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The maintenance and function of tissues in health and disease depends on cell–
cell communication. This work shows how high-level features, representing cell–cell
communication, can be defined and used to associate certain signaling “axes” with
clinical outcomes. We generated a scaffold of cell–cell interactions and defined
a probabilistic method for creating per-patient weighted graphs based on gene
expression and cell deconvolution results. With this method, we generated over 9,000
graphs for The Cancer Genome Atlas (TCGA) patient samples, each representing
likely channels of intercellular communication in the tumor microenvironment (TME).
It was shown that cell–cell edges were strongly associated with disease severity
and progression, in terms of survival time and tumor stage. Within individual
tumor types, there are predominant cell types, and the collection of associated
edges were found to be predictive of clinical phenotypes. Additionally, genes
associated with differentially weighted edges were enriched in Gene Ontology terms
associated with tissue structure and immune response. Code, data, and notebooks
are provided to enable the application of this method to any expression dataset
(https://github.com/IlyaLab/Pan-Cancer-Cell-Cell-Comm-Net).

Keywords: systems biology, bioinformatics, computational oncology, immuno-oncology, cell communication,
networks

INTRODUCTION

The maintenance and function of tissues depends on cell–cell communication (Wilson et al., 2000;
Haass and Herlyn, 2005). While cell communication can take place through physically binding cell
membrane surface proteins, cells also release ligand molecules that diffuse and bind to receptors on
other cells (paracrine or endocrine), or even the same cell (autocrine), triggering a signaling cascade
that can potentially activate a gene regulatory program (Cameron and Kelvin, 2013; Heldin et al.,
2016; Cohen and Nelson, 2018). Cells communicate to coordinate activity, such as correctly (and
jointly) responding to environmental changes (Song et al., 2019). More generally, a message is sent
and received, transferring some information as part of a large network (Frankenstein et al., 2006).

Altered cellular communication can cause disease, and conversely diseases can alter
communication (Wei et al., 2004). Cancer, once thought of as purely a disease of genetics, is now
recognized as being enmeshed in complex cellular interactions within the tumor microenvironment

Frontiers in Genetics | www.frontiersin.org 1 August 2021 | Volume 12 | Article 667382

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.667382
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.667382
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.667382&domain=pdf&date_stamp=2021-08-27
https://www.frontiersin.org/articles/10.3389/fgene.2021.667382/full
https://github.com/IlyaLab/Pan-Cancer-Cell-Cell-Comm-Net
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-667382 August 23, 2021 Time: 14:53 # 2

Gibbs et al. Patient-Specific Cell Communication Networks

(TME; Trosko and Ruch, 1998). The cell–cell interactions
are shown to be important for cell differentiation, tumor
growth (West and Newton, 2019), and response to therapeutics
(Kumar et al., 2018).

One approach to studying cell interactions is through the use
of graphical models of communication networks (Morel et al.,
2017). By incorporating experimental data, the graphical models
can become quantitative, providing predictions that can be tested
and used in discovering novel drug targets and developing
optimal intervention strategies.

In recent work, Thorsson et al. (2018) developed a method
used to identify cellular communication networks. Given a set
of samples, the method identified ligands, receptors and cells
meeting certain criteria of abundance and concordance. The
method was applied in the identification of networks that play
a role within specific tumor types and molecular subtypes and is
available as a workflow and interactive module on the CRI-iAtlas
portal for immuno-oncology (Eddy et al., 2020).

In this work, multiple sources of data were integrated with a
new probabilistic method for constructing patient-specific cell–
cell communication networks (Figure 1). In total, we built
networks for 9,234 samples in The Cancer Genome Atlas
(TCGA), starting from a network of 64 cell types and 1,894
ligand-receptor pairs and we identified informative network
features that are associated with disease progression. The method
can be applied to any cancer type, but in this manuscript
we focus on a selection of cancer types with high mortality
rates, including pancreatic adenocarcinoma (PAAD), melanoma
(SKCM), lung squamous cell carcinoma (LUSC), and cancers
of the gastrointestinal tract (ESCA, STAD, COAD, and READ)
(Cancer Genome Atlas Network, 2015).

This represents a new method that provides information
on possible subtypes of intercellular signaling in the TME,
something that is currently lacking. While there are many
methods of gene set scoring, cellular abundance estimation, and
differential expression, there are still few ways to investigate cell–
cell communication diversity in the TME with respect to patient
outcomes. Fortunately, new databases of receptor-ligand pairs are
becoming available, making work in this area possible (Efremova
et al., 2019; Jin et al., 2020; Nath and Leier, 2020; Shao et al., 2020).
The methods, code, data, and complete results are available and
open to all researchers1.

MATERIALS AND METHODS

Data Aggregation and Integration
Data sources including TCGA and cell-sorted gene expression,
bulk tumor expression, cell type scores, cell–ligand and
cell–receptor presence estimations were used for network
construction and probabilistic weighting on a per-sample basis.

