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A B S T R A C T

Cognitive control is the ability to coordinate thoughts and actions to achieve goals. Cognitive control impair-
ments are one of the most persistent and devastating sequalae of traumatic brain injuries (TBI). There have been
efforts to improve cognitive control in individuals with post-acute TBI. Several studies have reported changes in
neuropsychological measures suggesting the efficacy of cognitive training in improving cognitive control. Yet,
the neural substrates of improved cognitive control after training remains poorly understood. In the current
study, we identified neural plasticity induced by cognitive control training for TBI using resting-state functional
connectivity (rsFC). Fifty-six individuals with chronic mild TBI (9 years post-injury on average) were randomized
into either a strategy-based cognitive training group (N=26) or a knowledge-based training group (active
control condition; N= 30) for 8 weeks. We acquired a total of 109 resting-state functional magnetic resonance
imaging from 45 individuals before training, immediately post-training, and 3months post-training. Relative to
the controls, the strategy-based cognitive training group showed monotonic increases in connectivity in two
cognitive control networks (i.e., cingulo-opercular and fronto-parietal networks) across time points in multiple
brain regions (pvoxel < 0.001, pcluster < 0.05). Analyses of brain-behavior relationships revealed that fronto-
parietal network connectivity over three time points within the strategy-based cognitive training group was
positively associated with the trail making scores (pvoxel < 0.001, pcluster < 0.05). These findings suggest that
training-induced neuroplasticity continues through chronic phases of TBI and that rsFC can serve as a neuroi-
maging biomarker of evaluating the efficacy of cognitive training for TBI.

1. Introduction

A traumatic brain injury (TBI) occurs when external force is applied
to the head leading to disruptions of brain structure and function (Faul
et al., 2010). Though an insult to the brain occurs instantaneously, a
TBI incident can be the beginning of a chronic disease process rather
than an isolated event or final outcome across all levels of initial injury
severity: moderate or severe TBI (Corrigan et al., 2014; Masel and
DeWitt, 2010; Whitnall et al., 2006) and mild-to-severe TBI (Masel and
DeWitt, 2010; Whitnall et al., 2006). For example, TBI can be a risk
factor for cognitive impairments (Arciniegas et al., 2002; Rabinowitz
and Levin, 2014), psychiatric disorders (Hesdorffer et al., 2009), re-
duced social functioning (Temkin et al., 2009), and neurodegenerative
diseases such as chronic traumatic encephalopathy (McKee et al.,
2013). A substantial number of individuals with TBI sustain TBI-related

disabilities. For example, 57% of individuals 16 years or older with
moderate or severe TBI were moderately or severely disabled, and 39%
had a worse global outcome at 5 years post-injury compared to their
outcome level at 1 or 2 years post-injury (Corrigan et al., 2014). Cur-
rently, as many as 5.3 million people in the U.S. are facing challenges of
TBI-related disability (Frieden et al., 2015). The actual number of in-
dividuals continuing to suffer from chronic TBI (> 6months post-injury
time) effects may be greater than the estimates given the lack of public
awareness of TBI in the past and the limited sensitivity of conventional
neuropsychological measures (Katz and Alexander, 1994). Additionally,
conventional clinical imaging (e.g., CT scanning) may be insensitive to
identifying brain abnormalities especially in individuals with mild TBI
(Tellier et al., 2009). Substantial numbers of individuals with sustained
TBI necessitates further rehabilitation research in chronic TBI (Katz and
Alexander, 1994).
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Resting-state functional connectivity (rsFC) is a technique mea-
suring the temporal coherence of blood oxygenation level dependent
(BOLD) signal from anatomically separated brain regions acquired at
rest. Since its inception (Biswal et al., 1995), rsFC in resting-state
functional magnetic imaging (rsfMRI) has provided new insights about
brain networks that can better explain the underlying mechanisms of
human behavior or function (van den Heuvel and Hulshoff Pol, 2010).
RsFC studies in clinical populations are increasingly popular because
they do not require that subjects perform a specific task. RsFC is well-
positioned to identify both the patterns of injury and the associations
between injury and behavioral impairments in TBI (Sharp et al., 2014).
This is especially important as diffuse axonal injury (DAI) is one of the
primary injury mechanisms of TBI (Smith et al., 2003). DAI induces
multi-focal injuries to axons which provide the structural basis of spa-
tially distributed brain networks. Thus, DAI leads to a breakdown of
brain network connectivity. In the context of rehabilitation, rsFC is also
a promising technique to measure neuroplasticity within the injured
brain, as rsFC has been successfully utilized to provide evidence for
experience-induced neuroplasticity of the adult human brain in vivo
(Guerra-Carrillo et al., 2014; Kelly and Castellanos, 2014). For example,
in healthy subjects, previous studies reported changes in rsFC after
motor training (Lewis et al., 2009; Taubert et al., 2011), cognitive
training (Jolles et al., 2013; Mackey et al., 2013; Takeuchi et al., 2013),
and physical activity in older adults (Voss et al., 2010). In clinical po-
pulations, changes in rsFC after cognitive rehabilitation for cognitive
symptoms associated with multiple sclerosis has been reported (de
Giglio et al., 2016; Keshavan et al., 2017). This technique is well-suited
to investigating neuroplasticity induced by rehabilitation for TBI.

In a previous study, we reported the efficacy of strategy-based
cognitive training for chronic TBI, utilizing neuropsychological mea-
sures (Vas et al., 2016). This training is an integrative program to im-
prove cognitive control by exerting more efficient thinking strategies
for selective attention and abstract reasoning (see the Materials and
methods section for the details of training protocols). Cognitive control
(also called executive function) is the ability to coordinate thoughts and
actions to achieve goals while adjusting these goals according to
changing environments (Nomura et al., 2010). Cognitive control is
critical to successfully perform daily life tasks (Botvinick et al., 2001;
Diamond, 2013). Thus, impairment in cognitive control is one of the
most persistent and devastating sequalae of TBI (Cicerone et al., 2000;
Rabinowitz and Levin, 2014), and empirical studies demonstrating the
efficacy of cognitive rehabilitation for improving cognitive control of
individuals with post-acute TBI are valuable in the literature on TBI
rehabilitation (Cicerone et al., 2006; McDonald et al., 2002). In the
current study, we describe rehabilitation-induced changes in brain
connectivity.

