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Abstract: Metabolomics has advanced from innovation and functional genomics tools and is currently
a basis in the big data-led precision medicine era. Metabolomics is promising in the pharmaceutical
field and clinical research. However, due to the complexity and high throughput data generated from
such experiments, data mining and analysis are significant challenges for researchers in the field.
Therefore, several efforts were made to develop a complete workflow that helps researchers analyze
data. This paper introduces a review of the state-of-the-art computer-aided tools and databases in
metabolomics established in recent years. The paper provides computational tools and resources
based on functionality and accessibility and provides hyperlinks to web pages to download or
use. This review aims to present the latest computer-aided tools, databases, and resources to the
metabolomics community in one place.
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1. Introduction

Understanding the molecular system of living organisms has led to advancements
in technological techniques for measuring the function of critical biomolecules in living
organisms: RNA, DNA, proteins, and small molecules of diverse natures. The analysis
of such elements led to the growth of the research field known as Omics [1,2]. Omics
has become the new motto of molecular biology. In recent years, the utility of Omics
technologies, such as genomics, proteomics, and metabolomics [2], has delivered new
perceptions of well-being.

Metabolomics enhances the monitoring of disease evolution, dietary interventions,
and drug toxicities by revealing the triggers of several diseases and detecting promising
links between apparently different conditions [3]. In addition, Metabolomics seeks to catch
the whole set of biomolecules confined in a biological sample, creating big data explored
by biostatistics and bioinformatics methods [4].

Two main challenges in Omics data analysis are the dimensionality dilemma produced
by more variables than samples and the development of algorithms that successfully inte-
grate and analyze biological data, incorporating present and future knowledge. Pathway
Analysis (PA) has developed and established a reliable way of managing these issues. PA
is one of the commonly used principal tools of Omics research. PA tools analyze data
obtained from high-throughput technologies, identifying potentially perturbed genes in
diseased samples compared to a control. In this sense, PA methods aspire to overcome
the dilemma of interpreting large lists of essential genes, the main output of most basic
high-throughput data analysis. In addition, PA methods provide meaning to experimental
high-throughput biological data, thereby enabling interpretation and successive hypothesis
generation. PA targets have been achieved by combining databases’ biological knowledge
with statistical testing, mathematical analyses, and computational algorithms.
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The advancement of analytical techniques and extraction methods helps detect a wide
range of metabolites. The well-known analytical techniques are either mass spectrometry
(MS) or nuclear magnetic resonance (NMR).

The conventional methodological pipeline of a metabolomics experiment combines
different steps (Figure 1). This pipeline starts with biological sample acquisition to further
produce metabolic information. The pre-processed metabolomics data, both MS and NMR,
is typically organized into a feature quantification matrix (FQM). In this matrix, rows
typically relate to the samples, while columns relate to the metabolomic features obtained.
The concentration of a metabolite usually characterizes the metabolomic feature. Data
analysis techniques can then be applied using these metabolomic features as input.
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Figure 1. The metabolomics experiment. The flowchart comprises sample acquisitions, instrumental
and spectral analysis, identifications of metabolites, and statistical and pathway analysis for further
interpretation.

Medical data is mass-produced, requiring very efficient tools to manage, store, and
analyze the data. Therefore, various sources are used to generate high throughput profiling
of such biological and clinical data cost-effectively, such as mobile phones, sensor devices,
electronic health records (EHR), patients, hospitals and clinics, researchers, and other
organizations.

Big data tools in modern software systems empower remarkable research opportuni-
ties and innovation in the healthcare domain. New emerging and interrelated paradigms
such as Informatics & Data-Driven Medicine [5], eHealth [6] and mHealth [7], and Digital
Health [8] are booming and attaining recognition among healthcare specialists and patients.

Big Data Analytics (Figure 2) has emerged to perform descriptive and predictive
analyses of such massive data. Big Data Analytics is vital and popular in bioinformatics
research since the human genome size can reach 200 GB [9]. Therefore, bioinformatics
researchers need to develop high-power computational algorithms and parallel programs.
Thus, this study overviews primary computer-aided tools and databases in metabolomics
in recent years. The report is organized into two main sections: (1) metabolomics databases
and (2) computer-aided tools in metabolomics. Tables 1 and 2 summarize all reviewed
resources and their availability.
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Figure 2. Workflow of Big data Analytics, adapted from [10]. Descriptive analytics defines what
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Databases store big healthcare data produced by several resources. Big data analytics
platforms process the data for a better decision-making process. Descriptive analytics
describes what happened. Diagnostics analytics answers why it happened. Predictive
analytics gives what will happen. Finally, prescriptive analytics recommends actions to
affect desirable outcomes (make it happen).
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Table 1. Summary of metabolomics databases.

Database Organisms Database Descriptions Coverage Accessibility Link Y.O.R Ref.

Reactome
Knowledgebase Homo-sapiens

It contains visualization,
interpretation, and

analysis of pathway
knowledge. Available

tools: SkyPainter,
PathFinder, BioMart,
Reactome Gene Set

Analysis (ReactomeGSA)
and Reactome IDG Portal.

Human Pathways:2546
Reactions:13890

Proteins:1020
Small Molecules:1940

Drugs:507

Free Reactome.org
(accessed on 1 April 2022) 2005 [11]

BioCyc
Eukaryotes
Bacteria and

Archaea.

A comprehensive reference
containing listed data from

130,000
publications—available

tools: Pathologic, Genome
browser, Pathway Tools,

BLAST search, and
SmartTables.

Pathway/Genome
Databases (PGDBs):

19,494
Archaea:

465 databases
Bacteria:

18,956 databases
Eukaryota:

37 databases
MetaCyc:
Metabolic

Encyclopedia

EcoCyc and MetaCyc
databases: free access.

Others: Paid
subscription

Biocyc.org
(accessed on 1 April 2022) 1997 [12]

MetaCyc
Eukaryotes
Bacteria and

Archaea.

Serves as a comprehensive
reference to metabolic

pathways and enzymes.
Available tools: Pathologic,
Genome browser, BLAST
search, Pathways Tools,

Google™.

Multi-organisms: 3295
Metabolic

pathways:2937
Enzymatic

reactions:17,310

Free MetaCyc.org
(accessed on 1 April 2022) 1999 [13]

EcoCyc
Bacterial organism:

Escherichia coli K-12
MG1655

Contains Metabolic
Network Explorer, Circular

Genome Viewer

Genes:4518
Enzymes:1682

Metabolic
reactions:2151

Free EcoCyc.org
(accessed on 1 April 2022) 1995 [14]

Reactome.org
Biocyc.org
MetaCyc.org
EcoCyc.org
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Table 1. Cont.