Each tumor sample is composed of a mixture of cell types
including tumor, immune, and stromal cells. Recently, methods
have been developed to “deconvolve” mixed samples into
estimated fractions of cell type quantities. xCell, a variation on

1https://github.com/IlyaLab/Pan-Cancer-Cell-Cell-Comm-Net

this theme, has gene set enrichment like scores available for
64 cell types across most TCGA samples (Aran et al., 2017).
While many cell deconvolution and scoring methods exist, xCell
provides a wide array of cell types including immune and
stromal cells that are not provided in other methods. xCell
uses six public cell sorted bulk gene expression data sets to
generate gene signatures and score each TCGA sample. In
practice, this means that each cell type has a set of genes
associated with it, a gene signature, which is used in producing
a numerical score related to the quantity of that cell type
in the sample. Across the primary data sets, there is some
discrepancy in cell type nomenclature, making it necessary to
manually curate cell type names to facilitate integration across
experiments (Supplementary Table 1). Typically, for a given cell
type, there are several replicate expression profiles, both within
and across data sets.

Regarding a map connecting cells via ligands and receptors,
Ramilowski et al. (2015) performed a comprehensive survey of
cellular communication, generating a compendium that includes
1,894 ligand-receptor pairs, a mapping between 144 cell types,
and expression of ligand or receptor molecules. The compendium
was shared via the 5th edition of the FANTOM Project,
FANTOM5. These ligand-receptor pairs were adopted for this
study. Unfortunately, the FANTOM5 collection of cell types does
not overlap well with cell types in xCell. In order to integrate
the xCell and FANTOM5 data resources, it was necessary to
determine the expressed ligands and receptors for each of the 64
cell types in xCell, using the source gene expression data.

Building the Cell-Cell Communication
Network Scaffold
In the FANTOM5 “draft of cellular communication,” an
expression threshold of 10 TPMs was used to link a
cell type to a ligand or receptor. When considering the
distribution of expression in the FANTOM5 project, 10 TPMs is
close to the median.

To construct our scaffold, we used a majority voting scheme
based on comparing expression levels to median levels. For each
cell type, paired with ligands and receptors, if the expression level
was greater than the median, it was counted as a vote (i.e., ligand
expressed in this cell type). If a ligand or receptor receives a
majority vote across all available data sources, it was accepted, and
entered into the cell–cell scaffold.

With this procedure, a network scaffold is induced, where cells
produce ligands that bind to receptors on receiving cells. One
edge in the network is composed of components cell–ligand–
receptor–cell. This produces a cell-cell communication network
with over 1M edges. Each edge represents a possible interaction
in the TME. We subsequently determine the probability that an
edge is active in a particular patient sample using a probabilistic
method described below.

Patient Level Cell-Cell Communication
Network Weights
With a cell–cell scaffold, expression values and cell type
scores per sample, we can produce a per-sample weighted
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FIGURE 1 | Overview of the workflow showing the transition from data sources to results.

cell–cell communication network (Figure 2). This is done
probabilistically, using the following definition:

P(ei) = P(la, cl) · P(rb, cr), (1)

where ei is edge i, la is ligand a, rb is receptor b, and cl and cr
are cells that can produce ligand a and receptor b, respectively.
P(ei) represents a probability that edge i is active based on the
premise that the physical and biochemical link and activation is
possible only if all the components are present, and that activity
becomes increasingly possible with greater availability of those
components. The joint probabilities can be decomposed into:

P(la, cl) = P(la | cl) P(cl) and

P(rb, cr) = P(rb | cr) P(cr) (2)

The P(clk) is short for CDF P(Cl < clk) which indicates the
probability that a randomly sampled value from the empirical Cl
distribution (over all 9K TCGA samples) would be less than the
cell estimate for cell type l, in sample k. To do this, for a given cell
type, using all samples available, an empirical distribution P(Cl)
is computed, and for any query, essentially using a value clk, the
probability can be found by integrating from 0 to clk.

To compute P(lak | clk) and P(rbk | crk), each Cl and Cr
distribution was divided into quartiles, and then (again using
the 9K samples) empirical gene expression distributions within
each quartile were fit. This expresses the probability that with an
observed cell quantity (thus within a quartile), the probability

that a randomly selected gene expression value (for gene la)
would be lower than what is observed in sample k.

We refer to “edge weights” to be the probability P(ei) as
shown in Eq. 1. To compute edge weights, each TCGA sample
was represented as a column vector of gene expression and a
column vector of cell quantities (or xCell scores). For each edge
in the scaffold (cell–ligand–receptor–cell), probabilities using the
defined empirical distributions based on sample values and then
taking products for the resulting edge weight probability. This
leads to over 9K tumor-specific weighted networks, one for each
TCGA participant.

Probability distributions were precomputed using the R
language empirical cumulative distribution function (ecdf). For
example, fitting P(CD8 T cells) is done by taking all available
estimates across the Pan-Cancer samples and computing the
ecdf. Then, for a sample k, we find P(Cl < clk) using the ecdf.
The same technique is used to find the conditional probability
functions, where for each gene, the expression values are selected
after binning samples using the R function “quantile,” and then
used to compute the ecdf. With all distributions precomputed,
9.8 billion joint probability functions were computed using an
HPC environment, then transferred to a Google BigQuery table
where analysis proceeded. This table of network weights was
structured so that each row contained one weight from one edge
and one tumor sample. Although being a large table of 9.8 billion
rows, taking nearly 500GB, BigQuery allows for fast analytical
queries that can produce statistics using a selection of standard
mathematical functions.
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FIGURE 2 | Illustration of the probabilistic model and edge weight computations. (A) For a given cell-cell communication edge, (B) per patient values are used to
“look up” probabilities from the distributions learned from all The Cancer Genome Atlas (TCGA) data. Those probabilities are then used to compute an edge weight.

