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Drebrin is an actin-binding protein that is preferentially expressed in the brain. It is highly
localized in dendritic spines and regulates spine shapes. The embryonic-type (drebrin E)
is expressed in the embryonic and early postnatal brain and is replaced by the adult-type
(drebrin A) during development. In parallel, NMDA receptor (NMDAR)-dependent
long-term depression (LTD) of synaptic transmission, induced by low-frequency
stimulation (LFS), is dominant in the immature brain and decreases during development.
Here, we report that drebrin regulates NMDAR-dependent and group 1 metabotropic
glutamate receptor (mGluR)-dependent LTD induction in the hippocampus. While LFS
induced NMDAR-dependent LTD in the developing hippocampus in wild-type (WT) mice,
it did not induce LTD in developing drebrin E and A double knockout (DXKO) mice,
indicating that drebrin is required for NMDAR-dependent LTD. On the other hand, LFS
induced robust LTD dependent on mGluR5, one of group 1 mGluRs, in both developing
and adult brains of drebrin A knockout (DAKO) mice, in which drebrin E is expressed
throughout development and adulthood. Agonist-induced mGluR-dependent LTD was
normal in WT and DXKO mice; however, it was enhanced in DAKO mice. Also, mGluR1,
another group 1 mGluR, was involved in agonist-induced mGluR-dependent LTD in
DAKO mice. These data suggest that abnormal drebrin E expression in adults promotes
group 1 mGluR-dependent LTD induction. Therefore, while drebrin expression is critical
for NMDAR-dependent LTD induction, developmental conversion from drebrin E to
drebrin A prevents robust group 1 mGluR-dependent LTD.

Keywords: drebrin isoforms, NMDAR-dependent LTD, mGluR-dependent LTD, knockout mouse, development

INTRODUCTION

Synaptic plasticity is the change in efficacy of synaptic transmission induced by activity, which
is hypothesized to be a molecular mechanism of learning and memory. Actin filaments (F-actin)
form major cytoskeletons in dendritic spines (Matus, 2005) and remodeling of F-actin underlies
structural plasticity, with alteration of postsynaptic spine morphology being associated with
synaptic plasticity (Matsuzaki et al., 2004; Okamoto et al., 2004; Zhou et al., 2004; Honkura
et al., 2008; Shirao and González-Billault, 2013; Caroni et al., 2014). Drebrin is an F-actin-binding
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protein that modulates actin remodeling by elongating the
helical crossover of F-actin (Sharma et al., 2012; Grintsevich,
2017). Drebrin is classified into two major alternatively spliced
isoforms, embryonic-type and adult-type (drebrin E and drebrin
A, respectively; Shirao and Sekino, 2017). Drebrin A is neuron-
specific, appears at nascent postsynaptic sites, and forms an
F-actin platform for the molecular assembly of postsynaptic
proteins, such as PSD-95, spikar and glutamate receptors
(Takahashi et al., 2003; Aoki et al., 2005; Yamazaki et al.,
2014). Additionally, we have recently shown that long-term
potentiation (LTP) and context-dependent fear memory are
impaired in adult drebrin A knockout (DAKO) mice (Kojima
et al., 2010, 2016), indicating that drebrin plays a pivotal role in
synaptic plasticity (Sekino et al., 2017).

Drebrins E and A have similar primary amino acid sequences
except that drebrin A has an insertion of 46 amino acids
(Kojima et al., 1993) in the middle of the molecule named
Ins2 (Kojima, 2017). Drebrin has an actin depolymerizing
factor homology domain, two actin-binding regions (Hayashi
et al., 1999; Xu and Stamnes, 2006; Grintsevich et al., 2010),
and two Homer-binding sequences (Shiraishi-Yamaguchi et al.,
2009; Yamazaki and Shirao, 2017). However, the time courses
of drebrin E and A expression in the brain are quite
different from each other. Drebrin E is expressed in the
embryonic and early postnatal brain, is involved in neuronal
migration and axonal growth (Hanamura, 2017), and starts
to be replaced with drebrin A at around postnatal day 8
(P8; Aoki et al., 2005), when dendritic spine numbers are
rapidly increasing (Yuste and Bonhoeffer, 2004). The timing
of drebrin A appearance is relevant for its regulatory role in
spine formation. On the other hand, physiological consequences
of drebrin E disappearance in the adult brain are not
clear.