Database Organisms Database Descriptions Coverage Accessibility Link Y.O.R Ref.

BIGG Models

Eukaryotes,
Prokaryotes, and
Photosynthetic

Eukaryotes.

Provides pathway
visualization with Escher.
It also offers standardized
identifiers for metabolites,

reactions, and genes.

It contains more than
75 high-quality

manually-curated
genome-scale

metabolic models.

Free BIGG.ucsd.edu
(accessed on 1 April 2022) 2007 [15]

KEGG
Eukaryotes
Bacteria and

Archaea.

PATHWAY database,
KEGG NETWORK

database, KO annotation
and taxonomy, drug

information, and virus-cell
interaction. Available tools:

KEGG Atlas, KegHier,
KegArray, KegDraw,

KegTools, KEGG2, KEGG
API.

KEGG organisms: 7760
(Eukaryotes: 695,

Bacteria:6694,
Archaea:371).

KEGG modules: 456
Reaction modules:46

Free www.kegg.jp/
(accessed on 1 April 2022) 1995 [16]

BRENDA
Eukaryotes
Bacteria and

Archaea.

Comprises disease-related
data, protein sequences,
3D structures, genome

annotations, ligand
information, taxonomic,

bibliographic, and kinetic
data.

Number of different
enzymes: 8197 Free www.brenda-enzymes.org

(accessed on 1 April 2022) 1987 [17]

PubChem Eukaryotes
Bacteria and Archaea

Provides chemical and
physical properties,

biological activities, safety
and toxicity information,

patents, literature citations,
and more. Available tools:
PubChem Structure Editor,

Entrez, PubChem3D,
PubChem Download

Facility, ToxNet.

Compounds:110
million,

Substances:277 million,
Bioactivities:293

million.

Free
PubChem.ncbi.nlm.nih.

gov
(accessed on 1 April 2022)

2004 [18]

ChEBI Eukaryotes
Bacteria and Archaea

A database and ontology
containing information

about chemical entities of
biological interest.

Annotated compounds:
59,708 Free www.ebi.ac.uk/chebi

(accessed on 1 April 2022) 2010 [19]

BIGG.ucsd.edu
www.kegg.jp/
www.brenda-enzymes.org
PubChem.ncbi.nlm.nih.gov
PubChem.ncbi.nlm.nih.gov
www.ebi.ac.uk/chebi
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Table 1. Cont.

Database Organisms Database Descriptions Coverage Accessibility Link Y.O.R Ref.

HMDB Homo-sapiens

A human metabolomics
database. It has spectral

and pathway visualization
tools. Available tools: Data

Extractor, ChemSketch,
BLAST search,

MetaboCard, MS and
NMR spectral search

utility,
MetaboLIMS.

Annotated metabolite
entries: 217,920 Free https://hmdb.ca

(accessed on 1 April 2022) 2007 [20]

ChemSpider Eukaryotes
Bacteria and Archaea

A chemical structure
database.

Chemical entities:114
Million Free chemspider.com

(accessed on 1 April 2022) 2007 [21]

MetaboLights Eukaryotes
Bacteria and Archaea

An open-access database
repository

for cross-platform and
cross-species

metabolomics research.

Different organisms:
6510

Reference
compounds:27,475

Metabolite annotation
features:2016,457

Free
https://www.ebi.ac.uk/

metabolights
(accessed on 1 April 2022)

2012 [22]

Metabolomics
Workbench

Eukaryotes
Bacteria and Archaea

A repository for
metabolomics data and
metadata and provides

analysis tools and access to
metabolite standards,
protocols, tutorials,
training, and more.

Discrete
structures:136,000

Genes:7300
Proteins:15,500

Free
metabolomicsworkbench.

org
(accessed on 1 April 2022)

2016 [23]

SMPDB Eukaryotes
Bacteria and Archaea

A pathway database for
different model organisms
such as humans, mice, E.

coli, yeast, and
Arabidopsis thaliana.

Pathways Number:
48,690

Metabolites Number
(non-redundant):

55,700

Free https://smpdb.ca/
(accessed on 1 April 2022) 2009 [24]

MetSigDis

Homo-sapiens, Rat,
Mouse, Drosophila

melanogaster,
Triatomine, Mice, Pig,
and Mus musculus.

A manually curated
resource that aims to

provide a comprehensive
resource of metabolite
alterations in various

disease.

Curated
relationships:6849
Metabolites:2420

Diseases:129
Species: 8

Free
http://www.bio-

annotation.cn/MetSigDis/
(accessed on 1 April 2022)

2017 [25]

https://hmdb.ca
chemspider.com
https://www.ebi.ac.uk/metabolights
https://www.ebi.ac.uk/metabolights
metabolomicsworkbench.org
metabolomicsworkbench.org
https://smpdb.ca/
http://www.bio-annotation.cn/MetSigDis/
http://www.bio-annotation.cn/MetSigDis/
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Table 1. Cont.

Database Organisms Database Descriptions Coverage Accessibility Link Y.O.R Ref.

Virtual Metabolic
Human Homo-sapiens

Captures human and gut
microbial metabolism

information and links it to
hundreds of diseases and

nutritional data.

Reactions:19,313
Metabolites:5607

Human genes:3695
Diseases:255

Foodstuff:8790

Free www.vmh.life
(accessed on 1 April 2022) 2018 [26]

Pathway Commons Eukaryotes
Bacteria and Archaea

Aims to collect and
disseminate biological

pathway and interaction
data

Pathways:5772
Interactions:2,424,055

Databases:22
Free

https://www.
pathwaycommons.org

(accessed on 1 April 2022)
[27]

WikiPathways Eukaryotes
Bacteria and Archaea

A public, collaborative
platform devoted to the

curation of biological
pathways

Human genes: 11,532
Number of pathways:

3013
Free wikipathways.org

(accessed on 1 April 2022) 2008 [28]

RaMP Eukaryotes
Bacteria and Archaea

A multi-database
integration approach for

gene/metabolite
enrichment analysis

providing interactive
tables of query results,

interactive tables of
pathway analysis results,

and clustering of enriched
pathways by pathway

similarity

Pathways: 51,526 (from
KEGG, Reactome,

SMPDB, and
WikiPathways)
Genes: 23,077

Metabolites: 113,725

Free

https://github.com/
mathelab/RaMP-DB/or

https:
//github.com/mathelab/
RaMP-DB/inst/extdata/
(accessed on 1 April 2022)

[29]

MENDA

Organisms include:
Human,

Rat,
Mouse, and
Non-human

primates.

A comprehensive
metabolic characterization
database for depression.

Differential expressed
metabolites: 5675.