Association of Network Features and
Survival-Based Phenotypes
As an initial examination of the interplay of cell communication
and disease, two proxies of disease severity were investigated:
progression-free interval (PFI) and tumor stage (Liu et al., 2018).
The staging variable used the American Joint Committee on
Cancer (AJCC) pathologic tumor stages. The PFI feature was
computed using days until a progression event. The staging
variable was binarized by binning stages I–II together (“early
stage”), and III–IV together (“late stage”). A binary PFI variable
was created by computing the median PFI on non-censored
samples and then applying the split to all samples. Both clinical
features were computed by tissue type (TCGA Study). As Liu et al.
writes, “The event time is the shortest period from the date of
initial diagnosis to the date of an event. The censored time is from
the date of initial diagnosis to the date of last contact or the date
of death without disease.”

For example, in LUSC, the median time to PFI event was
420 days (14 months) and in the censored group, 649 days
(21.1 months). After splitting samples at 420 days (14 months),
the short PFI group was composed of 67 uncensored samples and

128 censored samples. The long PFI group was composed of 68
uncensored samples and 234 censored samples.

A modified S1 statistic, a robust measure of differences, can be
used for comparing phenotypic groups (Babu et al., 1999; Yahaya
et al., 2004; Hubert et al., 2012; Ahad et al., 2016). The modified
forms of the S1 statistic are shown to better control type 1 errors.
Here, the statistic is calculated as

S1 =
∣∣sxy∣∣ (3)

sxy =
Mx −My√
ωx + ωy

ωx = b med |xp −Mx|

where Mx is the sample median of edges weights [P(ei) Eq. 1] for
a given edge ei in phenotypic group x, likewise for phenotypic
group y with My. ωx is defined as the median absolute deviation
(MAD) on edge weights, xp ∈ P(ei), for phenotypic group x, and
likewise for group y with ωy (see Figure 3). For b, the MAD
default constant of 1.4826 is used. The S1 statistic is defined
as the absolute value of sxy, but since we are interested in the
directionality of the value, we mostly are concerned with sxy,
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FIGURE 3 | Diagram of how the S1 statistic is calculated. Given two groups and one edge of interest, the statistic is generated using edge weights as input. For
each group, both the median and maximum absolute deviation of edge weights are calculated and used to compute the S1. The resulting robust statistic describes
the magnitude of difference between groups for one edge.

and use the absolute value when considering whether an edge
should be designated as “high value.” Since each edge is scored
this statistic allowed for cell–cell interactions to be ranked within
a defined context. Per tissue type S1 statistics were computed
using the ISB-CGC Cloud Resource. The implementation of the
statistic was written in BigQuery SQL and the results were again
saved to BigQuery tables to allow for further cloud-based analysis
and integration with underlying data.

A modified bootstrap procedure was used to judge the
magnitude of the statistic with respect to a random sample
(Figure 4). An ensemble of three edge-weight sample-pools were
sampled from existing values, each with 100K weights. Then,
for each member of the ensemble, 1 million S1 statistics were
generated using sample sizes that match the analyzed data. These
random S1 statistic distributions were used to compare to the
observed results. The random S1 distributions were close to
Normal with heavy tails (Supplementary Figure 1); the locations
were near zero but with varying scales (Supplementary Figure 3).
After combining resampled statistics across the ensemble, an edge
was designated as a high value edge if the absolute value S1 was
in the top 1 millionth percentile of the absolute value random S1
distribution. Each tissue and contrast (comparison between PFI
groups) generates a weighted subgraph of the starting scaffold,
which is retained for further analysis (e.g., a LUSC-PFI network).

Using high value edges, informative cell-cell interactions
that relate to disease progression were identified. To do this,
machine learning models were trained on binarized clinical data

as described with PFI and tumor stage as the response or target.
A matrix of patient-specific edge weight predictors for each
tissue was constructed. Classification of samples was performed
with XGBoost classifiers (Chen and Guestrin, 2016), which are
composed of an ensemble of tree classifiers. To avoid overfitting
the models, the tree depth was set at maximum of 2 and the early-
stopping parameter was set at 2 rounds (training was stopped
after the classification error did not improve on a test set for
two rounds). XGBoost provides methods for determining the
information gain of each feature in the model and was used to
rank edges that are most informative for classification.

Gene ontology (GO) term enrichment was performed using
the GONet tool (Pomaznoy et al., 2018). The set of 1,175 genes
in the cell-cell scaffold was used as the enrichment background.
GONet builds on the “goenrich” software package, which maps
genes onto terms and propagates them up the GO graph,
performs Fisher’s exact tests, and moderates results with FDR. To
compare the results, random collections of genes were generated
from the cell-cell scaffold and produced no significant results.