Cognitive control has been extensively investigated in the field of
cognitive neuroscience (Power and Petersen, 2013). Of note, Dosenbach
and colleagues (Dosenbach et al., 2006) identified a set of regions that
are active across multiple cognitive control tasks. A follow-up study
(Dosenbach et al., 2007) revealed two distinct resting-state networks
related to cognitive control: the cingulo-opercular network and fronto-
parietal network. The cingulo-opercular network consists of bilateral
anterior insula/frontal opercula (aI/fO), bilateral anterior prefrontal
cortices (aPFC), dorsal anterior cingulate cortex (dACC), and thalamus,
and it is thought to support stable maintenance of task mode and
strategy during cognitive processes (Dosenbach et al., 2007, 2008). The
fronto-parietal network comprises of bilateral dorsolateral prefrontal
cortices (dlPFC), bilateral dorsal frontal cortices (dFC), bilateral inferior
parietal lobules (IPL), bilateral intraparietal sulci (IPS), middle cingu-
late cortex (mCC), and bilateral precunei (PCUN), supporting active,
adaptive online control during cognitive control processes (Dosenbach
et al., 2007, 2008). The cingulo-opercular network and fronto-parietal
network are also referred to as the salience network and central ex-
ecutive network, respectively (Seeley et al., 2007). The salience and
central executive networks are often referred to in the context of

interactions among these networks and the default mode network
(Menon and Uddin, 2010). However, in this report, we will refer to
them as the cingulo-opercular and fronto-parietal networks, as we
conducted current study in the context of cognitive control. TBI-in-
duced disruptions to the cingulo-opercular network in mild-to-severe
TBI (Bonnelle et al., 2012; Jilka et al., 2014; Stevens et al., 2012) and
fronto-parietal network in mild TBI (Mayer et al., 2011; Stevens et al.,
2012) have been previously reported. Specifically, TBI decreases the
white matter integrity of the cingulo-opercular network (Bonnelle et al.,
2012) and functional connectivity between the cingulo-opercular and
default networks during a cognitive control task (Jilka et al., 2014).
Additionally, individuals with mild TBI showed increases and decreases
in rsFC with the cingulo-opercular (Stevens et al., 2012) and fronto-
parietal networks (Mayer et al., 2011; Stevens et al., 2012) across brain
regions, relative to healthy individuals.

We utilized rsfMRI to identify the effects of a strategy-based cog-
nitive training for chronic TBI on the cognitive control networks (i.e.,
cingulo-opercular and fronto-parietal networks) compared to a knowl-
edge-based comparison condition. We focused on the cingulo-opercular
and fronto-parietal networks as our training protocols were aimed at
improving cognitive control processes (See the Materials and methods
section for the details of training protocols). We randomized individuals
with chronic mild TBI into two eight-week training groups (strategy-
versus knowledge-based), and we acquired their MRI scans over three
time points (prior to training, after training, and at three-months
follow-up after training completed). We then investigated the spatial
and temporal patterns of training-induced changes in cingulo-opercular
and fronto-parietal networks connectivity of these individuals. We hy-
pothesized that strategy-based cognitive training would induce changes
in the cingulo-opercular and fronto-parietal networks connectivity re-
lative to the knowledge-based training program. This prediction is
based on findings from previous rsfMRI studies demonstrating neuro-
plasticity in healthy adults and other clinical populations (de Giglio
et al., 2016; Jolles et al., 2013; Keshavan et al., 2017; Lewis et al., 2009;
Mackey et al., 2013; Takeuchi et al., 2013; Taubert et al., 2011; Voss
et al., 2010) and the efficacy of strategy-based cognitive training for
chronic TBI (Vas et al., 2016).

2. Materials and methods

2.1. Participants

We selected a subset of 83 individuals with chronic TBI from a
larger study (Krawczyk et al., 2013). Participant selection criteria in-
cluded a diagnosis of mild TBI and no visible focal lesions or extreme
degeneration of the white matter on structural MRI scans when MRI
scans were available. We excluded 26 participants whose estimated
initial injury severity was moderate or severe. Further, we excluded one
participant with abnormally low premorbid intelligent quotient. After
the selection procedure, we analyzed 56 individuals at the chronic stage
of mild TBI who ranged from lower moderate disability to lower good
recovery (age 20–65;> 6months post-injury; 5–7 on the Extended
Glasgow Outcome Scale (Wilson et al., 1998)).

The rsfMRI data from 45 participants were included for rsFC ana-
lyses, as ten participants did not have MRI scans and one participant did
not pass the selection criteria for structural MRI scans (i.e., data quality
and no visible abnormalities). Participants were recruited from the
Dallas–Ft. Worth community. Demographic data and TBI screening
information was obtained during a phone screening interview before
inclusion in the study. The primary causes of TBIs in this group were
blasts, blunt force trauma, falls, athletic impacts, vehicle accidents or
combinations thereof. Initial injury severity was retrospectively esti-
mated utilizing the Ohio State University TBI identification (OSU TBI-
ID) method (Corrigan and Bogner, 2007). The rationale for utilizing the
OSU TBI-ID and the details of the OSU TBI-ID is described in our pre-
vious study (Han et al., 2017). Both civilian and veteran participants
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were included (see Table 1 for demographics). No participants had a
history of any significant, clinically-diagnosed neurological or psy-
chiatric comorbidities. We also confirmed that all participants were free
from visible focal brain lesions or extreme degeneration of the white
matter on structural MRI scans. This confirmation should minimize the
potential effects of such macrostructural injuries on preprocessing for
rsFC analyses. All participants provided written informed consent, and
this study was conducted in compliance with the Declaration of Hel-
sinki. The study was approved by the Institutional Review Boards of the
University of Texas at Dallas and University of Texas Southwestern
Medical Center.

2.2. Training protocols

All participants were randomly assigned to one of the two training
groups: (1) a strategy-based reasoning training called Strategic Memory
Advanced Reasoning Training (SMART) group (N=26) or (2) the
knowledge-based training called Brain Health Workshop (BHW) group
(N=30). The BHW group served as an active control condition. Both
training programs comprised of 12 sessions (1.5 h per session) for
8 weeks with quizzes, homework assignments, and projects conducted
in small group settings, comprised of 4–5 participants per group.
Briefly, the SMART group focused on selective attention, abstract rea-
soning, and other thinking strategies (Vas et al., 2011). The BHW group
focused on information about brain structure and function and the ef-
fects of sleep and exercise on the brain performance (Binder et al.,
2008). More specifically, the SMART participants were trained to (1)
manage information by blocking distractions and irrelevant informa-
tion, along with avoiding multitasking, (2) increase the ability to un-
derstand overall ideas and actionable messages from information, and
(3) examine information from divergent perspectives. This set of stra-
tegies was aimed at improving cognitive control over incoming in-
formation. The SMART strategies were introduced using slides by one of
two trained clinicians. Each of the strategies were sequentially in-
troduced while these were reinforced throughout the training sessions.
Example materials that were used in order to practice the learned
strategies include newspaper articles and audio-video clips. The BHW
participants learned about brain anatomy, brain function, the effects of
a TBI on cognitive function, neuroplasticity, and the impact of diet,
physical exercise, sleep, and social activities on brain health through
slides led by one of the clinicians. The participants were also en-
couraged to discuss the application of learned information to their daily
lives. The number of participants was equivalent in each training ses-
sion to control for the effects of social activities on training outcomes.

Both training programs were conducted at The University of Texas at
Dallas Center for BrainHealth®. Refer to our previous study (Vas et al.,
2016) for more detailed descriptions of the SMART and BHW programs.