(Humans:1347
Rat:3127

Mouse:1105
Non-human
primates:96)

Free
Menda.cqmu.edu.cn:

8080/index.php
(accessed on 1 April 2022)

2020 [30]

www.vmh.life
https://www.pathwaycommons.org
https://www.pathwaycommons.org
wikipathways.org
https://github.com/mathelab/RaMP-DB/or
https://github.com/mathelab/RaMP-DB/or
https://github.com/mathelab/RaMP-DB/inst/extdata/
https://github.com/mathelab/RaMP-DB/inst/extdata/
https://github.com/mathelab/RaMP-DB/inst/extdata/
Menda.cqmu.edu.cn:8080/index.php
Menda.cqmu.edu.cn:8080/index.php
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Table 2. Summary of computer-aided metabolomics.

Tool Name Description Input Implementation Accessibility Databases Used Link Ref.

MarVis-Suite
Metabolic pathways

analysis and
visualization

MS, microarray, or
RNA-seq

experiments
Web-based Free KEGG and BioCyc http://marvis.gobics.de

(accessed on 1 April 2022) [31]

MetExplore
Metabolic network
and OMICs data

analysis
Any Web-based Free BioCyc- related

https:
//metexplore.toulouse.

inra.fr/metexplore2/
(accessed on 1 April 2022)

[32]

PAPi

Compare activity of
metabolic pathway

between sample
types.

Any R package Free KEGG

http:
//www.4shared.com/file/
s0uIYWIg/PAPi_10.html
(accessed on 1 April 2022)

[33]

MBROLE
Enrichment analysis

of metabolites
annotations.

Any Web-based Free

KEGG, HMDB, PubChem,
ChEBI, SMILES, YMDB,
ECMDB, BioCyc-related,

Rhea, UniPathway, LMSD,
CTD, MeSH, MATADOR,

DrugBank.

http://csbg.cnb.csic.es/
mbrole2

(accessed on 1 April 2022)
[34]

MetaboAnalyst 5.0

Metabolomics
analysis platform,

tutorials, and report
analysis.

LC, GC raw spectra,
MS, NMR peak list,
and spectral bins.

Web-based, R
package Free

KEGG, HMDB, PubChem,
ChEBI, RefMet and LIPID

MAPS.

https:
//www.metaboanalyst.ca
(accessed on 1 April 2022)

[35]

MPEA Pathway enrichment
analysis.

Pre-annotated
compounds or

GC-MS-based MSTs
Web-based Free KEGG, SMPDB and GMD.

http://ekhidna.biocenter.
helsinki.fi/poxo/mpea/

(accessed on 1 April 2022)
[36]

PaintOmics 3 Compound mapping Any Web-based Free KEGG www.paintomics.org
(accessed on 1 April 2022) [37]

IMPaLA Enrichment analysis. Any Web-based Free

Reactome, KEGG,
Wikipathways, HMDB, CAS,
ChEBI, PubChem, SMPDB,

NetPath, BIOCART, BioCyc.

http:
//impala.molgen.mpg.de
(accessed on 1 April 2022)

[38]

http://marvis.gobics.de
https://metexplore.toulouse.inra.fr/metexplore2/
https://metexplore.toulouse.inra.fr/metexplore2/
https://metexplore.toulouse.inra.fr/metexplore2/
http://www.4shared.com/file/s0uIYWIg/PAPi_10.html
http://www.4shared.com/file/s0uIYWIg/PAPi_10.html
http://www.4shared.com/file/s0uIYWIg/PAPi_10.html
http://csbg.cnb.csic.es/mbrole2
http://csbg.cnb.csic.es/mbrole2
https://www.metaboanalyst.ca
https://www.metaboanalyst.ca
http://ekhidna.biocenter.helsinki.fi/poxo/mpea/
http://ekhidna.biocenter.helsinki.fi/poxo/mpea/
www.paintomics.org
http://impala.molgen.mpg.de
http://impala.molgen.mpg.de
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Table 2. Cont.

Tool Name Description Input Implementation Accessibility Databases Used Link Ref.

MetaMapR Metabolic network
mapping.

LC and GC raw
spectra, MS and

NMR peak list, and
spectral bins.

Web-based or
desktop software. Free KEGG and PubChem

http://dgrapov.github.io/
MetaMapR/

(accessed on 1 April 2022)
[39]

LeapR Enrichment analysis. Any R package Free
https://github.com/

biodataganache/leapR
(accessed on 1 April 2022)

[40]

PANEV
Gene/pathway-
based network
visualization

Any R package Free KEGG
https://github.com/
vpalombo/PANEV

(accessed on 1 April 2022)
[41]

PathfindR Enrichment analysis. Any R package Free KEGG, Biogrid, v, IntAct,
https://cran.r-project.

org/package=pathfindR
(accessed on 1 April 2022)

[42]

Ingenuity Pathway
Analysis

Metabolic network
mapping. Any Web-based, software Paid GO, KEGG, BIND

IPA, http:
//www.ingenuity.com

(accessed on 1 April 2022)
[43]

iPath3.0 Metabolic network
mapping. Compound IDs Web-based Free

KEGG,
Uniprot, STRING, protein

IDs, COGs, eggNOGs, NCBI
gene identifiers, ChEBI and

PubChem.

http://pathways.embl.de
(accessed on 1 April 2022) [44]

ReactomePA Enrichment analysis. Any R-package Free REACTOME

http:
//www.bioconductor.org/

packages/ReactomePA
(accessed on 1 April 2022)

[45]

MetExploreViz Metabolic network
mapping. Any Web-based Free KEGG

http://metexplore.
toulouse.inra.fr/

metexploreViz/doc/
(accessed on 1 April 2022)

[46]

Recon3D Network
reconstruction Any Web-based Free

KEGG, PDB, CHEBI,
PharmGKB,

UniProt

http://vmh.life
(accessed on 1 April 2022) [47]

http://dgrapov.github.io/MetaMapR/
http://dgrapov.github.io/MetaMapR/
https://github.com/biodataganache/leapR
https://github.com/biodataganache/leapR
https://github.com/vpalombo/PANEV
https://github.com/vpalombo/PANEV
https://cran.r-project.org/package=pathfindR
https://cran.r-project.org/package=pathfindR
http://www.ingenuity.com
http://www.ingenuity.com
http://pathways.embl.de
http://www.bioconductor.org/packages/ReactomePA
http://www.bioconductor.org/packages/ReactomePA
http://www.bioconductor.org/packages/ReactomePA
http://metexplore.toulouse.inra.fr/metexploreViz/doc/
http://metexplore.toulouse.inra.fr/metexploreViz/doc/
http://metexplore.toulouse.inra.fr/metexploreViz/doc/
http://vmh.life
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Table 2. Cont.

Tool Name Description Input Implementation Accessibility Databases Used Link Ref.