RESULTS

In the scaffold graph, a cell produces a ligand that binds a receptor
found on another cell type, which could make a single edge
“LCell–Ligand–Receptor–RCell.” In total, there were 1,062,718
cell–cell edges in the network. The number of expressed ligands
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FIGURE 4 | Diagram of the resampling procedure for calculating differentially weighted edges. Three sample pools of edge weights were taken from each tissue
source. Then matching the sample sizes for clinical features, edge weight samples were used in computing randomized S1 statistics. For each sample pool, tumor
type, and phenotype combination, 1 million statistics were produced, and the millionth percentile on combined statistics (3M total) was used as a cutoff in
determining important edges.

and receptors varied by cell type. For ligand-producing cells this
ranged from 32,910 for osteoblasts to 6,587 for Multi-Potent
Progenitor (MPPs). For receptor-producing cells, the range spans
from 30,225 for platelets to 5,763 edges for MPPs.

Applying the proposed probabilistic framework allowed for
the creation of 9,234 weighted networks. The edge weight
distributions generally follow approximately an exponentially
decreasing function (Supplementary Figure 1). There are few
edges with strong weights and many with near zero weights.

We first sought to find communication edges that were most
characteristic of an individual tumor type. The S1 statistics
comparing one tissue to all other tissue types was computed,
with a high score indicating a substantial difference in edge
weights between the two groups. Edges were found that clearly
delineated tissues (Figure 5). For example, in skin cutaneous
melanoma (SKCM), the top scoring edge is between melanocytes,
the usual cell of origin for cutaneous melanoma (Melanocytes-
MIA-CDH19-Melanocytes, S1 score 2.5, median edge weight 0.86
higher than in other tumor types). Normal tissue differences
can contribute to differences in edge weights, though in this
case the central role of melanocytes in melanomas implies
that the high scores are likely due to cancerous cell activity.
Similarity is seen with the uveal melanoma (UVA) study, where
cancer likely stems from melanocytes resident in the uveal tract
(Robertson et al., 2017). Additionally, we observed that when
a cell type is highly prevalent in a particular tissue, and the
scaffold has an autocrine loop, interactions between that type of
cell tend to have high weights because the calculation depends
on a single cell value, rather than values from two cell types.
If we exclude self-loops, then for SKCM, osteoblasts, natural
killer T cells, and mesenchymal stem cells (MSCs) interact with
melanocytes in the top 10 scoring edges, consistent with the
emerging role of these cell types in melanoma. An important
role for osteoblasts is now coming to light for melanoma
(Ferguson et al., 2020). Natural killer T cells are being investigated
for their applicability in immunotherapy of cancers such as
melanoma (Wolf et al., 2018). MSCs appear to interact with
melanoma cells, as work by Zhang et al. (2017) showed the

FIGURE 5 | Edge weights can distinguish tissue types. Each point represents
a tumor sample, sorted by tissue type. Shown is the Th2
cell-IL4-IL2RG-Megakaryocytes edge colored by tissue source: STAD red,
READ blue, COAD purple, and ESCA orange.

proliferation of A375 cells (a melanoma cell line) was inhibited
and the cell cycle of A375 was arrested by MSCs, and cell-
cell signaling related to NF-κB was down-regulated. Overall,
the number of high weight edges in each tumor type did not
associate with the number of samples, as might be expected
(Supplementary Figure 2).

Next, we aimed at identifying which elements of the cellular
communication networks might be associated with the clinical
progression in particular tumor types. Disease progression and
severity were examined using dichotomous values of tumor stage
and PFI as described in the methods. S1 scores were calculated
comparing edge weight distributions between the two clinical
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FIGURE 6 | (A) Median values for each differentially weighted cell-cell edge (DWE) for the progression-free interval (PFI) categories (in row, DWE edges in columns).
(B) Examples of differentially weighted edges.

groups. Results were carried forward if larger than a set threshold
(greater than the top 1e-6% of simulations) yielding differentially
weighted edges (DWEs, Supplementary Figures 3–5).

Most tumor types showed DWEs for PFI, and fewer DWEs
for the early to late tumor stage comparison (Supplementary
Figure 5). For example, gastric adenocarcinoma (STAD) had
several hundred edges in for both comparisons, while PAAD
showed many fewer DWEs, and only for PFI. Figure 6 shows
median edge weights between the two groups for the selected
studies. Some tumor types, like SKCM, show much stronger
differences between the medians, compared to the other studies

like STAD, ESCA, and LUSC, which may be an indication of
a stronger immune response. According to CRI-iAtlas (Eddy
et al., 2020), among our example studies, SKCM has the highest
estimated level of CD8 T cells and generally has a robust
immune response.

The tumor stage comparison showed DWEs in 17 of 32
TCGA studies and ranged widely from 4 DWEs for MESO
(mesothelioma) to over 63K DWEs for BLCA (urothelial bladder
cancer adenocarcinoma). The PFI comparison showed results in
28/32 studies and ranged from 4 DWEs in READ to over 21K
in LIHC. See Table 1 for DWE counts from selected studies.

TABLE 1 | Counts of differentially weighted edges compared to the number of samples in each study.

Study N samples PFI short/long PFI DWEs Selected Feat. Model accuracy GO results?

ESCA 170 73/97 137 36 94.7 y

STAD 409 155/231 142 78 95.1 y

PAAD 178 68/83 8 – – y

COAD 281 96/183 63 50 97.1 y

READ 91 16/71 4 – – y

SKCM 102 27/75 249 12 91.1 y

LUSC 494 193/285 304 119 98.7 y

Study N samples Stage early/late Stage DWEs Selected Feat. Model accuracy GO results?

