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Introduction
In recent years, there has been considerable interest in estimat-
ing causal relationships between random variables in a graphi-
cal framework. Among several types of graphical models, 
Bayesian networks (BNs) or, equivalently, probability-weighted 
directed acyclic graphs (DAGs) have received the most atten-
tion due to their simplicity and flexibility in modeling directed 
associations in the domain.1-4 The associations between d ran-
dom variables can be summarized by a graph  = ( , )V E  in 
which V X i di= { 1,2, , }| = …  represents the set of variables 
and E V V⊂ ×  represents the dependency between variables. 
Under the acyclicity and Markov assumptions, the joint likeli-
hood function of ( X X d1, , ) in a BN has the following sim-
ple form based on the conditional densities:

f X X f Xd
i

d

i i( , , ) = ( | )1
=1

 ∏ Π  (1)

where Πi  denotes the parent set of Xi, i.e. ∏i ={Xj  |Xj → 
X X V Xi j i, { }}∈ \  (Πi  can be empty).

The two most popular BN models are the Gaussian 
Bayesian network (GBN) model1 and multinomial Bayesian 
network (MBN) model,5 for continuous variables and discrete 
variables, respectively. MBN models suffer from a super-expo-
nentially increasing number of parameters, therefore they can 
only estimate small-scale networks in practice.5 To deal with 
networks with a relatively large number of nodes, GBN mod-
els have been commonly used due to their simple setup and 
efficient estimation. However, GBN models may fail to iden-
tify the true causalities when the joint distribution of interest 

is far from the multivariate normal, for example, when the 
underlying distribution is bimodal or multimodal. To tackle the 
problem of non-normality, several new BN models have been 
developed, for instance, the logistic BN by Zhang et al.4 which 
discretizes all the continuous variables to fit a multi-category 
logit model. Considerable work has also been done in non-
parametric and semiparametric estimation of the BN structure. 
For instance, Voorman et  al.6 proposed the following non-
parametric model to deal with non-normality issue:

X f Xi i
Xk i

ik k i| = ( )Π
Π∈
∑ + ε

where the f ik ( )⋅  lies in some function space  . The model by 
Voorman et  al. focuses on estimating the conditional mean 
E Xi i( | )Π . It is essentially a generalized additive model with-
out assuming the independence between εi  and f ik ( )⋅ . 
However, this method relies on a known causal ordering of the 
true network which is unavailable in most cases.

In 2010, Elidan7 introduced an innovative copula Bayesian 
network (CBN), a marriage between copula functions and 
graphical models, which extends conventional BN models to a 
more flexible framework. A CBN model constructs multivari-
ate distribution with univariate marginals and a copula func-
tion C that links these marginals. In general, one can estimate 
marginals using a parametric or non-parametric approach, and 
then use a small number of parameters to capture the depend-
ence structure. However, as we shall see in a real data set 
(Section 4), the regular copula functions such as Gaussian cop-
ula may not be able to accurately depict multimodal joint 
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distributions. In addition, the CBN model is subject to the 
choice of copula function for each local term. Motivated by 
Elidan’s work, we extend the regular CBNs to a mixture copula 
Bayesian network (MCBN) using finite mixture models, to 
better deal with non-normality, multimodality, and heavy tails 
that are commonly seen in current massive genomic data. The 
parameters in an MCBN model can be efficiently estimated by 
a routine EM algorithm. As demonstrated by the real data, the 
performance of a two-component Gaussian MCBN is gener-
ally promising, and our model achieves reasonable accuracy in 
identifying the true edges in a sparse causal network.

The rest of this paper is organized as follows. In Section 2, we 
review Elidan’s CBN model, and introduce the proposed MCBN 
model using a two-component Gaussian mixture for illustration. 
In Section 3, we present a heuristic local search approach com-
bined with a routine EM algorithm for graph structure estima-
tion, as well as the best-scoring network out of multiple 
predictions with random initial values. The comparison of three 
BN models is carried out over a cell signaling data set in Section 
4. The new model is applied to the Cancer Genome Atlas 
(TCGA) data for serous ovarian cancer in Section 5. We discuss 
and conclude this paper in Sections 6 and 7.