Long-term depression (LTD), an activity-dependent decrease
in synaptic efficacy, is induced by NMDA receptors (NMDARs)
or group 1 metabotropic glutamate receptors (mGluRs), and is
expressed by reduced numbers of AMPA receptors (AMPARs) at
synapses in the hippocampus (Malenka and Bear, 2004; Huganir
and Nicoll, 2013). NMDAR-dependent LTD is hypothesized
to underlie memory flexibility, in which stored memories are
renewed by new information (Caroni et al., 2014; Connor and
Wang, 2016). On the other hand, mGluR-dependent LTD is
enhanced by stress (Chaouloff et al., 2007) and is increased
in brain disorders including autism, and is supposed to cause
memory deficits (Lüscher and Huber, 2010; Niswender and
Conn, 2010; Bhakar et al., 2012). Also, NMDAR-dependent LTD
is dominant in the developing brain and is decreased in the adult
brain (Dudek and Bear, 1993; Kemp et al., 2000). The coincidence
of drebrin E and dominant LTD induction suggests that drebrin
E is involved in LTD. In the present study, we examined LTD
induction in the CA1 region of the hippocampus in developing
and adult DAKO and drebrin E and A double knockout (DXKO)
mice (Kajita et al., 2017), and investigated the roles of drebrin
isoforms in LTD induction. Here we discuss the differential role
of drebrin isoforms in NMDAR-dependent LTD. We also report
abnormal induction of group 1 mGluR-dependent LTD in the
developing and adult hippocampus in DAKOmice.

MATERIALS AND METHODS

Animal use and all experimental procedures were approved
by the Ethical Committee for Animal Experiments of Gunma
University (#50095, 07-114, 09-022, 12-032, 14-030) and by the
institutional review committees at Niigata University (year 2007,
#41), and all experiments were performed in accordance with the
guidelines of these committees.

Slice Electrophysiology
Synaptic transmission was recorded from mouse hippocampal
slices as described previously (Yasuda et al., 2003; Yasuda and
Mukai, 2015; Kojima et al., 2016). Briefly, slices were cut from
septal hippocampi of DAKO and DXKO mice or their WT
littermates in ice-cold oxygenated (95% O2/5% CO2) artificial
cerebrospinal fluid (ACSF) containing (in mM) 119 NaCl,
2.5 KCl, 26.2 NaHCO3, 1 NaH2PO4, 4 CaCl2, 4 MgSO4 and
11 glucose (pH 7.4) and incubated for at least 2 h. Two slices were
placed in a submersion-type recording chamber mounted on
an upright microscope (BX51WI, Olympus, Tokyo, Japan) and
perfused with the same oxygenated ACSF containing 100 µM
picrotoxin at 30◦C. Field excitatory postsynaptic potentials
(fEPSPs) with an amplitude of approximately 0.3 mV were
evoked with a stimulating glass electrode containing the same
ACSF placed in the stratum radiatum and recorded in the
CA1 region using a Multiclamp 700B amplifier (Molecular
Devices, Sunnyvale, USA). Acquisition and measurement
of fEPSP slopes were performed using custom Igor Pro
(WaveMetrics, Lake Oswego, OR, USA) software routines. Basal
synaptic transmissions were obtained at 0.05 Hz, and LTD was
induced by applying 1 Hz 15 min stimulation or RS-DHPG
(DHPG).

Drugs
D-APV, MPEP, YM 298198 and DHPG were from Tocris
Bioscience (Bristol, UK). Other chemicals were fromWako Pure
Chemical Industries (Osaka, Japan).

Protein Sample Preparation and Western
Blotting
Mice were sacrificed by cervical dislocation, and removed
brains were washed in ice-cold phosphate buffered saline.
The synaptosomal fraction was prepared in sucrose density
gradients essentially as described by Gray and Whittaker (1962).
Briefly, the cerebral cortices were homogenized in a glass-
Teflon homogenizer in nine volumes of 0.32 M sucrose,
1 mM NaHCO3, 1 mM MgCl2, 0.5 mM CaCl2 containing
protease inhibitors (CompleteTM; Roche, Basel, Switzerland), and
centrifuged at 1,400× g for 10 min at 4◦C. The supernatant
was recentrifuged at 13,800× g for 20 min at 4◦C to give a
pellet. After resuspending the pellet in 0.32 M sucrose, 1 mM
NaHCO3, this crude synaptosomal fraction was layered on
top of a three-layered discontinuous sucrose density gradient
(0.8, 1.0 and 1.2 M sucrose layers), and centrifuged at
82,500× g for 2 h at 4◦C. A needle and syringe was then
used to collect the synaptosomal fraction from the interface
between 1.0 M and 1.2 M sucrose layers. The synaptosomal
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fraction was diluted in 0.32 M sucrose, 1 mM NaHCO3.
For extraction experiments, the synaptosomal fraction was
homogenized in a Teflon homogenizer in a buffer solution
containing 1% Triton X-100 or 1 M NaCl, and centrifuged
at 165,000× g to separate the cytosolic fraction from the
membrane fraction. Protein concentration of samples was
determined using a DC protein assay kit (Bio-Rad Laboratories,
Hercules, CA, USA). The samples were denatured in sodium
dodecyl sulfate (SDS) sample buffer. Equal amounts of protein
were separated by SDS-polyacrylamide gel electrophoresis,
transferred onto polyvinylidene difluoride membranes (Merck
Millipore, Darmstadt, Germany), and probed with the primary
antibodies, anti-drebrin (clone M2F6; MBL, Nagoya, Japan;
Shirao and Obata, 1986), anti-β-tubulin (clone 152H6; Kojima
et al., 1988) and anti-β-actin (AC-15; Sigma, St. Louis,
MO, USA). After incubation with horseradish peroxidase-
conjugated second antibody, blots were developed using an
enhanced chemiluminescence system (ECL; GE Healthcare,
Piscataway, NJ, USA). Immunoreactive signals were visualized
using an image analyzer (LAS-3000; Fujifilm, Tokyo, Japan) and
quantified with the public domain software, ImageJ (available at:
http://rsb.info.nih.gov/ij/).