ESCA 170 86/63 0 – – –

STAD 409 167/198 241 114 99.7 y

PAAD 178 142/7 0 – – –

COAD 281 151/118 1851 84 99.6 y

READ 91 36/44 34 18 97.5 y

SKCM 102 68/29 221 8 99 n

LUSC 494 390/89 0 – – –

Study, tissue type; N samples, number of samples used; PFI short/long, number of samples in each group; PFI DWEs, number of differentially weighted edges; Model
accuracy, accuracy of predicting group; GO results?, if yes, significant GO enrichments.
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The studies with larger numbers of samples had random S1
distributions that were narrow compared to studies with few
samples (Supplementary Figure 3), but there was not a strong
association between DWE counts and sample sizes. The variation
thus more likely has to do with clinical factors.

Within a tumor type and clinical response variable, the set of
high scoring edges were usually dominated by a small number
of cell-types, ligands, or receptors (Figure 7 and Supplementary
Figures 6A,B). For SKCM, in the tumor stage contrast, most
ligand-producing cells include GMP (granulocyte-monocyte
progenitors) cells, osteoblasts, MSC cells, and Melanocytes, in
order of prevalence. The number of edges starting with these
four cells accounts for 53% of DWEs. Certainly, melanocytes
are well known in melanoma and mesenchymal stem cells

are drawn to inflammation, but the role of osteoblasts is less
well documented, but still has been associated with melanoma
progression (Ferguson et al., 2020).

In colorectal adenocarcinoma (COAD), for ligand-producing
cells, the DWEs were dominated by astrocytes, MSCs,
megakaryocytes, and sebocytes, while receptor-producing
cells included astrocytes, chondrocytes, and MSCs in order
of counts of DWEs. While these cells are labeled “astrocytes,”
this may actually be a misnomer. These “astrocyte-like” cells
that are common in the enteric nervous system of the gut are
called enteric glia (Yu and Li, 2014). They both physically and
molecularly resemble astrocytes of the central nervous system,
but should be classified as a separate cellular entity (Jessen and
Mirsky, 1983). By summarizing DWEs we can possibly categorize

FIGURE 7 | Edge member dominance in DWEs shown by log10 counts of cell types across high weight edges in ligand-bearing cells (A) and receptor-bearing
cells (B).

FIGURE 8 | High weight edges (DWEs) from PFI contrasts form predictive connected subnetworks. Color indicates the magnitude and direction of S1 statistics (±).
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FIGURE 9 | Informative edges selected by XGBoost models for prediction
within study. Color indicates information gain.

cancer types based on which cells are taking part in potentially
active interactions.

The above-described edge dominance is related to cells (graph
nodes) with high degree. In the language of graphs, the degree is
the count of edges connected to a given node or vertex. In STAD
where the most common cell in DWEs is the megakaryocyte, we
find it is also the cell with highest degree (degree 50), followed
by neutrophils (31), common lymphoid progenitors (CLP) cells
(26), and erythrocytes (23) (see Supplementary Figures 6A,B).

Within the TME, communication between the multitude
of cells happens simultaneously through many ligand-receptor
axes. By considering a set of differentially weighted edges
within a tissue type, we can construct connected networks
that potentially represent multicellular communication. DWEs
derived by comparing edge weights between clinical groups may
indicate which parts of the cell–cell communication network shift
together with disease severity.

The edges making up the differential networks were used to
model clinical states for individual tumors (Figure 8). XGBoost
models (Chen and Guestrin, 2016) were fit on each clinical

feature, using edge weights as predictive variables, to infer which
edges carried the most information in classification (Figure 9).
The purpose of the modeling was within-data inference to
determine feature importance rather than classification outside
of the TCGA pan-cancer data set. The XGBoost classifiers are
regularized models, not all features will be used and often only
a small subset of features are utilized in the final model. We
assess the relative usefulness of a feature by comparing the feature
gain—the improvement in accuracy when a feature is added
to a tree. All classification models had an accuracy between
91% (SKCM, PFI) and 99% (COAD, Stage). As mentioned
above, there can be a high degree of correlation between edge
values in a data set. During model fit, features are selected first
based on improving prediction, the machine learning model
accounts for correlated features by selecting the one that has
best predictive power, leaving out other correlated features. That
said, the number of features selected by the model is related
to the correlation structure in the predictor matrix. In a set of
uncorrelated features where all features add to the predictive
power, all features will be selected, whereas for correlated
features, only a small number will be selected.

In the COAD-PFI case, the number of features was reduced by
approximately 20%, keeping 50 DWEs in the model. The STAD-
PFI features were reduced by approximately 45%. Other examples
are LUSC-PFI at 60% reduction, ESCA-PFI at 74%, and SKCM-
PFI at 95% (12 edges selected) indicating a high degree of internal
feature correlation (or lower dimensionality of edge weights).

A similar pattern was observed in the tumor stage contrasts,
where SKCM-stage had a 96% reduction in features, STAD-stage
52%, READ-stage 47%. For COAD-stage, feature reduction was
95%, but attributable to the large number of starting DWEs
(1,851) compared to the 84 DWEs selected. A collection of the
most predictive edges is given in Table 2.