ChemRICH Web-based and
R-package Free

NCBI BioSystems, PubChem,
KEGG, BioCyc, Reactome,

GO, and Wikipathways

www.chemrich.fiehnlab.
ucdavis.edu) and

www.github.Com/
barupal/chemrich

(accessed on 1 April 2022)

[48]

KEGGREST

A package providing
a client interface to

the KEGG REST
server.

Compound IDs R package Free KEGG

https://bioconductor.org/
packages/release/bioc/
html/KEGGREST.html

(accessed on 1 April 2022)

[49]

MetaX

Flexible and
comprehensive

Software for
processing

metabolomics data

Raw peak intensity
data

Web-based and
R-package Free

HMDB, KEGG, MassBank,
Pub-Chem, LIPID MAPS,

MetaCyc, and
PlantCyc

http:
//metax.genomics.cn).

(accessed on 1 April 2022)
[50]

BioDiscML

Biomarker discovery
software that

supports
classification and

regression
problems.

Any Stand-alone program Free

https://github.com/
mickaelleclercq/

BioDiscML.
(accessed on 1 April 2022)

[51]

3Omics

Web tool
visualization of

multi-omics data
(transcriptomics,
proteomics, and
metabolomics)

Any Web-based Free
iHOP, KEGG, HumanCyc,

DAVID, Entrez Gene, OMIM
and UniProt

http://3omics.cmdm.tw
(accessed on 1 April 2022) [52]

MeltDB 2.0

Web-based tool for
statistical analysis

and sets for
enrichment analysis.

Raw GC/LC-MS
spectra, processed
spectra, compound

IDs, and abundances.

Web-based, login
required Free KEGG, ChEBI, GMD and

CAS.

https://meltdb.cebitec.
uni-bielefeld.de

(accessed on 1 April 2022)
[53]

MassTRIX Compound mapping MS spectra Web-based Free KEGG, HMDB and
LipidMaps.

www.masstrix.org
(accessed on 1 April 2022) [54]

www.chemrich.fiehnlab.ucdavis.edu
www.chemrich.fiehnlab.ucdavis.edu
www.github.Com/barupal/chemrich
www.github.Com/barupal/chemrich
https://bioconductor.org/packages/release/bioc/html/KEGGREST.html
https://bioconductor.org/packages/release/bioc/html/KEGGREST.html
https://bioconductor.org/packages/release/bioc/html/KEGGREST.html
http://metax.genomics.cn
http://metax.genomics.cn
https://github.com/mickaelleclercq/BioDiscML
https://github.com/mickaelleclercq/BioDiscML
https://github.com/mickaelleclercq/BioDiscML
http://3omics.cmdm.tw
https://meltdb.cebitec.uni-bielefeld.de
https://meltdb.cebitec.uni-bielefeld.de
www.masstrix.org
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Table 2. Cont.

Tool Name Description Input Implementation Accessibility Databases Used Link Ref.

MetaP-server Global statistical
analysis

Compound IDs and
sample metadata. Web-based Free KEGG, HMDB, LIPID

MAPS, PubChem and CAS.

http://metabolomics.
helmholtz-muenchen.de/

metap2/)
(accessed on 1 April 2022)

[55]

Pathos Compound mapping

MS-spectra (raw m/z)
and compound IDs
(KEGG or MetaCyc

IDs)

Web-based Free KEGG
http://motif.gla.ac.uk/

Pathos/)
(accessed on 1 April 2022)

[56]

http://metabolomics.helmholtz-muenchen.de/metap2/
http://metabolomics.helmholtz-muenchen.de/metap2/
http://metabolomics.helmholtz-muenchen.de/metap2/
http://motif.gla.ac.uk/Pathos/
http://motif.gla.ac.uk/Pathos/
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2. Metabolomics Databases

The vast amount of information in the ever-growing quantity of experimental and
computational chemical data needs to be stored, made accessible, and manipulated. Today,
hundreds of database projects are created and annotated biological knowledge. Each has a
dedicated context (Figure 3).

Metabolites 2022, 12, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 2. Workflow of Big data Analytics, adapted from [10]. Descriptive analytics defines what 
occurred. Diagnostics analytics replies why it occurred. Predictive analytics provides what will oc-
cur. Finally, prescriptive analytics proposes actions to influence desired results (make it occur). 

Databases store big healthcare data produced by several resources. Big data analytics 
platforms process the data for a better decision-making process. Descriptive analytics de-
scribes what happened. Diagnostics analytics answers why it happened. Predictive ana-
lytics gives what will happen. Finally, prescriptive analytics recommends actions to affect 
desirable outcomes (make it happen). 

2. Metabolomics Databases 
The vast amount of information in the ever-growing quantity of experimental and 

computational chemical data needs to be stored, made accessible, and manipulated. To-
day, hundreds of database projects are created and annotated biological knowledge. Each 
has a dedicated context (Figure 3). 

 
Figure 3. Metabolomics databases multifunctional tasks.

As a result, the database’s current catalog is robust and diverse, including organism
focus, curation approach, type of pathways, and interactions covered, along with other
differences. In addition, many databases are available to researchers for data mining and
sharing consistent chemical data for various purposes. For example, all pathway search
tools depend on a database from which biochemical reactions and molecules can be enlisted
to comprise the pathway of interest. This section discusses the databases related to various
metabolite annotation, metabolism, and metabolomics workflows.

The Reactome Knowledgebase [11] (Reactome.org, accessed on 1 April 2022) is a dis-
tinct curated database of pathways and reactions in human biology, cross-referenced with
several resources, such as essential literature and different pathway-related databases. It
aims its manual annotation effort on Homo-sapiens, a single species, and applies a separate
consistent data model within the whole biology domain. The Reactome describes a reaction
as an event in biology that alters the condition of a biological molecule. Degradation,
activation, binding, translocation, and typical biochemical events, including a catalyst, are
reactions. It presents molecular features of signal transduction, transport, metabolism,
DNA replication, and more cellular activities. It contains 2546 human pathways and 1940
small molecules [11].

BioCyc (Biocyc.org, accessed on 1 April 2022) [12] is a comprehensive reference to a
collection of 19,494 Pathway and Genome Databases for model eukaryotes and thousands
of microbes and software tools for exploring them. In addition, BioCyc comprises curated
data from 130,000 publications. The MetaCyc and EcoCyc databases are freely available
via BioCyc. However, access to the remaining BioCyc databases, such as HumanCyc
(HumanCyc.org, accessed on 1 April 2022) [57], needs a paid subscription.

MetaCyc (MetaCyc.org, accessed on 1 April 2022) [13] is a broad metabolic pathways
and enzymes database from each field of life. It includes 2937 pathways obtained from
3295 different organisms, making it the most extensive curated collection of metabolic
pathways [13].