2.3. Neuropsychological assessments

We selected a subset of tests from the full testing battery (Krawczyk
et al., 2013). The selected tests are relevant to performance of executive
functions and showed training-induced improvement (Vas et al., 2016).
These tests include card-sorting and trail-making from the Delis-Kaplan
Executive Function System (D-KEFS) for problem solving and proces-
sing speed (Delis et al., 2001). From the card-sorting test, we selected
correct sorts and description scores during free sorting and description
scores during sort recognition. From the trail-making test, we selected
scores on number-letter switching versus motor speed. As the three
selected scores from the card sorting test were highly correlated, we
obtained composite scores by averaging the sub-scores.

To determine the efficacy of training compared to healthy in-
dividuals, we obtained scaled scores for the card-sorting and trail-
making tests from the D-KEFS manual (Delis et al., 2001) and assessed
these scaled scores by the types of training at each time point. Unlike
raw scores, the scaled scores allowed us to compare the neuropsycho-
logical performance of the participants relative to normative samples.
Specifically, at each assessed time point, we identified participants with
reduced neuropsychological performance relative to healthy in-
dividuals by counting the percentage and number of the participants
who performed below the average range of the normative samples (less
than scaled scores of 7; lower than one standard deviation from the
mean).

In addition, we acquired full scale intelligent quotient-2 (FSIQ-2)
from the Wechsler Abbreviated Scale of Intelligence for estimated
current IQ (Wechsler, 1999) and FSIQ from the Wechsler Test of Adult
Reading for estimated premorbid IQ (Wechsler, 2001). While the par-
ticipants did not have clinically significant psychiatric conditions, in-
dividuals with TBI often have some degree of non-clinically significant
psychiatric symptoms (Ashman et al., 2004; Hibbard et al., 1998; van
Reekum et al., 1996). Thus, for more thorough characterization of the
participants, we quantified subclinical-but-residual depressive and post-
traumatic stress disorder (PTSD) symptoms severity of the participants
by measuring the Beck Depression Inventory-II (BDI-II; Beck et al.,
1996) and PTSD Check List Stressor-specific (PCL-S; Weathers et al.,
1993). Note that, unlike carding-sorting and trail-making tests, BDI-II
and PCL were not primary measures of interest to identify differential
effects of training.

2.4. MRI data acquisition

We acquired MRI scans of the participants at three time points: prior to
training (TP1), after training (TP2) and 3months later (TP3). The partici-
pants underwent MRI scans in a Philips Achieva 3T scanner (Philips
Medical Systems, Netherlands) in the Advanced Imaging Research Center
at the University of Texas Southwestern Medical Center. In each imaging
session, T1-weighted sagittal Magnetization Prepared Rapid Acquisition
Gradient Echo (MPRAGE) images were acquired using a standard 32-
channel head coil (Repetition Time (TR)/Echo Time (TE)=8.1/3.7m;
Flip Angle (FA)=12°; Field of View (FOV)=25.6×25.6 cm; ma-
trix=256×256; 160 slices, 1.0mm thick). In this imaging session, either
one or two 416-s runs of rsfMRI scans were also acquired using the same
head coil with T2⁎-weighted image sequence (TR/TE=2000/30ms;
FA=80°; FOV=22.0×22.0 cm; matrix=64×64; 37 slices, 4.0mm
thick). The total number of rsfcMRI runs differed across the participants
because, at the early stage of our study, we observed that the quality as-
surance (QA) procedures with only one rsfMRI run yielded high rates of
participant exclusion. Thus, we additionally acquired two rsfMRI runs for
the remainder of the data collection. Refer to the rsfMRI data analysis
section for our strategy to account for differences in total number of

Table 1
Participant demographics by group after quality assurance procedures.

Demographics SMART BHW p-Values

Number of subjects 26 30 –
Gender (male, female) 16, 10 19, 11 >0.1
Civilians, Veterans 17, 9 18, 12 >0.1
Age (years)a 40.5 ± 14.0 42.8 ± 12.4 >0.1
Education (years)a 15.5 ± 2.2 15.9 ± 2.2 >0.1
Current IQ 108.4 ± 11.6 111.3 ± 10.0 >0.1
Premorbid IQ 108.5 ± 9.6 111.6 ± 8.2 >0.1
BDI-IIb 23.3 ± 9.3 18.5 ± 12.6 >0.1
PCL-Sb 46.4 ± 16.5 46.5 ± 19.0 >0.1
Post-injury time (years)a 8.1 ± 9.0 10.4 ± 9.6 >0.1
Primary cause of injury (blast, blunt

force trauma, fall, athletic
impacts, vehicle accidents,
combined)

5, 2, 2, 8, 7, 2 5, 6, 5, 5, 7, 2 >0.1

Note: SMART, Strategic Memory Advanced Reasoning Training; BHW, Brain Health
Workshop; IQ, Intelligent Quotient; BDI-II, Beck Depression Inventory-II; PCL-S, Post-
traumatic Stress Disorder Check List Stressor-specific.

a Mean and standard deviation values were reported.
b None of the participants were clinically diagnosed with depression or PTSD.
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rsfMRI scans across the participants. During rsfMRI acquisition, the par-
ticipants were asked to remain still with their eyes closed.

2.5. RsfMRI preprocessing

We used AFNI (Cox, 1996) to preprocess rsfMRI data. Each subject's
structural images were first skull-stripped and registered to the Mon-
treal Neurological Institute (MNI) space (Evans et al., 1993). For each
rsfMRI run, we discarded the initial four time points. Then we applied
despiking, slice timing correction, motion correction, coregistration to
the structural images in the MNI space using a single affine transform
with spatial resampling (4mm isotropic), normalization to whole brain
mode of 1000, and simultaneous band-pass filtering
(0.009 < f < 0.08 Hz) and linear regression. In the linear regression,
we 2nd order detrended the rsfMRI time-series and regressed out six
parameters for the rigid body head motion acquired from the motion
correction, the signal averaged over the lateral ventricles and deep
cerebral white matter, respectively, the first temporal derivatives of all
these parameters (i.e., motion, ventricles, and white matter), and the
squared motion parameters. Further, we incorporated regressors for
bandpass filtering in this nuisance regression to prevent from re-
introducing high frequency oscillations into the rsfMRI signals
(Hallquist et al., 2013). To account for temporal autocorrelation of
rsfMRI signals, we also applied the pre-whitening procedure during the
nuisance regression (Bright et al., 2017). To reduce motion-related
confounds (Scheinost et al., 2014), we iteratively smoothed the re-
maining rsfMRI signals until the smoothness of image reached at 12mm
full-with-at-half-maximum (FWHM) using AFNI's 3dBlutToFWHM with
the spatial autocorrelation function (ACF) option. We chose this
smoothness level because 12mm FWHM with ACF option was close to
the minimum smoothness of rsfMRI signals across scans when con-
ventional a 6mm FWHM Gaussian kernel smoothing was applied. This
uniform smoothing procedure was shown to control the effects of
subject motion during scanning without removing high-motion time-
frames (Scheinost et al., 2014). See the Control analyses section to
confirm whether the uniform smoothing procedure controlled for mo-
tion-related effects. If two rsfMRI runs were acquired, we selected one
of the two preprocessed rsfMRI runs which had less amount of head
motion, measured by frame-wise displacement (FD; Power et al., 2012).