The collection of genes from each differential network
was used for GO term enrichment using the GONet tool
(Pomaznoy et al., 2018). All tumor type-contrast combinations
with differentially weighted edges produced enriched GO terms
(FDR < 0.05, within tissue contrasts) except the SKCM-stage
group, which produced no enriched terms.

Common themes included structural GO terms such
as “extracellular structure organization” (for SKCM),
cell–substrate adhesion (ESCA, LUSC), cell–cell adhesion
(STAD), extracellular matrix (ECM) organization (LUSC,
COAD, READ, and STAD). Cell migration was also a
common theme with “cell migration” (STAD), “epithelial
cell migration” (SKCM), and “regulation of cell migration”
(LUSC, COAD/READ). Among immune related themes, GO
terms included “IFNG signaling” and “antigen processing
and presentation” (SKCM), “regulation of immune processes”
and “IL2” (STAD), and “viral host response” (COAD/READ).
See Table 3 for a summary and Supplementary Table 3 for
complete results.

DISCUSSION

Patient outcome or response to therapy is not easily predicted
by tumor stage or the somatic variations present in the tumor
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TABLE 2 | Top five most predictive edges from XGBoost models.

Contrast Study EdgeID LCell Ligand Receptor RCell S1 Median Diff Information Gain

PFI COAD 586640 Megakaryocytes BMP10 ENG Epithelial cells 0.169 0.082 0.109

PFI COAD 50871 Astrocytes TNC ITGA5 mv Endothelial cells 0.168 0.061 0.069

PFI COAD 406871 Hepatocytes GDF2 ENG Epithelial cells 0.168 0.082 0.067

PFI COAD 49669 Astrocytes EFNB1 EPHB4 Mesangial cells 0.199 0.117 0.066

PFI COAD 632560 MEP TIMP2 ITGB1 MEP 0.167 0.095 0.051

Stage COAD 406579 Hepatocytes CGN TGFBR2 Eosinophils −0.165 −0.077 0.043

Stage COAD 330377 Eosinophils LAMB3 ITGB1 Eosinophils −0.144 −0.048 0.038

Stage COAD 616033 Memory B-cells BMP15 BMPR2 Epithelial cells −0.150 −0.060 0.037

Stage COAD 784400 NK cells TNFSF10 TNFRSF10B CD4+ memory T-cells 0.137 0.043 0.037

Stage COAD 630108 MEP B2M KIR2DL1 iDC 0.138 0.055 0.037

PFI ESCA 457801 Keratinocytes GS ADCY7 CD4+ Tcm 0.167 0.078 0.078

PFI ESCA 182483 CD8+ Tcm RBP3 NOTCH1 pDC −0.184 −0.073 0.071

PFI ESCA 1051114 Th2 cells CALM1 GP6 naive B-cells 0.171 0.085 0.070

PFI ESCA 658080 Mesangial cells SPP1 CD44 Tregs 0.184 0.080 0.064

PFI ESCA 397215 GMP HMGB1 THBD MEP 0.184 0.060 0.059

PFI LUSC 879775 Plasma cells VEGFA ITGB1 GMP 0.120 0.047 0.041

PFI LUSC 451902 iDC VEGFA ITGB1 Plasma cells 0.137 0.067 0.038

PFI LUSC 398971 GMP ADAM17 ITGB1 Plasma cells 0.120 0.059 0.030

PFI LUSC 340857 Epithelial cells COL4A6 ITGB1 CD8+ naive T-cells 0.124 0.054 0.026