Reactome.org
Biocyc.org
HumanCyc.org
MetaCyc.org


Metabolites 2022, 12, 1002 13 of 22

EcoCyc (EcoCyc.org, accessed on 1 April 2022) [14] is a systematic database for Es-
cherichia coli K-12 MG1655. The EcoCyc presents a literature-based curation of its genome,
transporters, metabolic pathways, and transcriptional regulation. Original and improved
data analysis and visualization tools involve a circular genome viewer, an interactive
metabolic network explorer, and several upgrades to the usability and speed of current
tools [14]. It mainly focuses on metabolic pathways and signaling.

Metabolite Network of Depression Database (MENDA) [30] (http://menda.cqmu.edu.
cn:8080/index.php, accessed on 1 April 2022) is a broad metabolite-disease association
database that integrates all existing knowledge and datasets of metabolic characterization
in depression. In addition, study and tissue type, organism, category of depression, sample
size, platform (MS-based, MRS, NMR), and differential metabolites are provided.

BiGG Models (BIGG.ucsd.edu, accessed on 1 April 2022) [15] is a biochemical, genetic,
and genomic knowledge base of genome-scale metabolic network reconstructions. BiGG
Models includes more than 75 superior, manually curated genome-scale metabolic models.
It also delivers a broad application interface for accessing BiGG Models with modeling and
analysis kits. In addition, reaction and metabolite identifiers and pathway visualization
were formalized in BiGG Models.

Kyoto Encyclopedia of Genes and Genomes (KEGG) (www.kegg.jp/, accessed on 1
April 2022) [16] is an extensive and widely used database. It is a manually curated source
incorporating 18 databases classified into genomic, systems, health, and chemical data.

The Braunschweig Enzyme Database (BRENDA) enzyme database (www.brenda-
enzymes.org, accessed on 1 April 2022) [17] contains comprehensive functional enzyme
and metabolism data such as measured kinetic parameters. The main part has more than 5
million data points for almost 90,000 enzymes. In addition, BRENDA presents accessible
enzyme information from fast to superior text- and structured-based searches for word
maps, enzyme-ligand interactions, and enzyme data visualization.

PubChem (pubchem.ncbi.nlm.nih.gov, accessed on 1 April 2022) [18] is the world’s
most extensive set of open and accessible chemical information from more than 750 data
sources. It stores information in three primary categories: compounds, substances, and
bioactivities. In addition, several research areas use PubChem as a big data resource,
including machine learning and data science for drug repurposing, virtual screening,
drug side effect prediction, metabolite identification, and chemical toxicity prediction.
Furthermore, PubChem provides physical and chemical properties, safety and toxicity
information, biological activities, literature citations, patents, and more.

ChEBI (www.ebi.ac.uk/chebi, accessed on 1 April 2022) [19] is an open-access glossary
of molecular entities aimed at small biochemical compounds.

The HMDB (https://hmdb.ca, accessed on 1 April 2022) [20] is a broad source de-
livering information about homo-sapiens metabolites and their associated physiological,
chemical, and biological properties. To date, HMDB has 220,945 total metabolites.

ChemSpider (chemspider.com, accessed on 1 April 2022) [21] is a freely accessible
chemical structure database delivering a quick structure and text search covering over one
hundred million structures from hundreds of data resources.

MetaboLights (https://www.ebi.ac.uk/metabolights, accessed on 1 April 2022) [22] is
a database that includes metabolomics studies research, raw experimental data, and related
metadata. MetaboLights is cross-technique and cross-species and includes metabolite struc-
tures and their related biological roles, reference spectra, concentrations and locations, and
metabolic experiments data. Users can upload their research datasets into the MetaboLights
Repository. Researchers are then automatically given a unique and stable identifier for
publication reference.

The Metabolomics Workbench (metabolomicsworkbench.org, accessed on 1 April
2022) [23] is a public repository for experimental metabolomics metadata and data covering
several species and experimental platforms, metabolite structures, metabolite standards,
tutorials, protocols, training material, and more educational resources. It can combine,
examine, deposit, track, and distribute big heterogeneous data from many MS- and NMR-

EcoCyc.org
http://menda.cqmu.edu.cn:8080/index.php
http://menda.cqmu.edu.cn:8080/index.php
BIGG.ucsd.edu
www.kegg.jp/
www.brenda-enzymes.org
www.brenda-enzymes.org
pubchem.ncbi.nlm.nih.gov
www.ebi.ac.uk/chebi
https://hmdb.ca
chemspider.com
https://www.ebi.ac.uk/metabolights
metabolomicsworkbench.org
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based metabolomics studies. It covers over twenty diverse species, including humans and
other mammals, insects, invertebrates, plants, and microorganisms.

SMPDB (https://smpdb.ca, accessed on 1 April 2022) [24] is a comprehensive, in-
teractive, visual database that includes over 48,000 discovered pathways. Most of the
pathways do not exist in other pathway databases. SMPDB help in pathway discovery and
interpretation in metabolomics, proteomics, transcriptomics, and systems biology.

MetSigDis [25] (http://www.bio-annotation.cn/MetSigDis/, accessed on 1 April 2022)
is a free web-based tool that offers a comprehensive metabolite alterations resource in vari-
ous diseases. The database deposited 6849 curated associations between 2420 metabolites
and 129 diseases among eight species, including humans and model organisms.

Virtual Metabolic Human [26] (VMH, www.vmh.life, accessed on 1 April 2022) is
a web-based database capturing the knowledge of Homo-sapiens metabolism within
5 interlinked resources, including, Homo-sapiens metabolism, Disease, Gut microbiome,
ReconMaps, and Nutrition. The VMH’s exceptional features are (i) the introduction of
the metabolic reconstructions of Homo-sapiens and gut microbes for metabolic modeling;
(ii) seven Homo-sapiens metabolic maps for data visualization; (iii) a nutrition designer;
(iv) an accessible webpage and application user interface to access the content; (v) feedback
option for community users’ interactions and (vi) the linking of its entities to 57 web
resources.

WikiPathways [28] (wikipathways.org, accessed on 1 April 2022) is a reliable and rich
pathway database that captures biological pathways’ collective knowledge. By delivering a
database in a curated, machine-readable system, visualization and omics data studies is
supported.

The relational database of Metabolomics Pathways (RaMP) [29] is a public database to
combine biological pathways from the WikiPathways, KEGG Reactome, and the HMDB.
RaMP maps metabolites and genes to biochemical and disease pathways and can be
incorporated into other existing software. It can be used as a stand-alone resource (https:
//github.com/mathelab/RaMP-DB/, accessed on 1 April 2022) or incorporated into other
tools (https://github.com/mathelab/RaMP-DB/inst/extdata/, accessed on 1 April 2022).