2.6. Seed-based connectivity analysis

We identified cingulo-opercular and fronto-parietal networks con-
nectivity by seeding a 5mm radius sphere at each of the five cingulo-
opercular network regions predominantly associated with set-main-
tenance control signal and the eight fronto-parietal network regions
predominantly associated with start cue-related control signal
(Dosenbach et al., 2007, 2008). The five cingulo-opercular network
seeds included the bilateral aI/fO (L: −35, 14, 5; R: 36, 16, 4), bilateral
aPFC (L: −28, 51, 15; R: 27, 50, 23), and dACC (−1, 10, 46). The eight
seeds of the fronto-parietal network include the bilateral dFC (L: −41,
3, 36; R: 41, 3, 36), left dlPFC (−43, 22, 34), bilateral IPS (L: −31,
−59, 42; R: 30, −61, 39), mCC (0, −29, 30), and bilateral PCUN (L:
−9, −72, 37; R: 10, −69, 39). These seed locations were obtained
from a previous study (Dosenbach et al., 2007). See Fig. 1 for locations
of the seeds within the brain. For each seed, Pearson correlation maps
were then Fisher's Z-transformed to improve the normality of correla-
tions, followed by scaling to z-scores (i.e., normal distributions with
zero mean and unit variance) for presentation purpose. Note that the
scaling factor was same across all scans due to the same number for
frames, which mathematically did not change the results when only the
Fisher's Z-transformation was utilized.

To identify patterns of training-related changes in cingulo-opercular
and fronto-parietal networks connectivity, we performed the linear
mixed-effects model (LME; Bernal-Rusiel et al., 2013) analysis at each
of the voxels using the LME MATLAB toolbox. We used the LME

MATLAB toolbox (as opposed to AFNI's 3dLME) because the LME
MATLAB toolbox enabled us to run LME analyses on the MRI data and
neuropsychological assessment scores (3dLME does not have this cap-
ability). For this analysis we used a piece-wise linear model with a
break-point at the post-training time point, a randomly varying inter-
cept, and psychiatric symptom covariates for both within- and between-
subject components. We obtained psychiatric symptom severity by
averaging Z-scores for BDI and PCL-S as these measure were highly
correlated (r=0.69; p < 10−20) and the inclusion of both BDI and
PCL-S covariates could yield the multicollinearity problem in the LME
model. Although the participants did not have clinically significant
depressive or PTSD-related symptoms, we included psychiatric
symptom covariates as both training group showed statistically sig-
nificant reductions in BDI-II and PCL-S scores (Table S1; see the Control
analyses section for the effects of psychiatric symptom covariates).
Mathematically, connectivity of subject i at time point j, yij, can be
written as:

= + + − − + +

+ − − + + − + +

y t β β t β t t H t t β S β S t

β S t t H t t β P β P P b e

( ) · ·( )· ( ) · · ·

· ·( )· ( ) · ·( )

ij ij ij ij ij i i ij

i ij ij i ij i i ij

1 2 3 4 5

6 7 8

where tij is the time of measurement for subject i at time point j, t is an
average time of measurement at TP2, Si is an indicator function for the
SMART group for subject i, bi is a subject-specific intercept (con-
nectivity of subject i at TP1), Pi is the average psychiatric symptom
score for subject i, Pij is psychiatric symptom score for subject i at time
point j, eij is measurement error for subject i at time point j, and H(·) is
the Heaviside step function.

We performed subsequent statistical inferences for the within- and
between-group contrasts of connectivity at monotonic (H0: (y(TP2)− y
(TP1))+ (y(TP3)− y(TP2))= y(TP3)− y(TP1)= 0) and non-mono-
tonic (H0: (y(TP2)− y(TP1))+ (y(TP2)− y(TP3))= 0) changes over
the three time points. Refer to our previous study (Han et al., 2017) for
a graphical description of monotonic and non-monotonic changes. We
identified statistically significant training-induced temporal changes in
cingulo-opercular and fronto-parietal networks connectivity from the
between-group contrast over all time points at pvoxel < 0.001. A cor-
rection for multiple comparisons was applied across voxels by cluster
size using AFNI's 3dClustSim with the spatial ACF option (Cox et al.,
2017) at pcluster < 0.05 (minimum 12 voxels; 768mm3) with bi-sided
and faces or edges nearest neighbor clustering parameters. Cluster-size
was estimated using the average ACF parameters across rsFC scans (Cox
et al., 2017). The average effective FWHMs across scans obtained by the
spatial ACF method (AFNI's 3dFWHMx) were 11.82mm. Because of
criticism of cluster-based thresholding methods (Eklund et al., 2016),
we used the most recent version of AFNI to estimate spatial ACF using a
mixture model of Gaussian and mono-exponential functions, and we
selected cluster-forming level (i.e., pvoxel = 0.001) demonstrated to be
sufficient for controlling false positive rates (Cox et al., 2017). Local
peaks were identified when local minima and maxima of statistics of
between-group contrasts for changes over three time points were at
least 30 mm apart. To determine which group(s) led to such statistically
significant between-group differences, we then used the results of the
within-group contrasts to assess changes over all three time points. If
the corrected version of the within-group contrast results did not clearly
reveal which group(s) led to the observed between-group differences,
we performed a further assessment using an uncorrected version
(pvoxel < 0.001) of the within-group contrast results.

Further, we identified whether training-induced changes in con-
nectivity occurred within the regions where seed-based connectivity
had already been established at the chronic stage of TBI, or in other
regions where cognitive control networks might have been disrupted
after TBI. Specifically, for each seed, we obtained a map of the surface
overlap with baseline seed-based connectivity, indicating within which
regions the between-group contrast for temporal changes in con-
nectivity fell within or outside the baseline seed-based connectivity. We
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obtained the baseline connectivity using a contrast for baseline con-
nectivity over both groups (i.e., H0: y(TP1) for SMART=0 and y(TP1)
for BHW=0) in the above LME model.

Lastly, we assessed the patterns of training-induced changes in
connectivity from the perspective of large-scale networks, often de-
scribed in the resting-state functional connectivity literature. First, we
obtained surface-wise union maps of group contrasts for temporal
changes in seed-based connectivity within the cingulo-opercular and
fronto-parietal networks, respectively. We then obtained the over-
lapping regions with changes in the two cognitive control networks
over the cerebral cortex. Subsequently, we qualitatively identified
network affiliations of the overlapping regions according to the Yeo
atlas of large-scale resting-state networks (Yeo et al., 2011). We further
quantified the network affiliations of the regions with changes in the
two cognitive control networks by counting the number of voxels
showing statistically significant changes in each seed-based con-
nectivity according to resting-state networks. Lastly, we aggregated
these voxel counts across the seeds.