Method
Copula and Elidan’s CBN

Unless otherwise stated, we use f x f xi Xi i( ) ( )≡ , F(xi) ≡ FXi(xi) ≡ 
P X xi i( )⩽  as the marginals, and similarly for multivariate 
density f f( ) ( )x xX≡ . The formal definition of a copula func-
tion is as follows.

Definition 1. Let ( , , , )1 2X X X d  be a vector of continuous 
random variables and ( ( ), ( ), , ( ))1 2F x F x F xd  be the mar-
ginal distribution functions. The copula function of 
( , , , )1 2X X X d , C d: [0,1] [0,1]→ , is defined as the cumula-
tive distribution function (CDF) of ( ( ), ( ), , ( ))1 2F X F X F X d :

C u u u
P F X u F X u F X u

d

d d

( , , , )
= ( ( ) , ( ) , , ( ) )

1 2

1 1 2 2



⩽ ⩽ ⩽
 (2)

By definition, a copula function is a multivariate distribution 
function where the marginals are uniform. By choosing an 
appropriate copula, one can generate multivariate distribution of 
any complex form. In practice, one can completely separate the 
choice of marginals and the choice of dependency patterns 
between random variables. Sklar’s theorem below guarantees 
that any multivariate distribution can be expressed with univari-
ate marginals and a copula function which links these variables.

Theorem 1. Let F x x xd( , , , )1 2   be a multivariate distribution 
over real-valued d-dimension random vectors, then there exists 
a copula function that satisfies

F x x x C F x F x F xd d( , , , ) = ( ( ), ( ), , ( ))1 2 1 2   (3)

Furthermore, the copula function C is unique when the mar-
ginal distribution F xi( )  is continuous for i d∈{1,2, , } .

By taking the first derivative for both sides of Equation (3), 
we can derive the copula density function defined as 

c F x F x F x
C F x F x

F x F xd

d
d

d
( ( ), ( ), , ( )) =

( ( ), , ( ))
( ) ( )1 2

1

1







∂
∂ ∂

. The cop-

ula density is simply a ratio between the joint density and the 
product of all the marginals:

c F x F x F x
f x x

f xd
d

i
i

( ( ), ( ), , ( )) =
( , , )

( )
.1 2

1




∏  (4)

An immediate consequence of Equation (4) is that 
c F x F x F xd( ( ), ( ), , ( )) = 11 2   if and only if X X d1, ,  are 
independent. For a subset of variables ( Y X X p, , ,1  ), as 

f x x
C F x F x

x xp

p
p

p
( , , ) =

(1, ( ), , ( ))
1

1

1







∂

∂ ∂
, the conditional den-

sity f y x x p( | , , )1   can be expressed as follows:

f y x x
c F y F x F x f y f x

C F xp

p
i

p
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p
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))

( ( ), ( ), , ( )) ( )1∫ c F y F x F x f y dyp

 (5)

Motivated by Equations (1) and (5), Elidan proposed a 
CBN based on the following local density:

f y x x f y G y x xp c p( | , , ) = ( ) ( | , , )1 1   (6)

where
 
G y x x

c F y F x F x

c F y F x F x f
c p

p

p

( | , , ) =
( ( ), ( ), , ( ))

( ( ), ( ), , ( ))
1

1

1





∫ (( )

=
( ( ), ( ), , ( ))

( ( ( ), ( ), , ( )))
.1

1

y dy
c F y F x F x

E c F Y F x F x
p

Y p





By Equation (6), we have the following decomposition for 
the joint density of variables in a BN.

Theorem 2. Let ( , , )1X X d  be d random variables (nodes) in a 
BN, and π i j j ix X= { | }∈Π . The joint density can be represented 
as follows:

f x x G x f xd
i

d

c i i
i

d

i( , , ) = ( | ) ( )1
=1 =1

 ∏ ∏π  (7)

Although the construction of local copulas can significantly 
reduce the complexity of the structure learning, choosing an 
appropriate copula for each local term G xc i i( | )π  is essential. 
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Elidan suggested a small set of pre-selected copula functions 
(or copula families) such as Gaussian copula, Frank’s copula, 
Ali–Mikhail–Haq (AMH) copula and Gumbel–Barnett (GB) 
copula. However, as we discuss in Section 4, these regular cop-
ula functions might be inadequate to model the complex 
dependence structure. To this end, we extend the CBN to a 
more flexible framework using a finite mixture model.