Pathway Commons [27] (https://www.pathwaycommons.org, accessed on 1 April
2022) is one of the most extensive composite databases. It is an integrated resource of
openly accessible information about biological pathways involving biochemical reactions,
transport and catalysis events, assembly of biomolecular complexes, and physical interac-
tions, including DNA, RNA, proteins, and small molecules such as drug compounds and
metabolites. A list of commonly used metabolomics databases and their main features can
be found in Table 1.

A variety of databases stands as a metabolomics dataset repository. To mention some,
BioMagResBank (BMRB) (http://www.bmrb.wisc.edu, accessed on 1 April 2022) [58] is a
public repository for NMR spectroscopy data from peptides, proteins, nucleic acids, and
more biomolecules. In addition, the Golm Metabolome Database (GMD) (http://gmd.
mpimp-golm.mpg.de/, accessed on 1 April 2022) [59] provides datasets for biologically
quantified active metabolites and text search capabilities for GC-MS data. Moreover, the
Mass Spectral Library (https://www.NIST.gov/srd/NIST-standard-referencedatabase-1a,
accessed on 1 April 2022) [60] extensively collects EI MS, MS/MS, replicate spectra, and
retention index datasets. Finally, the Spectral Database System (SDBS) (https://sdbs.db.
aist.go.jp/, accessed on 1 April 2022) [61] is a spectral database for organic compounds and
has various MS, NMR, IR, Raman, ESR datasets.

Taken all together, Pathguide [62] is a necessary initial step for considering the prospect
of pathway databases. Pathguide is a meta-database that contains information about
702 biological pathway-related databases and molecular interaction-related databases.
For example, the Pathguide categories include signaling pathways, metabolic pathways,
pathway diagrams, gene regulatory networks, transcription factor targets, genetic interac-
tions networks, protein sequence-focused, protein-protein interactions, protein–compound
interactions, etc.

https://smpdb.ca
http://www.bio-annotation.cn/MetSigDis/
www.vmh.life
wikipathways.org
https://github.com/mathelab/RaMP-DB/
https://github.com/mathelab/RaMP-DB/
https://github.com/mathelab/RaMP-DB/inst/extdata/
https://www.pathwaycommons.org
http://www.bmrb.wisc.edu
http://gmd.mpimp-golm.mpg.de/
http://gmd.mpimp-golm.mpg.de/
https://www.NIST.gov/srd/NIST-standard-referencedatabase-1a
https://sdbs.db.aist.go.jp/
https://sdbs.db.aist.go.jp/
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Despite the emerging number of chemical databases, the significant challenge for this
expansion is the incompetence to use metabolite and reaction information from databases
such as KEGG, BRENDA, and MetaCyc because of representation inconsistencies and
duplications, and errors. In addition, the same metabolite is obtained with several names
among models and databases, which slows down assembling information from different
data sources. Therefore, researchers designed the MetRxn database [63], Rhea [64], and
RefMet [65] to standardize reaction and metabolite names. Additions and modifications
to databases are made regularly to increase the quality and coverage of their biological
knowledge. Some databases can update their information frequently to sustain pace
with discoveries. For instance, the KEGG database [16] revises its data weekly; however,
other databases do it less often. The preference of databases should consider the relative
sizes, degree of overlap, and scope. For instance, KEGG comprises considerably more
compounds than MetaCyc, but MetaCyc includes more pathways and reactions than KEGG.
For example, pathway sets might vary between databases in several ways, involving
the number of pathways present, the size of pathways, how pathways are curated, be
it manually or automatically, or a combination of both, organisms supported, and the
pathway boundaries [66]. However, interpreting metabolomics data has been intriguing
since realizing the relationships among dozens of modified metabolites have often relied
on researchers’ biochemical assumptions and knowledge. However, recent biochemical
databases deliver information about metabolism’s interrelations, automatically polling
using metabolomics analysis tools, i.e., mathematical and computational tools.

3. Metabolomics Computer-Aided Tools

Python [67], R [68], and other programming languages empower and facilitate various
tools to implement integrated workflows (Figure 4).
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flows should be customized and made compatible with the study designs to attain complete
and significant information from the metabolomics datasets. Mathematical methods are
helpful for molecular biomarker detection. However, statistical tests, such as t-tests, signifi-
cance analysis of microarrays (SAM), and eBayes, usually extract dysfunctional molecules
from comprehensive expression data and are incorporated as an essential analytical phase
in several metabolic identification pipelines. In addition, several novel computational tools
have been established as secondary analysis tools to allow metabolomics researchers to
grasp the powers of their data and create more beyond-achieving biological decisions than
ever before. This section explains the functionality and use of various secondary analysis
tools.

The MarVis-Suite [31] (http://marvis.gobics.de, accessed on 1 April 2022) (Marker Vi-
sualization) toolbox for interactive ranking, combination, filtering, visualization, clustering,
and functional analysis of datasets, including intensity-based profile vectors, as found, e.g.,
in MS, microarray, or RNA-seq experiments.

MetExplore [32] (https://metexplore.toulouse.inra.fr/metexplore2/, accessed on 1
April 2022) offers an easy-to-use complete online solution comprised of interactive tools for
metabolic network curation, network exploration, and omics data study. MetExplore holds
the concepts of metabolic networks and significantly improves multi-omics data analysis.

Pathway Activity Profiling [33] (PAPi) (http://www.4shared.com/file/s0uIYWIg/
PAPi_10.html, accessed on 1 April 2022) compares metabolic pathway activities from
metabolite profiles. PAPi can reach the activity of metabolic pathways in several situations,
which delivers excellent help for hypothesis creation and simplifies biological interpreta-
tion.

Metabolites Biological Role (MBROLE) [34] (http://csbg.cnb.csic.es/mbrole2, accessed
on 1 April 2022) is a server that performs the functional enrichment research of a list of
chemical compounds obtained from a metabolomics experiment, which helps the list to be
explained in biological terms.

MBROLE analyzes an extensive diversity of functional annotations that define several
distinct aspects of the biology and chemistry of chemical compounds; these involve path-
ways and sub-pathways, interactions with proteins, enzymes, and more kinds of molecules,
chemical classifications and taxonomies, physiological locations, and biological functions,
and applications.

MeltDB 2.0 [53] (https://meltdb.cebitec.uni-bielefeld.de, accessed on 1 April 2022) is
a next-generation web application delivering storage, standardization, sharing, integration,
and the analysis of metabolomics assays.

