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a b s t r a c t

Lactobacillus delbrueckii subsp. lactis is employed in the production
of various types of cheese. Here, we report the complete genome
sequence of L. lactis ACA-DC 178 isolated from Greek Kasseri
cheese. The chromosome of ACA-DC 178 contains 2,050,316 bp
with a GC content of 49.6%. A total of 2,112 genes were identified in
the genome sequence including 1,752 protein-coding genes, 239
putative pseudogenes, 94 tRNA and 27 rRNA genes. According to
the COG annotation, about 80% of the protein-coding genes (1,417
proteins) were assigned to at least one functional category.
Approximately the 1/3 of these proteins were distributed among
three categories, namely replication, recombination and repair
(category L: 10.6%), translation, ribosomal structure and biogenesis
(category J: 7.5%) and amino acid transport and metabolism
(category E: 7.2%). Fourteen integrated GIs with a total of 159 genes
were found in ACA-DC 178 genome. Several of these genes encode
proteins associated with exopolysaccharide biosynthesis, amino
acid transport and subunits of restriction-modification systems.
One large CRISPR array of 3,197 bp containing 52 spacers, several
of which are identical to phage sequences having hosts in the
genus Lactobacillus, was also identified. The annotated genome
sequence of L. lactis ACA-DC 178 is deposited at the European
adimitriou).
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1. Data

In this study, we present the complete genome sequence of L. lactis ACA-DC 178 isolated from Greek
Kasseri cheese [1,2]. The L. delbrueckii species consists of six subspecies, including Lactobacillus del-
brueckii subsp. bulgaricus, Lactobacillus delbrueckii subsp. lactis, Lactobacillus delbrueckii subsp. del-
brueckii, Lactobacillus delbrueckii subsp. indicus, Lactobacillus delbrueckii subsp. sunkii and Lactobacillus
delbrueckii subsp. jakobsenii [3,4]. L. lactis is the second subspecies used as a starter in the dairy in-
dustry along with L. bulgaricuswithin the L. delbrueckii species [3]. The in silico assembly of the ACA-DC
178 chromosome was validated against a NheI whole-genome optical map of the strain (Fig. 1). Our
assembly presented 100% matching between the NheI restriction sites of the optical map and the
relevant sites in our genome sequence in silico digested with the same enzyme. The genomewas found
to be 2,050,316 bpwith a GC content of 49.6%.Wewere able to annotate a total of 2,112 genes, including
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Fig. 1. Validation of the L. lactis ACA-DC 178 genome assembly. Alignment of the in silico genome assembly of L. lactis ACA-DC 178
(bottom) against a NheI whole-genome optical map of the strain (top).
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1,752 protein-coding genes, 239 putative pseudogenes, 94 tRNA and 27 rRNA genes (Fig. 2). Further
analysis revealed that about 80% of the protein-coding genes (1,417 proteins) could be assigned to at
least one Cluster of Orthologous Groups (COG) functional category. Most of these proteins (approxi-
mately 1/3) were distributed among three categories related to housekeeping processes, namely
replication, recombination and repair (category L: 10.6%), translation, ribosomal structure and
biogenesis (category J: 7.5%) and amino acid transport and metabolism (category E: 7.2%) (Table 1).
Additional features of the ACA-DC 178 included 14 integrated genomic islands (GIs; Fig. 3) and a
clustered regularly interspaced short palindromic repeats-CRISPR-associated (CRISPR-Cas) system
(Fig. 4). The GIs carry 159 genes some of which could be assigned to functions like exopolysaccharide
biosynthesis, amino acid transport and restriction-modification. The CRISPR array was relatively long,
consisting of 3,197 bp and 52 spacers. Detailed analysis of the spacers identified several segments of
phage sequences, which have hosts belonging to the Lactobacillus genus.
Fig. 2. Circular map of the L. lactis ACA-DC 178 genome. Each ring represents specific genomic features appearing from the periphery
to the centre of the map: Forward CDSs (blue); Reverse CDSs (red); Pseudogenes (black); tRNA (green); rRNA (orange); %GC plot; GC
skew.



Table 1
Distribution of L. lactis ACA-DC 178 proteins in COG categories.

COG Proteins % Description

Information storage and processing J 132 7.5 Translation, ribosomal structure and biogenesis
K 100 5.7 Transcription
L 186 10.6 Replication, recombination and repair

Cellular processes and signaling D 19 1.1 Cell cycle control, cell division, chromosome partitioning
M 91 5.2 Cell wall/membrane biogenesis
N 5 0.3 Cell motility
O 47 2.7 Posttranslational modification, protein turnover, chaperones
T 52 3.0 Signal transduction mechanisms
U 19 1.1 Intracellular trafficking and secretion
V 44 2.5 Defense mechanisms

Metabolism C 46 2.6 Energy production and conversion
E 127 7.2 Amino acid transport and metabolism
F 67 3.8 Nucleotide transport and metabolism
G 102 5.8 Carbohydrate transport and metabolism
H 30 1.7 Coenzyme transport and metabolism
I 32 1.8 Lipid transport and metabolism
P 73 4.2 Inorganic ion transport and metabolism
Q 3 0.2 Secondary metabolites biosynthesis, transport and catabolism

Poorly characterized S 262 15.0 Function unknown
e e 335 19.1 Not in COGs

Fig. 3. Circular map of the L. lactis ACA-DC 178 genome. Highlighted regions correspond to GIs. GIs are colored within the circular
map according to the prediction method used: green, orange and blue were predicted by IslandPick, SIGI-HMM and IslandPath-
DIMOB, respectively. The integrated GIs are presented on the periphery in red. The black line plot represents the GC content (%)
of the genomic sequence.
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2. Experimental design, materials, and methods

L. lactis ACA-DC 178 was grown overnight in MRS broth (Merck, Darmstadt, Germany) at 30 οC. DNA
was extracted according to a previously published protocol [5]. The genome was sequenced at the
Beijing Genomics Institute (BGI Co., Ltd, Hong Kong) using the Illumina HiSeq 2000 platform (Illumina,



Fig. 4. Graphical presentation of the CRISPR-Cas system of L. lactis ACA-DC 178.
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CA) employing paired-end libraries of 500 bp, 2,000 bp and 6,000 bp. The assembly of reads with
SOAPdenovo v.2.04 [6] resulted in one circular chromosome that was verified against a NheI whole-
genome optical map of the strain [7] produced at Microbion SRL (Verona, Italy). The alignment be-
tween the assembly and the optical map was performed with the MapSolver software (OpGen Tech-
nologies, Inc., Madison, WI). The ACA-DC 178 genome sequence was analyzed using Prodigal [8],
MetaGeneAnnotator [9] and FGENESB [10] gene prediction programs. Genome annotation and pre-
diction of rRNA and tRNA genes was performed with RAST v.2.0 [11] and putative pseudogenes were
predicted with the GenePRIMP pipeline [12]. The results of the analysis were optimized with manual
curation. COG annotations were computed using eggNOG-mapper based on eggNOG v.4.5 orthology
database [13]. Further bioinformatic analysis was performed for the identification of GIs with Island-
Viewer 4 [14] and CRISPR with CRISPRFinder [15].
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