An MCBN

For illustration purposes, we limit ourselves to Gaussian 
MCBN, but other mixture models such as Gamma mixture 
and Beta mixture models can be adapted similarly. The 
K-component Gaussian mixture copula for variables 
( Y X X p, , ,1  ) can be formulated as follows:

C F y F x F x F y

F x

p
k

K
k

k

k( ( ), ( ), , ( )) = ( ( ( )),

( ( ))

1
=1

( ) ( ) 1

1
1

 ∑ −

−

α Φ Φ

Φ

Σ

,, , ( ( )))1
 Φ− F x p

where α( )k  and ΦΣk
k( )  denote the weight and CDF of the kth 

Gaussian component, respectively, and Φ− ⋅1( )  represents the 
quantile function of N (0,1). The corresponding copula density 
can be obtained immediately:

c F y F x F x
C F y F x F x

F y F x Fp
p( ( ), ( ), , ( )) =

( ( ), ( ), , ( ))

( ) ( )1
1

1







∂
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x
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k

k

k
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K
α φ

φ

Σ Φ Φ Φ− − −∑ 

ΦΦ Φ Φ− − −1 1
1

1( ( ))) ( ( ( ))) ( ( ( )))F y F x F x pφ φ

where φ( )⋅  represents the standard normal density function.
The Gaussian MCBN model above takes advantage of a 

finite mixture model to better fit the bimodal and multimodal 
distributions. Similar to Elidan’s CBN, the marginals should be 
estimated prior to fitting the mixture copula, with either para-
metric or nonparametric method. We can, for example, fit the 
marginals using parametric or non-parametric method, then 
transform ( y x x p, , ,1  ) to ( F y F x F x p( ), ( ), , ( )1  ) using the 
fitted CDF functions. The transformed values will be used for 
estimating the copula function. Based on the estimated mixture 
copula for each local term in BN, we can calculate the joint 
likelihood by Equation (7).

Graph estimation using EM and local search 
algorithms
EM algorithm for a f inite Gaussian mixture

In this section, we introduce the EM algorithm to estimate the 
mixture copula for each local term G xc i i( | )π .

For a given variable Xi  and its parent set Πi , the regular k
-means algorithm can provide warm starts for the mean vector 
µk (of dimension | | 1Πi + ) and the covariance matrix Σk (of 
dimension (| | 1) (| | 1)Π Πi i+ × + ) for each mixture compo-
nent, as well as the mixing rate α( )k . Let u F xhj Xh hj= ( ( ))1Φ−  

and u j hju= { } , where xhj  is the observed value for variable 
X h  and sample j , X X j Nh i i∈{ , }, =1,2, ,Π  . Let z = 
( , , )1z z N  be the vector of indicators for the membership  
of each sample (mutually exclusive and exhaustive),  
i.e. α( ) = ( = ), = 1, ,k

jP k j Nz   and 
k

K k
=1

( ) =1∑ α . Denote 
Θk k k= ( , )µµ ∑∑  and ΘΘ ={ }Θk , the EM algorithm with missing 
information z  can be implemented as follows.

 • E step. Given the current estimate of all the parameters 
(α( )k , ΘΘ), we compute the weighted membership as 
follows:

ω

φ α

φ α

jk j j

k j j k
k

m

K

m j j m
m

P z k
z k

z m

←
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( = | , )

=
( | = , )

( | = , )

( )

=1

( )

u

u

u

ΘΘ

Θ

Θ

,, 1 , 1j N k K⩽ ⩽ ⩽ ⩽

 • M step. Use data u j  and membership weights to update 
all the parameters:
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Given an estimate of the graph structure   and the param-
eters Θ ( ) , the log-likelihood can be written as

� � � � … � � �( , ( )) = ( , , | , ( ))

= ( | )