PFI LUSC 471558 Keratinocytes THBS1 ITGA6 Plasma cells 0.120 0.068 0.025

Stage READ 632552 MEP TGFB3 TGFBR2 MEP −0.267 −0.134 0.127

Stage READ 795527 NKT GZMB PGRMC1 CD4+ memory T-cells 0.343 0.144 0.115

Stage READ 402754 Hepatocytes CGN TGFBR2 CD4+ Tem −0.274 −0.134 0.108

Stage READ 808308 NKT GZMB IGF2R Plasma cells 0.261 0.101 0.103

Stage READ 800747 NKT IL7 IL2RG GMP 0.264 0.136 0.095

PFI SKCM 1008243 Smooth muscle SEMA7A PLXNC1 pro B-cells 0.438 0.259 0.242

PFI SKCM 517677 Macrophages UBA52 NOTCH1 Osteoblast −0.284 −0.145 0.200

PFI SKCM 80934 Basophils VIM CD44 NKT −0.383 −0.254 0.103

PFI SKCM 1007915 Smooth muscle PSAP SORT1 Preadipocytes 0.311 0.175 0.082

PFI SKCM 84049 Basophils CALM1 PTPRA Th1 cells −0.285 −0.151 0.080

Stage SKCM 275306 CLP GI2 CXCR1 Osteoblast 0.353 0.176 0.207

Stage SKCM 399084 GMP TIMP1 CD63 Plasma cells −0.302 −0.147 0.206

Stage SKCM 273727 CLP GI2 F2R MEP 0.290 0.123 0.182

Stage SKCM 182981 CD8+ Tcm GI2 TBXA2R Plasma cells −0.283 −0.095 0.123

Stage SKCM 397545 GMP BST1 CAV1 MSC −0.337 −0.194 0.109

PFI STAD 461765 Keratinocytes CALM3 KCNQ1 Eosinophils −0.136 −0.067 0.062

PFI STAD 644724 Mesangial cells TGFB2 ACVR1 Erythrocytes 0.149 0.061 0.054

PFI STAD 105991 CD4+ T-cells IL1B IL1R2 Megakaryocytes 0.134 0.081 0.047

PFI STAD 269013 CLP ADAM28 ITGA4 CD4+ T-cells 0.145 0.075 0.046

PFI STAD 343620 Epithelial cells VCAN TLR1 CLP 0.134 0.051 0.033

Stage STAD 128412 CD4+ Tem CALM1 KCNQ1 Macrophages 0.140 0.058 0.057

Stage STAD 43832 Astrocytes FBN1 ITGB6 Epithelial cells −0.146 −0.058 0.036

Stage STAD 346120 Epithelial cells LAMB1 ITGAV Hepatocytes −0.139 −0.066 0.035

Stage STAD 403540 Hepatocytes SHH PTCH1 CD8+ T-cells −0.138 −0.069 0.034

Stage STAD 648983 Mesangial cells FGB ITGAV Megakaryocytes −0.140 −0.060 0.031

Contrast, the groupwise test performed; Study, tissue type; Edge ID, BigQuery table lookup ID; LCell, cell producing ligands; Ligand, ligand gene symbol; Receptor,
receptor gene symbol; R Cell, receptor producing cell; S1, between group S1 statistic; Median Diff, difference in edge weights between groups; Information Gain, Xgboost
information gain after adding feature to model.

(Kirilovsky et al., 2016). A key factor in determining outcome
will be understanding the TME, but making predictions remains
difficult due to the complex nature of the disease. It has been
noted that a given immune cell will have different effects on
tumor progression which varies by cancer type and cell location
with respect to the tumor (Fridman et al., 2012). The importance
of the TME is illustrated by the “Immunoscore,” a prognostic
based on the presence and density of particular immune cells in
the TME, expanded to include the peripheral margin as well as

tumor core. For example, the Immunoscore in colorectal cancer
depends on the density of both CD3+ lymphocytes (any T cell)
and specifically, CD8+ cytotoxic T cells in the tumor core and
invasive margin (Pagès et al., 2018).

Along with specific cell types, previous studies have also shown
that specific cellular interactions (i.e., ligand–receptor mediated
interactions) within the TME have an impact on patient survival,
drug response, and tumor growth. Zhou et al. (2017) described
variations in ligand-receptor pair correlations when comparing
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TABLE 3 | Enriched GO terms.

Tissue Contrast Num GOs ECM Migration Immune Immune2

SKCM PFI 34 Extracellular structure
organization

Epithelium cell migration IFNG signaling Antigen processing and
presentation

ESCA PFI 3 Cell–substrate adhesion

STAD PFI 59 Cell–cell adhesion mediated by
integrin

Cell migration Regulation of immune
system process

IL2

LUSC PFI 39 Extracellular matrix organization Positive regulation of cell migration

COAD/READ stage 85 ECM Regulation of epithelial cell migration Viral host response

STAD stage 28 ECM / adhesion Cell migration

Tissue, TCGA study; Contrast, the groupwise test performed; Num GOs, number of gene ontology terms found significantly enriched; ECM, GO categories involving
ECM; Migration, GO terms involving cell migration; Immune, GO terms involving immune response; Immune2, additional GO terms involving immune response.

FIGURE 10 | Cell–cell interaction diagram demonstrating complexity in communication with three cell types that produce the IL1B ligand that have two possible
binding partners on the same receptor bearing cell. Edge weight violin plots are shown for two STAD PFI groups, short (left) and long (right) PFI.

cancer to normal tissue using gene expression data, the cell–
cell communication structures thereby becoming a generalized
phenotype for malignancy. The results showed that compared to
normal tissue, the ligand-receptor correlation was reduced. The
ligand-receptor pairs that commonly showed such differences
across the ten tumor and matched tissue types included PLAU-
ITGA5, LIPH-LPAR2, SEM14G-PLXNB2, SEMABD-TYROBP,
CCL2-CCR5, CCL3-CCR5, and CGN-TYROBP.

Similar to Zhou et al. (2017), we also found associated edges
enriched for related biological processes, especially to ECM
organization and cell adhesion. For example, in Zhao et al.,
the ligand-receptor pairs COL11A1-ITGA2, COL7A1-ITGA2,
MDK-GPC2, and MMP1-ITGA2 were found to be positively
correlated in cancer, but uncorrelated in normal tissue. In this

work, integrins and laminins generally have elevated edge weights
in late tumor stages. In the PFI contrasts, except for ESCA, these
edges have higher weights in the shorter PFIs, corresponding to
more rapid progression.

The results also show evidence for other common tissue
phenotypes such as inflammation. With SKCM and COAD,
ligand producing (pro-inflammatory) M1 macrophage edges are
present in the associated cell-cell networks. Also, inflammatory
cytokines IL1B and IL18 are both present in the results of ESCA
and STAD (Figure 10). In the tumor stage contrasts for STAD and
COAD, we see Th2 and NK cells expressing inflammation related
genes IL1A, IL1B, IL4, and TNF. However, we noted the absence
of some well-known canonical edges such as Th1-IL12-IL12RB1-
M1 macrophages. This may be due to essentially no difference, or

Frontiers in Genetics | www.frontiersin.org 11 August 2021 | Volume 12 | Article 667382

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-667382 August 23, 2021 Time: 14:53 # 12

Gibbs et al. Patient-Specific Cell Communication Networks

undetectable differences in cell quantities or transcript expression
between PFI groups.

