effect on the critical size of
rotors and for the most part little effect on the dominant
frequency, despite directly controlling CV. These properties
proved the primary determinant of wavetip trajectory for stable
rotors, and their inconsistent effect on core size is thus explained
by the shifting through the several different types of trajectory.
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FIGURE 8 | Slower recovery of excitability widens the critical window of fast inward current density that can trigger breakup, and shifts this window to higher amounts

of current density. Parameter maps as predicted by the classifier model. For the lower values of τ−
v2 plotted, the existence of a critical window of fast inward current

strength associated with highest risk of wave breakup is clearly seen. As slow inward current increases in strength, this window widens and shifts to lower gfi values.

Slower recovery of fast inward channel availability (larger τ
−
v2) corresponds on the whole to destabilization of functional re-entry, but the specific effect depends also on

the conductance of this current.

Only in the specific case of re-entries driven by circular rotor
cores could rate control be achieved by slowed conduction. On
the other hand, core size and frequency of re-entry depended
much more consistently on the availability of excitable tissue
(ERP), a function of both the recovery of excitability and the rate
of repolarization. These results agree with the relative success
of anti-arrhythmics that prolong ERP in treating ventricular
tachycardias (Haverkamp et al., 1997; deSouza et al., 2015),
the sustainability and severity of which depend critically on
these two biomarkers. However, this effect must be considered
in tandem with the potential pro-arrhythmic effects of such
treatments that we discuss subsequently.

Depending on the electrophysiological properties of the
simulated tissue, we observed wave breakup into fibrillation
(potentially transitory or sustained for the full duration of
simulation). Increased slow inward current was consistently
associated with wave breakup, but increased slow outward
current failed to show the opposite effect. This strongly suggests
that it is not physiological variability in APD/ERP that controls
breakup, and instead implicates the importance of slow inward
currents in defining the extent of rate-dependence in the tissue

and hence promoting dispersion of repolarization. In fact, we do
note that some treatments that decrease ERP by antagonizing
slow inward currents can trigger a reversion from ventricular
fibrillation by reducing spatial dispersion of repolarization
(Kimura et al., 2005; Bossu et al., 2018), consistent with these
conclusions. Additionally, we observed a critical window of tissue
excitability as a function of fast inward channel density that
presents the highest risk of wave breakup. When excitability is
too low, complete activation of the slow inward current does
not occur regardless of activation timing, preventing spatial
dispersion of recovery and hence breakup. When excitability is
too high, the rotor tip exhibits longer linear runs between its
rotations, and thus has reduced opportunity to interact with its
own wake, as well as a much-increased probability of colliding
with tissue boundaries and hence annihilating itself before an
episode of fibrillation can occur.

Reduced sodium channel availability by slow recovery of the
fast inward channels emerged as a significant promoter of chaotic
behavior like wave breakup, by increasing the aforementioned
dispersion of repolarization associated to differential activation
of slow inward currents. Such a mechanism is indeed expected to
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be of greater importance in the ventricles, where Ca2+ currents
play a greater role in modulating rate dependence as compared
to the more triangular APs in the atria (Sánchez et al., 2012).
These results thus mechanistically explain the good performance
of class Ic anti-arrhythmics in terminating atrial fibrillation, but
at the cost of increased susceptibility to ventricular arrhythmias.
This is for example the case of pilsicainide, a class Ic agent with
slow recovery kinetics, successful in the clinical management
of atrial fibrillation (Kanki et al., 1998; Fukuda et al., 2011) in
spite of reports of its involvement in precipitating ventricular
Torsade de Pointes (TdP) arrhythmias and sudden cardiac death
(Nakatani et al., 2014), as further corroborated by its “possible
risk” TdP category in the CredibleMeds database (Woosley and
Romer, 1999). These results also hold for the controversial
role of flecainide, another class Ic agent especially successful
in the treatment of atrial fibrillation (Wang et al., 1992; Aliot
et al., 2011), but with “known risk” TdP category (Woosley and
Romer, 1999; Nasser et al., 2015), although its potent inhibition
of potassium repolarizing currents can also mediate its pro-
arrhythmic profile (Paul et al., 2002; Melgari et al., 2015; Passini
et al., 2017).