1

=1 =1

   Θ Θlog f x x

G x f

d

i

d

c i i
i

d

∑ ∑+π (( )xi

where the denominator of G xc i i( | )π , i.e. 
E c F X F FXi i i ipi

( ( ( ), ( ), , ( )))1π π  must be evaluated. Here 
we use notation pi  as the number of parents of Xi , i.e. 
pi i=| |Π . A simple idea for estimating G xc i i( | )π  is to gener-

ate a list of Monte Carlo samples ( , , , )1 2x x xi i iM
* * *

  from f xi( ), 
and by the law of large numbers:

1
( ( ), ( ), , ( ))

( ( ( ), (
=1

1
. .

1

M
c F x F F

E c F X F
j

M

ij i ipi
a s

Xi i i

∑  →* π π

π



)), , ( ))) F as Mipi
π →∞

where x f xij i
* ( ) . However, it is noteworthy that drawing 

samples from f xi( )  might be complicated and time-con-
suming when marginals were estimated with non-parametric 
method. Further, the likelihood � � � �( , ( )) Θ  may fail to 
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converge due to the randomness of G xc i i( | )π  estimation. 
Therefore, for practical consideration, one can directly use all 
the observations as samples so that the convergence is 
guaranteed.

Score-based local search for learning MCBN

In this part, we introduce an efficient heuristic search algo-
rithm based on the Bayesian information criterion (BIC) to 
learn the structure of the underlying network  . The BIC 
score can be evaluated by the following formula:

BIC N( , ( )) = ( , ( ))
1
2

( ) | ( )    � � � � � � � � �Θ Θ Θ− + log |

where � � � �( , ( )) Θ  represents the log-likelihood function, 
Θ ( )  is the set of all the parameters including the mixing 
rates, mean vectors, and covariance matrices of Gaussian com-
ponents, and | ( ) |Θ   denotes the total number of free param-
eters in  . We start from a randomly generated network or 
empty network, and greedily advance through basic edge oper-
ations including addition, deletion, and reversal, until the BIC 
score reaches the minimum.7 Unfortunately, this local search 
algorithm may easily become trapped in a local maximum due 
to the high dimensionality and non-convexity of the likelihood 
function, making it impractical to find the global maximum. 
Enlightened by one of the reviewers, we conducted the heuris-
tic search algorithm multiple times, each with a random initial 
value, and the best-scoring network (with minimum BIC 
score) was returned as the best predicted network.

Comparison with existing models
In this section, we compare the proposed MCBN model with 
two existing BN models: the GBN model and Elidan’s CBN 
model. We tested the three models using a flow cytometry data 
set generated by Sachs et al.8 Sachs et al.’s data contains simul-
taneous measurement on 11 protein and phospholipid compo-
nents, which was used for elucidating the signaling pathway 
structure in the cells of the human immune system. The known 
network shown in Figure 1(a) is a BN containing 11 nodes and 
20 causal relations. Each causal edge in the network was well 
validated by experimental intervention, therefore this network 
structure is often used as the benchmark to assess the accuracy 
of different directed or undirected graphical models.

Sachs et al.’s data has both continuous and discrete versions. 
In our analysis, we used the continuous data which was log-
transformed and normalized by subtracting the mean and 
dividing by standard deviation. Three BN models were then 
applied to the preprocessed data for network structure learning, 
with detailed implementation as follows.

 • GBN: We considered the linear regression setting, 
X X Ni X j i

j j i i i= , (0, )2
∈∑ +
Π
β σε ε  , where the 

graph structure and parameters were estimated by a 
blockwise coordinate descent (BCD) algorithm pro-
posed by Fu and Zhou.1 It has been shown that the BCD 
algorithm outperforms the popular PC algorithm9 under 
regular settings. The intervention information was also 
incorporated in the modeling and a geometric sequence 
of 100 candidate tuning parameters ( λ λ1, , 100 ) were 
predefined ( λ λ1 100= 0.001, =1). All the calculations 
were done using the source code provided by the authors 
(personal communication).