2.7. Assessment of brain—behavior relationships

To identify whether cingulo-opercular and fronto-parietal networks
connectivity were associated with neuropsychological test performance
over three time points, we selected neuropsychological tests of interest,
which showed prominent group differences in performance over time
(see the Results section). Then we additionally included within-subject
and between-subject covariates of these selected test scores in the LME
model. Note that we adjusted for age, years of education, and psy-
chiatric symptom severity scores before we included the within- and
between-subject covariates in the revised LME model to prevent po-
tential effects of these measures on neuropsychological test scores.
Statistically significant associations (1) between changes in cingulo-
opercular and fronto-parietal networks connectivity and improvement
in neuropsychological test scores (i.e., within-subject covariate) and (2)
between the average connectivity over time and the average neu-
ropsychological test scores (i.e., between-subject covariate) were re-
spectively identified at pvoxel < 0.001, pcluster < 0.05 (minimum 14

voxels; 896mm3) with one-sided and faces or edges nearest neighbor
clustering parameters. Note that, in this analysis, we performed one-
sided hypothesis test (i.e., positive association) as the SMART group
showed both improvement in neuropsychological scores and increases
in connectivity over time.

2.8. Quality assurance

We visually inspected structural MRI scans to ensure that subjects
had no significant brain atrophy. In rsfMRI preprocessing, the quality of
the preprocessed data was visually inspected at each step. After pre-
processing, we excluded rsfMRI scans with the average FD over
time>0.5mm (Power et al., 2012). We also ensured that there were no
MRI scans or neuropsychological measures that were acquired too late
(i.e., outside the two-standard-deviation band from the mean) for all
time points. Lastly, we excluded MRI scans from the LME analysis when
corresponding BDI scores were not available. See Table 2 for the
number of MRI scans after the QA procedure.

2.9. Statistical analyses

All statistical analyses were conducted in MATLAB R2013a. First,
we performed the Shapiro-Wilk test at α=0.05 to assess the normality
of distributions of each group's demographics (age, years of education,
post-injury time, current IQs, and premorbid IQs). Age, years of edu-
cation, and post-injury time did not pass the Shapiro-Wilk normality
test. Thus, the Mann-Whitney U test was used to compare these de-
mographics between the groups. We performed t-tests to compare
current and premorbid IQs between the groups. The Fisher's exact test
was used to compare the gender distributions and proportion of civi-
lians and veterans between the groups. The likelihood ratio chi-square
test was used to compare the distribution of primary cause of injury
between the groups. Similar to the longitudinal analysis of rsFC, we
used the LME MATLAB toolbox (Bernal-Rusiel et al., 2013) to perform
the LME analysis on the other neuropsychological measures using a
piece-wise linear model with a break-point at TP2, and a randomly
varying intercept. We included years of education, estimated current
IQ, and psychiatric symptom severity covariates for age-adjusted scores
of the card sorting test and trail making test in these analyses. The age,
years of education, and estimated current IQ covariates were not in-
cluded for BDI-II and PCL-S, as we did not expect the effects of age,
years of education, and estimated current IQ on BDI-II and PCL-S scores.
We confirmed that there were no statistically significant effects of age
and years of education, and estimated current IQ on these measures.

2.10. Control analyses

2.10.1. Motion analysis
To identify whether there were systematic differences in subjects

head motion during rsfMRI scans, we performed LME analyses on the
average FD of each scan. We also performed the LME analysis on con-
nectivity with additional covariates for FD (van Dijk et al., 2012) to

Fig. 1. Seed locations. Black and yellow circles represent seeds for the cingulo-opercular network and fronto-parietal network, respectively. aI/fO, anterior insula/frontal operculum;
aPFC, anterior prefrontal cortex; dACC, dorsal anterior cingulate cortex; dFC, dorsal frontal cortex; dlPFC, dorsolateral prefrontal cortex; IPS; intraparietal sulcus; mCC, middle cingulate
cortex; PCUN, precuneus; L, left; R, right.

Table 2
The number and timing of neuropsychological assessments and MRI scans per time point
by group.

Data type Time
point

SMART BHW Weeks from
baseline

Neuropsychological
assessments

TP1 26 30 –
TP2 25 25 8.8 ± 0.8
TP3 19 24 18.0 ± 1.5

Resting-state fMRI scansa TP1 20 21 –
TP2 20 19 8.7 ± 0.7
TP3 14 15 20.6 ± 1.4

Note: TP1, Prior to training; TP2, After training; TP3, 3months later.
a Only MRI scans that passed the quality assurance procedures were reported. 21 and

24 participants for SMART and BHW, respectively.
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confirm the uniform smoothing procedure effectively controlled for
head motion during rsfMRI scans.

2.10.2. Assessment of the effects of injury characteristics on connectivity
We assessed the effects of residual depressive symptoms severity on

our findings, we performed the LME analysis without covariates for
residual psychiatric symptom severity and obtained between-group
contrasts for changes in connectivity over time. To identify potential
effects of diverse post-injury time on our findings, we included a cov-
ariate for post-injury time in the LME analysis and obtained between-
group contrast for changes in connectivity over time.

2.10.3. Assessment of the subsets of the participants
To identify whether there were potential biases in subject attrition

present in our findings, we performed the LME analysis on the parti-
cipants who underwent MRI scans at all three time points. To confirm
that the patterns of improvement in neuropsychological performance
were retained for the participants who underwent MRI scans, we also
performed the LME analysis on neuropsychological measures of the
subset of the participants.

2.11. Visualization

The thresholded volumetric statistical results for cingulo-opercular
and fronto-parietal networks connectivity and covariate analyses were
surface-projected onto the cortical surface of the Conte69 human sur-
face-based atlas (van Essen et al., 2012) using a multi-fiducial mapping
that avoids the biases of choosing a cortical surface from a single-in-
dividual as an atlas target, implemented in Caret Software (van Essen
et al., 2001).

3. Results

3.1. Demographics

All participants were at a long-term chronic phase of TBI (ap-
proximately 9 years post-injury time on average). There were no sta-
tistically significant group differences in demographics at α=0.05
(Table 1).

3.2. Neuropsychological measures

The average times of assessments at TP2 and TP3 were 9 and
18 weeks from the baseline, respectively (Table 2). Interactions with
current IQ were statistically significant (p < 0.01) for the card-sorting
scores and marginally significant (p=0.08) for the trail-making scores.
The SMART group showed improvements in both card-sorting and trail-
making scores, whereas the BHW group showed improvement only in
the card-sorting scores (Table S2). Such within-group changes yielded a
statistically significant (p=0.04) group difference in training-induced
changes over time only in trail making scores (Fig. 2; Table 3). There
were no statistically significant group differences in BDI-II and PCL-S
scores over time though both groups showed statistically significant
reductions in these scores over time (Table S1). The percentage of the
participants who underwent SMART and performed poorly relative to a
normative sample was decreased from 27% at TP1 to 0% at TP3, in-
dicating that all participants for SMART at TP3 performed the neu-
ropsychological tests at a level comparable to healthy individuals
(Fig. 2C–D). In contrast, the BHW group retained the participants with
reduced performance across the time points.