MetaboAnalyst version 5.0 [35] (https://www.metaboanalyst.ca, accessed on 1 April
2022) is a fully automated web interface to bridge raw data to functional insights for global
metabolomics based on high-resolution mass spectrometry (HRMS). MetaboAnalyst per-
forms enhanced peak detection, annotation tasks, and alignment for LC-MS data produced
in global metabolomics. The key features of MetaboAnalyst are that it includes: (1) the
MetaboAnalystR package in the R environment, (2) large libraries for metabolite sets and
metabolic pathways, (3) metabolomic biomarker metanalysis, (4) the integration of multi-
omics data over visualization and knowledge-based network analysis, and (5) an easy and
free, accessible tool.

Metabolite pathway enrichment analysis (MPEA) [36] (http://ekhidna.biocenter.
helsinki.fi/poxo/mpea/, accessed on 1 April 2022) is a metabolomics pathway enrichment
tool for visualization and biological interpretation. MPEA is limited to top-down/bottom-
up analysis. MetaP-server [55] (http://metabolomics.helmholtz-muenchen.de/metap2/,
accessed on 1 April 2022) is a user-friendly web-server-based for metabolomics data analy-
sis. It covers data acquisition to biological interpretation: (i) data quality checks, (ii) estimate
of reproducibility and batch effects, (iii) hypothesis assessments for several categorical
phenotypes, (iv) correlation analyses for metric phenotypes, (v) optionally involving all
potential sets of metabolite concentration ratios, (vi)mapping of metabolites against colored
KEGG pathway maps and (vii) PCA.

http://marvis.gobics.de
https://metexplore.toulouse.inra.fr/metexplore2/
http://www.4shared.com/file/s0uIYWIg/PAPi_10.html
http://www.4shared.com/file/s0uIYWIg/PAPi_10.html
http://csbg.cnb.csic.es/mbrole2
https://meltdb.cebitec.uni-bielefeld.de
https://www.metaboanalyst.ca
http://ekhidna.biocenter.helsinki.fi/poxo/mpea/
http://ekhidna.biocenter.helsinki.fi/poxo/mpea/
http://metabolomics.helmholtz-muenchen.de/metap2/
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Mass TRanslator into Pathways (MassTRIX) [54] (www.masstrix.org, accessed on
1 April 2022) annotates metabolites in high-precision MS data. It marks the discovered
chemical compounds on KEGG pathway maps using the KEGG/API. In addition, genes or
enzymes can be underlined to denote information on gene transcription or differences in
the gene complement of several bacterial strains.

Pathos [56] (http://motif.gla.ac.uk/Pathos/, accessed on 1 April 2022) is a web-based
tool for analyzing raw or processed metabolomics mass spectra and demonstrating the
metabolites identified and alterations in their experimental abundance within the context
of their associated metabolic pathways. Pathos is limited to specific organism databases.

PaintOmics 3 [37] (www.paintomics.org, accessed on 1 April 2022) is a web-based tool
for the integrated visualization of several omic data types onto KEGG pathway diagrams.
PaintOmics 3 combines server-end abilities for data analysis with the capability of modern
web resources for data visualization, delivering investigators with a robust framework for
an interactive examination of their multi-omics information.

IMPaLA [38] (http://impala.molgen.mpg.de, accessed on 1 April 2022) is a web-based
tool for joint pathway analysis with expression (genes/proteins) and metabolite data. It
performs enrichment analysis or over-representation with user-specified lists of genes
and metabolites utilizing more than three thousand pre-annotated pathways from eleven
databases.

MetaMapR [39] (http://dgrapov.github.io/MetaMapR/, accessed on 1 April 2022) is a
free-source, web-based, or desktop software employed in the R programming language. It
incorporates enzymatic transformations with metabolite structural similarity, mass spectral
similarity, and empirical relationships to create well-associated metabolic networks.

The Layered Enrichment Analysis of Pathways (LeapR) [40] (https://github.com/
biodataganache/leapR, accessed on 1 April 2022) is a framework to measure biological
pathway activity utilizing various statistical analyses and data resources, permitting facile
incorporation of multisource data.

PAthway NEtwork Visualizer (PANEV) [41] (https://github.com/vpalombo/PANEV,
accessed on 1 April 2022) is an R package for gene or pathway-based network visualization.
Using KEGG, it visualizes genes within a network of multiple levels of interlinked upstream
and downstream pathways. The network graph visualization facilitates interpreting the
functional profiles of gene clusters. However, PANEV is a KEGG-based tool that can be
considered a limitation because of KEGG’s lack of or incomplete information.

PathfindR [42] is an R package using protein-protein interaction information and
active-subnetwork-oriented pathway enrichment analyses for class comparison omics
experiments. It also provides functionality for clustering the resulting pathways.

Ingenuity Pathway Analysis [43] (IPA, http://www.ingenuity.com, accessed on 1 April
2022) is a comprehensive visualization software or database search tool for discovering
functions and pathways for specific biological conditions. IPA helps realize complex omics
data and achieve insightful data analysis and interpretation by putting experimental results
in the context of biological systems. Its pathway focuses on protein-protein interactions,
protein–compound interactions, metabolic, signaling, gene regulation, and diagrams.

iPath3.0 [44] (http://pathways.embl.de, accessed on 1 April 2022) is a free web-based
tool for visualization, customization, and analysis of various KEGG cellular pathways. In
addition, version 3 can deal with metabolic and regulatory pathways and the biosynthesis
of secondary metabolites.

ReactomePA [45] (http://www.bioconductor.org/packages/ReactomePA, accessed
on 1 April 2022) is a free R/Bioconductor package delivering enrichment analyses involving
gene set enrichment analyses and hypergeometric tests. For example, functional analysis
can be applied to the genomic coordination taken from a sequencing experiment to explore
a genomic loci’s functional significance, including non-coding regions and cis-regulatory
elements. In addition, ReactomePA offers various visualization functions to generate very
customizable, publication-quality figures.

www.masstrix.org
http://motif.gla.ac.uk/Pathos/
www.paintomics.org
http://impala.molgen.mpg.de
http://dgrapov.github.io/MetaMapR/
https://github.com/biodataganache/leapR
https://github.com/biodataganache/leapR
https://github.com/vpalombo/PANEV
http://www.ingenuity.com
http://pathways.embl.de
http://www.bioconductor.org/packages/ReactomePA
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MetExploreViz [46] (http://metexplore.toulouse.inra.fr/metexploreViz/doc/, accessed
on 1 April 2022) is an open-source web component for visualizing pathways and metabolic
networks and presents a solution to examine omics data in a biochemical perspective.