 • MCBN: For simplicity of calculation, we considered a 
two-component Gaussian MCBN. The two-component 
Gaussian mixture model was also applied to the univari-
ate marginals. Figure 2 shows two examples of fitted 
marginals for proteins Art and Erk.

We set the maximum number of parental nodes at 5, i.e. 
i imax | |Π ⩽5. The local search algorithm with BIC criterion 

was applied to BN structure learning, starting from an empty 
network. In the EM estimation of the copula function, we used 
k -means ( K = 2 ) to obtain initial values for all the parame-
ters, and used threshold | |1

(1) (1)α αi i+ − ⩽10–4 for convergence, 
where αi+1

(1)  and αi
(1)  represent the resulting mixing rates in 

two consecutive EM runs.

 • CBN: Elidan’s CBN model can be treated as a special 
case of MCBN model when the copula density function 
has only one component (Gaussian copula). For the sake 
of comparison, all the marginals were also fitted using a 
two-component Gaussian mixture. The same threshold 
as in MCBN was used as the convergence criterion of 
the EM algorithm.

The estimated graphs from the three different models 
are shown in Figure 1(b)–(d). Table 1 summarizes the true 
positive rate (TPR), false discovery rate (FDR) as well as 
running times by the three models (all timing were carried 
out on a Intel Xeon 3.2 GHz processor). In this compari-
son, a predicted edge is considered correct if both connec-
tion and direction are correct. It can be seen that the 
proposed MCBN model achieves significantly higher 
accuracy than the two existing models in terms of TPR and 
FDR, but it is more computationally expensive than the 
two simpler BNs. To further improve prediction, we con-
ducted 100 predictions using random initial networks and 
obtained the best-scoring network, which contained 25 
predicted edges. Out of 20 true edges, 13 were correctly 
identified in the best-scoring network. Furthermore, we 
compared different models in capturing the dependency 
pattern between variables. Figure 3 shows the scatterplot 
of Art and Erk, and the plots of simulated samples from 
three generative models. Compared with other models, the 
two-component Gaussian MCBN better depicted the 
multimodal dependency between Akt and Erk.



Zhang and Shi 5

To select the most confident edges, we calculated the log-
likelihood decrease by removing one edge from the network. 
We found that an edge giving more likelihood increase has 
higher probability to be a true edge in the network. For 
instance, we selected the 10 most confident edges based on 
the likelihood change, and seven of them turned out to be 
true edges including Akt→Erk, PKC→P38, PIP3→PIP2, 
PKA→Raf, PKC→JNK, PKC→Raf, and PLCg→PIP2. In 
addition, we evaluated the performance of our model in pre-
dicting the network skeleton (undirected edges). The pro-
posed MCBN was compared with two simple alternatives 
including Pearson’s correlation and Spearman’s correlation. 
In this comparison, a predicted edge is considered correct as 
long as the connection is correct. Figure 4 shows the undi-
rected networks by three approaches, and the TPR/FDR are 
summarized in Table 2.

Application to TCGA ovarian cancer data
In this section, we applied the proposed MCBN to TCGA 
data,10 to study the interactions between oncomarkers that 
are associated with serous ovarian cancer. The TCGA data 
is one of the most comprehensive cancer genomic data sets, 
with more than 30 cancer types and subtypes which include 
but not limited to ovarian cancer, breast cancer, lung cancer, 
brain cancer, and liver cancer. The sample sizes range from 
50 to 1200 for different cancer types, and each sample is 
represented by both the molecular profile and clinical infor-
mation. The molecular profile contains measurements for 
various types of (epi)genetic factors including gene expres-
sion quantification (both microarray and RNA-Seq), DNA 
methylation, single nucleotide polymorphism (SNP), copy 
number variation (CNV), somatic mutation, microRNA, 
etc. The clinical data provide information such as race, 

Figure 1. Comparison of three Bayesian network models on Sachs et al.’s data: (a) the benchmark network; (b) network predicted by the GBN model; (c) 

network predicted by the Gaussian CBN model; (d) network predicted by the two-component Gaussian MCBN model.



6 Cancer Informatics 

gender, tumor stage, outcome of surgery, and resistance to 
chemotherapy.