Our findings with regard to the stability of functional re-
entries were further supported and refined by the predictions of
our SVM classifier model. After identifying the important ionic
properties underlying risk of wave breakup, visualization of the
classifier’s predictions confirmed the importance of slow inward
current density, the existence of critical windows of excitability,
and the inability to rely upon APD or excitation wavelength
as biomarkers for the risk of wave breakup. Furthermore, the
pro-arrhythmic potential of slowed recovery of excitability was
suggested to be of stronger importance for rotor cores that move
via a pattern of a long run followed by a tight rotation, potentially
differentiating the cases discussed above where class Ic anti-
arrhythmics may or may not induce fibrillation in the ventricles.

Importantly, each of these observations on properties of
re-entry and susceptibility to breakup have been obtained
while considering variability across a large number of
electrophysiological properties. The emergence of these
behaviors across significant variation in the parameters suggests
that they are in fact core electrophysiological behaviors, and
not simply limited to the regime implied by the base parameter
values considered in the FK model. Promisingly, a recent study
using a biophysically-detailed model to explore variability in
ionic current conductances with regard to the meander of
rotor-driven re-entries in the atria also identified the Ca2+ and
Na+ current densities as the most important parameters (Liberos
et al., 2016), agreeing with their observed importance here, and
reinforcing the potential of reduced ionic models to capture
tissue-level dynamics of cardiac electrophysiology.

Methodologically, our work is probably the most
comprehensive computational investigation to date of
the complex interplay between cardiac excitability and
refractoriness in modulating rotor-driven arrhythmic behavior
and susceptibility to breakup, comprising more than 5,000
forward simulations of long-lasting arrhythmic episodes,
further enriched to 80 million electrophysiological scenarios by
the innovative application of emulation to this field. Despite

the existence of clear bifurcations and chaotic regimes, our
classification and emulation approaches proved capable of
predicting with good accuracy the nature of rotor behavior and
important spatial biomarkers characterizing rotor-driven re-
entry, even with a relatively large number of electrophysiological
properties allowed to vary. The highly complex and non-
monotonic response surfaces for spatial biomarkers of re-entry
presented in this study further illustrate that the dynamics of
arrhythmia and fibrillation in cardiac tissue cannot be predicted
by simple fits to the data such as linear regression. On the other
hand, these are accurately and automatically captured by the use
of emulation, also serving to eliminate representation bias in data
analysis and interpretation. Altogether, our work exemplifies a
synergistic combination of supercomputing, machine learning,
and advanced statistical methods, pushing the frontiers of big
data applications for investigations on cardiac electrophysiology.

Due to our specific focus on rotor dynamics, we have
used here the reduced FK model (Fenton and Karma, 1998),
which accurately captures the restitution properties of cardiac
tissue but does not contain biophysical representations of each
of the many currents that govern the APs of cardiac cells.
Now that our approach to emulating cardiac electrophysiology
models has been validated, further exploration of the impacts
of variability in tissue excitability and refractoriness could
be obtained by applying these techniques to biophysically
detailed models with full characterization of ion channel
kinetics, which may offer additional insights into how different
anti-arrhythmic agents could be expected to perform in a
variable population. However, and in spite of its reduced
complexity, it is important to note that predictions on
mechanisms of wave instability using the FK model have
been confirmed with more sophisticated models (Rappel, 2001;
ten Tusscher and Panfilov, 2006). Another natural extension
is the emulation of spatial biomarkers for simulations on
anatomically accurate geometries, thus incorporating structural
effects and making the cases where a rotor fails to develop
due to collision with the domain boundaries much more
physiologically relevant. Such extensions to the cardiac model
would not require any adjustment to our method for emulation,
beyond perhaps the creation of additional classifications to
categorize any new patterns of model behavior that might
arise.

In conclusion, we have demonstrated how emulation can
be adapted to models that govern the complex spatiotemporal
dynamics of re-entry in cardiac electrophysiology. We have used
the great reduction in computational cost offered by emulation
in order to further explore how variability in tissue excitability,
repolarization, and post-repolarization refractoriness all affect
whether rotor-driven re-entries are electrophysiologically
supported, the likelihood that they exhibit wave breakup and
the severity of the arrhythmias that they induce. This variability
analysis did not require the fixing of key model parameters to
specific values, making the results much more generalizable.
This type of approach is of especial relevance in cardiac
electrophysiology, where parameter variability is known to be
important, and has a significant effect on the interpretation of
both experimental and modeling studies.
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