3.3. RsfMRI analysis results

3.3.1. Individual seed-based connectivity
The average timing of rsfMRI scan acquisition at TP2 and TP3 were 9

and 21weeks from the baseline, respectively (Table 2). The number of

rsfMRI scans within each group per time point by civilians versus ve-
terans and primary cause of injury are summarized in Tables S3, S4.
Relative to the BHW group, the SMART group showed statistically
significant (pvoxel < 0.001, pcluster < 0.05) monotonic increases in
cingulo-opercular network connectivity with R aI/fO seed, and fronto-
parietal network connectivity with R dFC, L dlPFC, L IPS, R IPS, mCC, L
PCUN, and R PCUN seeds, respectively (Fig. 3; Table S5).

The directionality of change should be noted, as either the SMART
or BHW group can drive between-group differences. Although the
within-group differences in temporal changes in cingulo-opercular and
fronto-parietal networks connectivity at pvoxel < 0.001 and
pcluster < 0.05 demonstrate that the observed between-group differ-
ences were partially attributable to increases in connectivity within the
SMART group (Fig. 4), it was not sufficient to reveal which group drove
the between-group differences within all of the identified regions
shown in Fig. 3. Color maps for within- and between- group contrasts,
uncorrected for multiple comparisons (pvoxel < 0.001; Figs. S1–S3)
aided which group led to the observed group differences (i.e., Fig. 3).
Surface maps for between-group contrast for connectivity changes ac-
cording to the patterns of within-group changes (Fig. 5) clarified that
the SMART group contributed predominantly to the observed group
differences except in connectivity with the dLPFC and L IPS seeds. See
Table S5 for more detailed information on temporal change patterns.

Color maps plotting the surface overlap of temporal changes in seed-
based connectivity with the corresponding baseline seed-based con-
nectivity revealed that SMART increased seed-based connectivity pri-
marily within the regions where connectivity had already been estab-
lished at baseline (Fig. 6). Though the brain regions where connectivity
changes occurred within and outside baseline connectivity with the R
aI/fO, R IPS, L PRECUN, and R PCUN seeds were spatially adjacent to
each other, reductions in cognitive control networks connectivity in
chronic TBI have been reported previously (Han et al., 2016). Similarly,
though training-induced increases in connectivity with R dFC occurred
outside baseline connectivity, in a previous study (Han et al., 2016) we
identified reductions in connectivity between the cognitive control
networks and default mode network in chronic TBI. Taken together, the
brain regions in which connectivity changes occurred outside baseline
connectivity in chronic TBI may fall within the connected regions pre-
sent in healthy individuals.

3.3.2. Aggregated results
Composite foci maps for the observed changes in connectivity fol-

lowing training revealed that training-induced increases in connectivity
across multiple seed regions were prominent in the bilateral middle
temporal complex and subcentral gyrus; left superior temporal gyrus
and ventrolateral prefrontal cortex (Fig. 7A). Surface maps for con-
nectivity overlap across seeds (Fig. 7B) further quantified that changes
in connectivity overlapped up to 3 seeds. This illustrates the complex
and unique patterns of training-induced changes in connectivity across
seeds in individuals with TBI. The region where increases in con-
nectivity occurred with both cognitive control networks (i.e., the left
ventrolateral prefrontal cortex) corresponded to the default mode net-
work (Fig. 7C–D). Increases in connectivity only with the cingulo-op-
ercular network occurred in the subcortical regions (Fig. 7C). Similarly,
the most of the regions that showed increases in connectivity only with
the fronto-parietal network belonged to the visual, somatomotor, dorsal
attention, and default networks (Fig. 7C–D). The voxel counts with
statistically significant increases in connectivity according to large-
scale resting-networks revealed that the distributions of these voxel
counts differed across the seeds (Fig. 7E left). The aggregated counts of
these voxels across the assessed seeds indicated that increases in cog-
nitive control networks primarily occurred within the regions in the
visual, somatomotor and default mode networks, not within the cog-
nitive networks (Fig. 7E right).

K. Han et al. NeuroImage: Clinical 18 (2018) 262–278

267



3.4. Brain—behavior relationships

We observed statistically significant (pvoxel < 0.001,
pcluster < 0.05) associations of trail making scores with fronto-parietal
network connectivity within the SMART group (Figs. 8–9). Positive
association between the average L dlPFC connectivity over time and the
average trail-making scores over time occurred within the regions of the
default mode network (the posterior cingulate cortex; left dorsal pre-
frontal cortex; right angular gyrus) (Fig. 8). Positive associations in-
dicated that the SMART participants with higher average trail making
scores showed greater average L dlPFC connectivity with these regions.
Temporal increases in trail-making scores were associated with in-
creases in L dFC connectivity with the left angular gyrus within the

default mode network (Fig. 9). See Table 4 for the detail information on
these regions. Statistically significant associations between these two
measures did not occur within the BHW group. Scatter plots for con-
nectivity versus trail making test scores over time (Figs. 8–9) confirmed
the observed group analysis results.

3.5. Control analyses results

3.5.1. Motion analysis results
The LME analysis on the average FD of each scan indicated that

there were no systematic differences in subject motion between groups
and across time within each of the groups (Table S6). Between-group
differences in connectivity changes with FD covariates were consistent

0 2 4 6 8 10 12 14 16 18 20 22
Time (weeks)

Fig. 2. Neuropsychological assessment results. TP1, Prior to training; TP2, After training; TP3, 3 months later; SMART, Strategic Memory Advanced Reasoning Training; BHW, Brain
Health Workshop.

Table 3
Neuropsychological assessment results.

Neuropsychological measure SMART (N=26) BHW (N=30) p-Values

TP1 TP2 TP3 TP1 TP2 TP3 (M, NM)a

Card-sorting (SS) 9.8 ± 2.4 11.5 ± 2.2 11.8 ± 2.1 9.9 ± 2.8 11.7 ± 2.8 11.2 ± 3.2 >0.1,> 0.1
Trail-making (SS) 8.0 ± 2.6 9.8 ± 2.8 9.7 ± 1.9 8.7 ± 2.6 9.2 ± 2.7 8.5 ± 2.7 0.04⁎, > 0.1

Note: SS, scaled scores; M, monotonic; MN, non-monotonic. See Tables 1, 2 for other abbreviations.
a * represents p < 0.05.
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with main findings (Fig. S4), confirming that the uniform smoothing
procedure controlled for the effects of head motion during rsfMRI scans.

3.5.2. The effects of injury characteristics on connectivity
The LME analysis without covariates for residual psychiatric

symptom severity yielded slightly weaker group contrasts (Fig. S5),
compared to the group contrasts from the LME analysis with psychiatric

symptom covariates (Fig. S1) at pvoxel < 0.001. However, the overall
patterns were retained. The LME analysis with additional post-injury
time covariate essentially replicated our findings on between-group
contrasts for temporal changes in cingulo-opercular and fronto-parietal
networks connectivity, indicating no significant effects of post-injury
time on connectivity (Fig. S6).