Regarding cancer related cytokine networks in the literature,
there is a strong emphasis on the cancer cell as a central actor.
Many studies focus on cancer cell interactions in the TME. For
example, cancer cells produce an overabundance of IL6 or IL10,
which is associated with poor prognosis (Burkholder et al., 2014;
Fisher et al., 2014; Lippitz and Harris, 2016). However, in this
work, the focus has been put on the TME, excluding the cancer
cell. This is largely because in performing cell deconvolution to
determine the presence and quantity of different cell types in
the mixed sample, reliable signatures for cancer cells are not
readily available. In carcinomas, a cancer cell derives from the
epithelium and in many aspects remains similar to epithelial cells.
Even in single cell RNA-seq studies, it is often difficult to identify
abnormal cells. Picking cells out of a mixed expression dataset
using a gene expression signature remains a difficult problem.

In addition to cancer cells missing, there are also
many physical aspects that cannot be addressed with the
presented method, such as the rate of secretion, dynamics
of binding, and cell activation. Nonetheless, by identifying
the presence of edge constituents in particular TMEs, in
comparison with the quantities of other constituents, it
becomes more likely that communication can take place,
as the presence of those constituents is a prerequisite.
That is assuming the specified mRNAs are translated to the
corresponding proteins. Of course, by focusing on the TME,
any cell communication taking place outside of the TME
is completely missed. For example, T cells and B cells are
exposed to tumor derived antigens in tumor draining lymph
nodes, which can potentially generate immunotolerance
(Munn and Mellor, 2006).

While cancer cells are missing from the model, using cell
deconvolution to identify the cell types present in a mixed
sample with bulk sequencing cancer data can lead to the
inclusion of surprising, unexpected, and possibly erroneous cell
types. Related to ECM, cancers such as esophageal, gastric, and
colorectal commonly present with metaplasia and dysplasia,
a process that breaks down the structural order of a tissue
(Giroux and Rustgi, 2017). Within dysplasia, unexpected cell
types may be detected due to altered gene regulation which
produces gene expression patterns not typically associated with
healthy normal cells or possibly through transdifferentiation
(Noto and Peek, 2012). For example, in pancreatic cancer,
a disruption of tissue organization triggers hepatocyte
differentiation in the ductal epithelium (Reddy et al., 1991).
As another example from pancreatic cancer, the source of the
commonly seen desmoplastic stroma (a fibrous encapsulation of
the tumor) may include mesenchymal stem cells (MSCs), which
possess the ability to differentiate into osteoblasts, chondrocytes,
and adipocytes all of which may produce unexpected findings
(Mathew et al., 2016).

Similarly to the assumptions made in communication
theory, it is tempting to view communication between cells
as directional, where cells produce molecules that are received
by the properly paired, and expressed, receptor. There is often

a sender and receiver, which makes the cell-cell networks
appear to be directionally linked by molecules. While this
may be useful mathematically, the reality is that there are
many cases where the interaction of two cells creates a
response in both cells, implying bidirectional communication.
An example of this is seen with PD-L1 (programmed cell death
1) which is occasionally over expressed by tumor cells; upon
binding with its cognate receptor PD1 on T cells, pathways
such as stemness or chemo-resistance can be activated in
cancer cells while suppressing anti-tumor immunity in T cells
(Dong et al., 2018). The presented method treats cell-cell
communication as undirected, but one could also use two edges
in opposing directions.

In terms of the data that goes into the model, by focusing
on gene expression instead of protein levels, this approach
overlooks several important matters, such as the role of post-
transcriptional modification. To achieve their active form, some
ligands enter modification pathways after translation. For a
given protein, the modification pathways available can even vary
depending on cell type.

Another challenge relates to the generally weak correlation
between transcript and protein levels, which is mainly due to
the many levels of regulation between transcription and protein
abundance. There will be cases where tight regulation leads to
good correlation between transcripts and proteins, while in other
cases, weak correlation may confound the results. Also, when
considering protein function, some ligands and receptors are
composed of several different subunits. Heterodimeric ligands
can essentially create new edges if a given subunit has different
binding partners (e.g., IL-12 family). Ideally, data with joint
mRNA and protein abundance could potentially be used to
investigate such effects.

The expression data used by the deconvolution algorithm is
taken from flow-sorted cells with an assumption that we cannot
identify novel (non-scaffold) edges in a tissue/cancer context.
However, new data types and methods including scRNA-seq
and PIC-seq will provide ways of determining new cell-cell
interactions that are context specific (Giladi et al., 2020).

With the data and results publicly available in a Google
BigQuery table (Supplementary Figure 8), this resource is open
to researchers to explore and ask questions. It is a low-cost way
(with a free tier) to achieve compute cluster performance for
quickly answering questions that would otherwise be prohibitive
on most in-house commodity computer systems. The BigQuery
table is easily joined to clinical and molecular annotations as
part of the ISB-CGC and can be worked with from R and
python notebooks. With the addition of resources like GTEx,
it should be possible to begin teasing apart aberrant, cancer
specific interactions.
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