The TCGA ovarian cancer data collected 567 tumor sam-
ples and 8 organ-specific normal controls. We incorporated 
three data types into our model including gene expression level, 
DNA methylation level (in gene promoter region), and CNV. 
The data were normalized using a quantile normalization 
method by Bolstad et al.11 and Mai and Zhang12 to correct the 
bias due to non-biological causes. In addition, we applied an 
effective method by Hsu et al.13 to remove age and batch effects 
(three age groups are defined as < 40 , [40,70] , and > 70  year 
old). Hsu et al.’s method is essentially a median-matching and 
variance-matching strategy. For example, the batch-effect-
adjusted gene expression values can be obtained as follows:

g M g Mijk i ijk ij
gi

gij

* = ( )+ −
σ

σ





where gijk  represents the expression level of gene i  from batch j  
and sample k , Mij  denotes the median of g g gij ij ijn= ( , , )1  , 

Figure 2. Fitted marginals by a two-component Gaussian mixture for the abundance of proteins Akt (left) and Erk (right).

Table 1. Comparison of three different BN models.

MODEl P TPR FDR TIME (S)

Gaussian BN 27 0.40 0.704 5.60

Copula BN 24 0.40 0.667 1.39

Mixture copula BN 25 0.650 0.480 22.67

Number of predicted edges (P), true positive rate (TPR), false discovery rate (FDR), as well as the CPU time (in seconds) by three different Bayesian network (BN) 
models.

Mi  denotes the median of g g gi i iJ= ( , , )1  , σ gi  and σ gij  are 
the standard deviation of gi  and gij , respectively.

The set of biomarkers was identified by a stepwise correla-
tion-based feature selector (SCBS) by Zhang et  al.,4 which 
mimics the hierarchy of the underlying causal network. The 
SCBS algorithm starts by selecting the nodes that are strongly 
associated with the phenotype node and progressively selects 
the nodes that are associated with the nodes selected in the 
previous step. This algorithm is more effective in identifying 
phenotype-associated nodes, especially those nodes that are 
indirectly associated with the phenotype. By three runs of 
SCBS, we identified 73 oncomarkers including the expression 
level of 50 genes, CNV at 15 sites and methylation level at 8 
sites. Among the 73 oncomarkers, many were reported previ-
ously in the literature including BRCA1,10 BRCA2,10 RB1,14 
PTEN,15 and OPCML.16

We then fit an MCBN model to study the regulatory relation-
ships between these oncomarkers. The marginals were fitted by 
a two-component Gaussian mixture (other mixture models can 
also be used, e.g. Beta-mixture for DNA methylation). Figures 
5 and 6 show several examples of the fitted marginals for TP53 
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(expression level), SPARC (expression level), BRCA1 (methyla-
tion level), and NOTCH3 (methylation level).

In the biological network, we assumed that the genetic or 
epigenetic change (CNV and DNA methylation) cannot be 
induced by gene expression, and imposed this constraint into 
our modeling (note that this assumption is completely from a 
biological point of view and it can be dropped without affect-
ing our modeling and computation). The predicted graph (in 
Figure 7, the best-scoring network from 100 predictions) con-
tains 73 nodes connected by 124 directed edges. Many of the 
edges in the graph can be confirmed in the literature. To name 
a few, the edge between AURKA and BRCA2 may be due to the 
fact that a negative regulatory loop exists between AURKA and 
BRCA2 expression in ovarian cancer.17. The connection 
between STAT3 and ETV6 was suggested previously that 
ETV6 is a negative regulator of STAT3 activity.18 The edges 
between RAB25 (methylation) and RAB25 (expression) and 

between CSNK2A1 (CNV) and CSNK2A1 (expression) had 
been reported in several studies.10, 19, 20 Other highly ranked 
edges (based on likelihood increase) include but are not limited 
to: STAT3→DLEC1, PTEN→EGFR, RIMBP2→BRCA2, 
and ARID1A→ERD, which can be confirmed in the literature 
of cancer biology.10, 21-23 These findings demonstrate the effec-
tiveness of the MCBN model. In addition, as illustrated in 
Figure 8, the two-component Gaussian MCBN is accurate in 
depicting the dependency between the gene expression level 
and methylation level.