Fig. 3. Between-group contrast maps for changes in connectivity over time. See Figs. 1, 2 for abbreviations.
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Fig. 4. Within-group contrast maps for changes in connectivity over time.
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3.5.3. Assessment results for the subsets of the participants
The between-group contrast for changes in connectivity of the

participants who underwent MRI scans at all time points (Fig. S7) was
consistent with the main findings. This analysis confirmed that there
was no systematic bias resulting from participant attrition.

Neuropsychological assessment results for the participants who under-
went MRI scans retained the patterns observed from the full sample,
though it was underpowered due to the limited sample size of the
subset (Table S7).

Monotonic changes over time (SMART vs BHW)
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Fig. 5. Colormaps for between-group contrast for temporal changes in connectivity according to the patterns of within-group changes.
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4. Discussion

We demonstrated changes in cingulo-opercular and fronto-parietal
networks connectivity of individuals with chronic mild TBI following
strategy-based cognitive training. We also identified the patterns of
connectivity that were associated with neuropsychological performance
over time. Our findings extend the rsfMRI literature on neuroplasticity
in adults with clinical conditions. We also provided evidence of

neuroplasticity in chronic TBI, isolating the patterns of brain responses
that are associated with cognitive training. A strength of our study is
the large sample size (N=45; 109 rsfMRI scans) for connectivity
analysis and comparisons with an active control group. Further, we
assessed group-by-time interaction effects, frequently considered to be
gold standard evidence for neural and behavioral changes following
intervention (Thomas and Baker, 2013).

The current study provided evidence for brain responses to

Fig. 6. Colormaps for temporal changes in connectivity relative to baseline connectivity.
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cognitive training for chronic TBI. Though several studies have reported
the efficacy of cognitive training for TBI (Cicerone et al., 2006), there
has been limited neuroscientific evidence for intervention-related ef-
fects on the brain. It is important to assess the effectiveness of TBI
training from the cognitive neuroscience perspective (Cicerone et al.,
2006; Kleim and Jones, 2008) given the pressing need for more re-
search that may allow reliable measures of treatment efficacy and op-
timizing the effectiveness of cognitive training for TBI (Frieden et al.,
2015). Brain regions comprising of the cingulo-opercular and fronto-
parietal networks in this study were obtained from the patterns of
sustained brain activity and start-cue-related activity during variety of
cognitive control fMRI tasks in healthy individuals, respectively
(Dosenbach et al., 2006). RsFC revealed that these brain regions were
functionally connected. During cognitive control processes, the cingulo-
opercular network is thought to be associated with the ability to
maintain relevant goals, and the fronto-parietal network is thought to

be associated with the ability to adjust goals (Dosenbach et al., 2007,
2008). Several studies demonstrated that abnormality in the cingulo-
opercular and fronto-parietal networks explains deficits to higher-order
cognitive functions in various clinical populations (Bonnelle et al.,
2012; Etkin et al., 2009; Jilka et al., 2014; Jolles et al., 2016; Sheffield
et al., 2015; Silk et al., 2008; Trujillo et al., 2015; Wu et al., 2016).
Taken together, our findings on increased cingulo-opercular and fronto-
parietal networks connectivity after cognitive training for TBI (Fig. 3)
highlight that previously impaired cognitive controls networks (i.e.,
cingulo-opercular network and fronto-parietal networks) by a TBI can
be influenced by training-related neuroplasticity.

Our findings demonstrate the sensitivity and specificity of rsFC in
assessing neuroplasticity following cognitive training for chronic TBI.
The heterogeneity of TBI and limited sensitivity of conventional mea-
sures are major challenges to identify TBI-related abnormalities and the
effects of cognitive training on the injured brain. As such, changes in

Fig. 7. Composite maps across seeds. A: Foci maps. B: Connectivity overlap across seeds, C: Colormaps for temporal changes in connectivity according to the cognitive control networks.
D: The Yeo atlas of large-scale resting-state networks (Yeo et al., 2011). E: The counts of voxels with statistically significant changes in connectivity according to the resting-state
networks. SCG, subcentral gyrus; vlPFC, ventrolateral prefrontal cortex; STG, superior temporal gyurs; MT+, middle temporal complex; VN, visual network; SMN, somatomotor network;
DAN, dorsal attention network; CON, cingulo-opercular network; LN, limbic network; FPN, fronto-parietal network; DMN, default mode network. See Fig. 1 for the other abbreviations.
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Fig. 8. Associations between the average L dlPFC connectivity and average scores of the trail making test over time. Top row: Colormaps for statistically significant associations between
the two measures. Other rows: Average L dlFPC connectivity versus average trail making scores within each of the clusters in the top row. Each colored triangle (circle) represents average
L dlPFC and trail making score of each individual from the SMART (BHW) group, and black symbol represents group-averaged trajectory in the regions. dPFC, dorsal prefrontal cortex;
AG, angular gyrus; PCC, posterior cingulate cortex. See Figs. 1, 2 for the other abbreviations.

K. Han et al. NeuroImage: Clinical 18 (2018) 262–278

274



neuropsychological performance following training may be difficult to
capture due to the low sensitivity (Table 3). However, we observed
statistically significant increases in rsFC following the SMART program
(Fig. 3) and these changes occurred primarily within the SMART group
(Figs. S2–3; Table S5) relative to the comparison BHW intervention.
Further, within the SMART group, spatial patterns of changes in con-
nectivity varied based upon seed locations (Fig. 3). Thus, our findings
suggest that rsFC may serve as an effective neuroimaging-based bio-
marker of responses to training for TBI.

From the perspective of large-scale resting-state networks, con-
nectivity changes after SMART primarily occurred at the level of be-
tween-network connectivity. Specifically, based on the Yeo atlas (Yeo
et al., 2011), changes in the cingulo-opercular network primarily oc-
curred between connectivity with the default mode network (Fig. 7).
Similarly, changes in the fronto-parietal network connectivity primarily
occurred in association with the visual, somatomotor, and default mode
networks (Fig. 7). Interactions between brain networks are critical for
successful cognitive control processes due to the diverse nature of
control processes drawing from neural resources across the brain
(Cocchi et al., 2013). Supporting this claim, a previous study reported
interactions between the cingulo-opercular network and other brain
regions during tasks involving other cognitive functions such as vi-
suospatial attention and episodic memory (Sestieri et al., 2014). Fur-
ther, network analyses of brain imaging data across 77 cognitive tasks
from healthy individuals demonstrated that activity in brain regions of

between-module connections increased when more cognitive compo-
nents were engaged in a task. This indicates the importance of between-
network connectivity for assessing “higher-order” cognitive functions
(Bertolero et al., 2015). Individuals with TBI often show deficits in
“higher-order” cognitive functions that require the integration of in-
formation across the brain (Sharp et al., 2014). Network analyses fur-
ther revealed that TBI markedly disrupts between-network con-
nectivity, yielding reduced efficiency of information processing (Han
et al., 2014, 2016). Taken together, increased between-network con-
nectivity with the cingulo-opercular and fronto-parietal networks fol-
lowing SMART for TBI may indicate improved integration of informa-
tion processing for higher-level cognitive functions.