Recon3D [47] (http://vmh.life, accessed on 1 April 2022and http://bigg.ucsd.edu/,
accessed on 1 April 2022) is a computational source that comprises protein structure
data and three-dimensional (3D) metabolite and allows integrated analyses of metabolic
functions in humans. Recon3D is the most comprehensive human metabolic network model,
reporting 3288 open reading frames (representing 17% of functionally annotated human
genes), including 12,890 protein structures, 4140 unique metabolites, and 13,543 metabolic
reactions. These data offer an outstanding resource for examining molecular mechanisms
of human metabolism.

ChemRICH [48] (www.chemrich.fiehnlab.ucdavis.edu, accessed on 1 April 2022 and
www.github.com/barupal/chemrich, accessed on 1 April 2022) is a statistical enrichment
method relying on chemical similarity instead of sparse biochemical knowledge annota-
tions. ChemRICH utilizes chemical ontologies and structure similarity to map all known
metabolites and name metabolic modules. Unlike pathway mapping, this strategy gener-
ates research-specific, non-intersecting groups of all identified metabolites.

KEGGREST [49] (bioconductor.org/packages/release/bioc/html/KEGGREST.html,
accessed on 1 April 2022) is an R package employed to build an adjacency matrix that links
the dataset’s metabolites with their matching KEGG pathways. First, one is allocated if the
metabolite is part of that specific pathway or 0 if not. The following five metabolites of
each pathway were at random samples.

MetaX [50] offers several functions: peak picking and annotation, data quality assess-
ment, missing and zero values imputation, data standardization/normalization, univariate
and multivariate statistical analysis, power analysis and sample size estimate, receiver
operating characteristic (ROC) analysis, biomarkers selection, and pathway annotation,
correlation network analysis, and metabolite identification. It is available as a web-based
interface and R package (http://metax.genomics.cn, accessed on 1 April 2022).

Biomarker Discovery by Machine Learning (BioDiscML) [51] (https://github.com/
mickaelleclercq/BioDiscML, accessed on 1 April 2022) is a biomarker discovery tool that
exploits several features for selection methods to generate signatures coupled with machine
learning models that will predict a particular outcome efficiently. BioDiscML employs
a massive selection of machine-learning algorithms to choose the ultimate combination
of biomarkers for expecting continuous and categorical results from very unbalanced
datasets. BioDiscML can implement data pre-processing, features and model selection, and
performance assessment. The software tool is developed in JAVA 8 language and uses the
Weka 3.8 machine learning library. It outperforms recent tools for discovering biomarkers’
signatures.

ASICS [70] is an R package that covers a full workflow to analyze spectra from NMR
experiments. It includes an automatic method to identifying and quantifying metabolites
in a complex mixture spectrum and utilizes the quantification outcomes in untargeted and
targeted statistical experiments. However, ASICS has algorithm limitations: the difficulty
in detecting the low concentration metabolites or their peaks, all placed in an area with a
high density of peaks.

3Omics [52] (http://3omics.cmdm.tw, accessed on 1 April 2022) is a web-based visu-
alization tool incorporating human metabolomic, transcriptomic, and proteomic data. It
produces inter-Omics correlation networks to visualize data associations for all metabolites,
transcripts, and proteins for time or experimental situations.

Also, one study [71] examined about 100 metabolomics software sources, databases,
tools, and more utilities that have emerged or been enhanced in 2019. Similarly, around
85 metabolomics software sources, tools, packages, databases, and other utilities that
appeared in 2020 were released in a recent study [72]. Finally, Table 2 surveyed commonly
used metabolomics tools in the literature.

http://metexplore.toulouse.inra.fr/metexploreViz/doc/
http://vmh.life
http://bigg.ucsd.edu/
www.chemrich.fiehnlab.ucdavis.edu
www.github.com/barupal/chemrich
bioconductor.org/packages/release/bioc/html/KEGGREST.html
http://metax.genomics.cn
https://github.com/mickaelleclercq/BioDiscML
https://github.com/mickaelleclercq/BioDiscML
http://3omics.cmdm.tw
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Each tool has strengths and weaknesses and should not come from using one over the
other. Due to the complexity of metabolomics data, it is essential to regard the outcomes
from the secondary analysis with caution. For example, enrichment analysis can generate
significant pathway hits from only one or two metabolites in a pathway. As such, precise
scrutinization and logical biological interpretation of the data should be undertaken. With
this in mind, metabolomics scientists should incorporate secondary analysis into their
analyses, as these beneficial outcomes can be attained rapidly [73]. The secondary analysis
field is coming into its own, and its steady growth will help enhance the success of the
metabolomics approach. These cutting-edge bioinformatics analysis tools that are com-
pletely incorporated with various functions and are accessible and manageable by users
who lack prior knowledge in programming are vital in metabolomics research. They will
persist in enabling discoveries and more significant insights for increasing metabolomics
research.

4. Discussion and Concluding Remarks

This paper has highlighted extensive lists of metabolomics databases and computer-
aided tools.

Databases are considered the cornerstone in metabolomics assays, and choosing a
database could substantially affect the results. During recent decades, advancements in
metabolomics databases have caused several formalization schemes, impeding the inter-
operability among these resources and generating data silos. In addition, metabolomics
database selection, metabolite misidentification rate, and assay chemical bias of several an-
alytical platforms will impact subsequent methods. Therefore, the suggestion to overcome
the database’s pitfalls is to perform organism-specific metabolomics analysis using multiple
databases and form a consensus signature using the outcomes. Databases integration
comprising multiple databases, such as the ConsensusPathDB [74] or PathMe [75], might
be helpful and consider continuing attempts to standardize the different resources.

A critical overview of the performance of selected bioinformatics tools for omics
datasets is presented for the first time. These tools include BioCyc/HumanCyc [12],
ConsensusPathDB [72], MBRole [34], IMPaLA [38], Metabox [76], MetaboAnalyst [35],
MetExplore [32], MPEA [36], Reactome [11], PathVisio [77], and KEGGREST [49]. Despite
the tool’s variability, they generated coherent outcomes independent of their analytical
method. Nevertheless, further effort on the completeness of metabolomics databases is
necessary, dramatically impacting the accuracy of the analysis.

Computer-aided tools are evolving, and recently, an abundance exists for metabolomics
researchers [78]. Moreover, these tools have promising features to elevate metabolomics
research [79,80]. User-friendly, open access and instant results are desirable attributes.

However, high-quality data analysis tools are crucial for repeatability, reproducibility,
and minimal uncertainty. An experiment should generate similar responses using the same
inputs; otherwise, there is little promise that an algorithm can be predictive. Therefore, the
available tools should be classified based on performance; however, lacking a measure to
validate their performance. Few studies have attempted to compare and measure various
tools’ performance, yet more efforts are required to embrace these tools with certainty.

Metabolomic technological capabilities and data sharing, for instance, database incor-
poration, will be crucial in the future expansion of metabolomics and enable enhancements
in multi-organism systems biology.
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