Discussion
In this paper, we have proposed a novel BN model to analyze 
recent cancer genomic data at the system level. The major 
innovation of our model is explicitly modeling the multimodal 
dependency structure between variables through a copula func-
tion and more accurately estimating the causal network 

Figure 3. Dependence between proteins Art and Erk: (a) observations; (b) simulated samples from the GBN; (c) simulated samples from the Gaussian 

CBN; (d) simulated samples from two-component Gaussian MCBN.
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structure. The parameters in the mixture copula were efficiently 
estimated by a routine EM algorithm, and the directed net-
work structure was estimated by minimizing the BIC score.

The proposed BN model allows strict probabilistic infer-
ence of biological pathways, however, it also has several 

limitations. First, it lacks flexibility to model the cyclic 
mechanism due to the acyclicity constraint, for instance, 
A→B→A, which may exist in a gene regulatory network. 
Second, the parameter estimation assumes sparsity of the 
network for computational feasibility. If the true network is 

Figure 4. Comparison of three undirected networks: (a) skeleton of the known network presented in Figure 1(a); (b) network consisting of the top 25 

edges based on Pearson’s correlation coefficient; (c) network consisting of the top 25 edges based on Spearman’s correlation coefficient; (d) skeleton of 

the network predicted by the MCBN model presented in Figure 1(d).

Table 2. Comparison with Pearson’s and Spearman’s methods.

MODEl P TPR FDR

Pearson’s correlation 25 0.55 0.56

Spearman’s correlation 25 0.50 0.60

Mixture copula Bayesian network 25 0.75 0.40

Number of undirected edges (P), true positive rate (TPR), false discovery rate (FDR) by three different approaches. For Pearson’s and Spearman’s methods, we selected 
the top 25 edges with the strongest correlation coefficients.
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dense or locally dense, the weak causations may fail to be 
detected. Third, due to the model complexity, the implemen-
tation of MCBN is more computationally expensive than 
simpler BN models such as the GBN model and regular 
copula BN model. For large data sets, one needs to reduce 
the number of variables by filtering out irrelevant and redun-
dant variables, and then feed the selected variables into the 
network model for causal inference.

It is noteworthy that the Gaussian MCBN used in the two illus-
trative examples can be generally adapted to other mixture models 
such as Gamma mixture and Beta mixture. The number of mixture 
components can be further increased depending on the complexity 
of the underlying dependency structure. For a relatively small data 
set, it is also possible to conduct statistical testing to select the best 
number of mixture components for each local term, however, this 
will significantly increase the computational complexity.

Figure 5. Fitted marginals by a two-component Gaussian mixture for the expression level of gene TP53 (left) and SPARC (right).

Figure 6. Fitted marginals by a two-component Gaussian mixture for the promoter methylation level of gene BRCA1 (left) and NOTCH3 (right).
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Figure 7. Predicted network by a two-component Gaussian MCBN model, containing the expression level of 50 genes (in light yellow), methylation level 

at 8 sites (in light green), and CNV at 15 sites (in light blue).

Figure 8. Dependence between the methylation level and expression level of gene C19orf53: (a) observations; (b) simulated samples from the two-

component Gaussian MCBN.
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Conclusions
Understanding the biological mechanism of cancers has sig-
nificant practical importance for clinical diagnosis and 
treatment. In this paper, we developed an MCBN model for 
causal inference using complex cancer genomic data. The 
proposed model is based on finite mixture models and cop-
ula functions, and it explicitly models multimodality in the 
data. The graph structure and model parameters can be effi-
ciently estimated by a routine EM approach, embedded in a 
heuristic search algorithm based on BIC. The prediction 
could be further improved by selecting the best-scoring 
model from multiple predictions with random initial values. 
In addition, we proposed a likelihood-based approach to 
select the most confident edges. The proposed MCBN 
model was applied to a flow cytometry data and the TCGA 
ovarian cancer data for inferring the causal relationships 
between different biological features. Compared with exist-
ing BN models, MCBN better depicts the complex depend-
ency structure between variables, therefore may better 
predict the underlying causal network.
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