The increases in cingulo-opercular and fronto-parietal networks
connectivity after SMART align with previous literature on rsFC plas-
ticity following training. A recent literature review suggests that
training and practice strengthen functional connections between brain
regions, as a majority of the previous studies reported increases in rsFC
after training (Kelly and Castellanos, 2014). In the context of TBI,
overall reductions in between-network connectivity after TBI have been
reported (Han et al., 2014, 2016) although the directionality of al-
terations in connectivity over the whole brain after a TBI is arguable.
Thus, increases in between-network connectivity after training for TBI
were not surprising. Positive associations between fronto-parietal net-
work connectivity and card-sorting test performance over time within
the SMART group (Figs. 8–9) further supported the directionality of

Fig. 9. Associations between temporal changes in the trail making scores and changes in connectivity with L dFC. Top row: Colormaps for statistically significant associations between the
two measures. Bottom row: Trajectories of each individuals (colored line) and group average (black line). See Figs. 1, 2, 8 for the other abbreviations.

Table 4
Regions showing statistically significant associations between connectivity and neuropsychological test scores within the SMART group (pvoxel < 0.001; pcluster < 0.05).

# Neuropsychological measure vs connectivity Region Major cluster pvox x y z

1 Average trail-making scores vs average L dlPFC connectivity L Dorsal prefrontal cortex 1 (23 voxels) < 10−5 −18 42 38
2 R Angular gyrus 2 (22 voxels) < 10−4 58 −62 30
3 Posterior cingulate cortex 3 (18 voxels) < 10−4 −6 −50 26
4 Δtrail-making scores vs ΔL dFC connectivity L Angular gyrus 4 (17 voxels) < 10−4 −50 −66 46

Note: See Fig. 1 for abbreviations and details.
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connectivity changes. Though the underlying biological mechanisms of
increased cingulo-opercular and fronto-parietal networks connectivity
after SMART for TBI remain unclear (potential mechanisms are dis-
cussed elsewhere (Tardif et al., 2016; Taubert et al., 2011)), our find-
ings suggest that such increased rsFC with the cingulo-opercular and
fronto-parietal networks may indicate improved neural network effi-
ciency supporting cognitive control.

Regarding brain-behavior relationships, associations between the
trail-making test scores and cognitive control networks (Figs. 8–9) oc-
curred within the regions of the default mode network (i.e., angular
gyrus and posterior cingulate cortex; the left dorsal prefrontal cortex).
Trail-making involves a combination of working memory, task-
switching and visuoperceptual abilities (Sánchez-Cubillo et al., 2009),
indicating that cognitive control is an essential construct involved in
successfully coordinating abilities to achieve better performance. Thus,
it was not surprising to observe correlations between the trail-making
scores and fronto-parietal network connectivity within the SMART
group. The majority of these correlations occurred in the regions where
the fronto-parietal and default mode networks interact. Though an
antagonistic relationship between the fronto-parietal and default net-
works has frequently been described, recent reports have challenged
this view. Recent studies have demonstrated that interactions between
the fronto-parietal and default mode network activity support goal-di-
rected cognition (Spreng et al., 2010, 2014) and individuals with
greater cooperation between the fronto-parietal and default mode
networks showed faster reaction times during a goal-directed re-
collection task (Fornito et al., 2012). Further, positive correlations be-
tween the default mode network connectivity and trail-making scores in
patients with mild TBI have been reported (Zhou et al., 2012). A few
studies have reported brain activity within the regions of the fronto-
parietal network during fMRI versions of the trail-making test (Moll
et al., 2002; Zakzanis et al., 2005). Taken together, the observed brain-
behavior relationship was relevant to findings in previous studies.

The present study has some limitations. First, we did not directly
compare the cognitive control network connectivity of the participants
with a healthy control group. As such, we were not able to establish
how close the patterns of cognitive networks were to those of healthy
individuals after training. However, we confirmed that the TBI parti-
cipants who initially performed poorly on neuropsychological perfor-
mance reached the level of healthy individuals after SMART based on
scaled scores (Fig. 2C–D). Thus, the study does demonstrate the efficacy
of cognitive training for TBI despite of this limitation. Second, the at-
trition rate was relatively high (total number of available rsfMRI scans
was 109 instead of 135). This is a typical limitation of on-site cognitive
training in this population, as participants required a substantial com-
mitment to attend multiple training sessions for 8 weeks. We performed
additional analyses to confirm that participant attrition did not bias our
main findings (Fig. S7). Nonetheless, the findings would be more con-
vincing if we had achieved a lower attrition rate. Third, the effects of
SMART on connectivity among large-scale networks other than cogni-
tive control networks are still unknown. Though the cingulo-opercular
and fronto-parietal networks would be the most relevant network to
assessed training program, SMART is an integrative training that aims
to multiple domains of cognitive functions such as abstract reasoning,
selective attention, and cognitive control (Vas et al., 2011). We em-
ployed the integrated training program for this study because the best
evidence for improvements in broad health-related outcomes are pro-
vided by studies in comprehensive cognitive training (Cicerone et al.,
2011). Thus, it is possible that the SMART could induce changes be-
tween other resting networks in these individuals. In this future, sys-
tematic assessment of several resting-state networks over the whole
brain would be informative in this regard. Lastly, the interpretation of
the current finding regarding increased connectivity of cognitive con-
trol networks with other large-scale resting-state networks is less
straightforward than changes in connectivity within cognitive control
networks. However, cognitive control networks are connected with

multiple large-scale resting-networks (Dosenbach et al., 2006, 2007)
due to their role in coordinating multiple cognitive processing (i.e.,
cognitive control). Based on resting-state functional connectivity alone,
it is difficult to precisely interpret changes in connectivity between
cognitive control networks and other networks. Although, the inter-
pretation of the observed changes in connectivity of cognitive control
networks with other large-scale resting-state networks is less straight-
forward, the findings are relevant in the context of TBI. As discussed
before, TBI markedly disrupts between-network connectivity compared
to within-network connectivity (Han et al., 2014, 2016) and between-
network connectivity plays a critical role in ‘higher-order’ cognitive
functions (Bertolero et al., 2015). The SMART program induced
changes in connectivity between cognitive control networks and other
large-scale resting-state networks, which was related to the disruption
patterns of connectivity in TBI. Nonetheless, a future study in task-state
functional connectivity of our participants would allow us to better
understand the implications of current findings in training-induced
functional connectivity.

In conclusion, we utilized resting-state functional connectivity to
elucidate neuroplasticity following cognitive training for chronic TBI.
Specifically, we demonstrated that strategy-based cognitive training led
to increases in connectivity with the cingulo-opercular and fronto-
parietal networks in individuals with chronic TBI relative to an in-
formation-based training group, even 3months after training was
completed. Our findings suggest that training-induced neuroplasticity
continues through the chronic phases of TBI, and resting-state func-
tional connectivity may be a potential neuroimaging biomarker for
evaluating cognitive training for chronic TBI linked to improved cog-
nitive control.
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