Statistical Analyses
Results are reported as the mean ± SEM. The normality of
distribution of each dataset was checked by Shapiro-Wilk and
Kolmogorov-Smirnov tests using EZR (Easy R) software (Kanda,
2013). The statistical significance of differences between two
groups was analyzed using Student’s t test in Excel. For multiple
comparisons, one-way ANOVAwith the Tukey–Kramer test was
performed using EZR.

RESULTS

NMDAR-Dependent LTD Is Not Induced in
the Hippocampus of DXKO Mice
Initially, we tested whether 1 Hz 15 min low-frequency
stimulation (LFS) induces NMDAR-dependent LTD in
developing DXKO mice in which neither drebrin E nor A
accumulates in dendritic spines (Kajita et al., 2017). We found
that LFS did not induce LTD in P18–20 DXKO mice, but it
did induce LTD in WT mice (Figures 1A–C; WT, 80.2 ± 4.5%
of baseline 60 min after LFS, n = 14 from four mice; DXKO,
105.1 ± 4.1%, n = 12 from five mice; p < 0.0005, Student’s
t-test). LTD induced by LFS is NMDAR-dependent in WT mice
(Mulkey and Malenka, 1992; Dudek and Bear, 1993; Kemp
et al., 2000; Malenka and Bear, 2004), suggesting that drebrin
is necessary for the induction of NMDAR-dependent LTD in
the P18–20 hippocampus. In addition, input-output relationship
in DXKO mice was significantly elevated compared to WT
(Figure 1D; WT, n = 17 from four mice; DXKO, n = 21 from
fourmice). Removal of AMPARs from postsynaptic sites through
endocytosis underlies NMDAR-dependent LTD (Malenka and
Bear, 2004; Huganir and Nicoll, 2013). Therefore, lack of LTD
remains AMPARs at postsynaptic sites without removal, induces
elevation of input-output relationship, and may cause higher

excitability. Elevation of input-output relationship is not caused
by enhancement of LTP because the amplitude of LTP was
not different between WT and DXKO mice (Supplementary
Figure S1A; WT, n = 11 from four mice; DXKO, n = 9 from four
mice). Paired-pulse ratio (PPR; Supplementary Figure S1B;
WT, n = 10 from three mice; DXKO, n = 12 from three mice)
and posttetanic potentiation (PTP; Supplementary Figure S1C;
WT, n = 9 from three mice; DXKO, n = 10 from three mice)
were not different betweenWT and DXKOmice, suggesting that
presynaptic release properties are not changed in DXKO mice.
Therefore, lack of NMDAR-dependent LTD most likely causes
elevation of input-output relationship in developing DXKO
mice.

We also examined LTD in adult DXKO mice, because LTP is
impaired in adult DAKOmice (Kojima et al., 2016). LFS induced
no LTD both in adultWT (Figures 1E,F; 104.6± 4.7% of baseline
40 min after LFS, n = 15 from four mice) and DXKO mice
(110.1 ± 6.5%, n = 12 from four mice).

mGluR5-Dependent LTD Is Enhanced in
the Hippocampus of Developing DAKO
Mice
To investigate whether LTD is also altered in DAKO mice, we
first examined whether the amplitude of LTD induced by LFS in
developing DAKO mice was different from LTD in age-matched
WT littermates. LFS induced LTD equally in 1–2 week postnatal
WT and DAKO mice (Figure 2A; WT, 82.4 ± 4.7%, n = 13 from
four mice; DAKO, 78.3 ± 4.3%, n = 14 from four mice). The
input–output relationship was not different between developing
WT and DAKO mice (Supplementary Figure S2; control,
n = 11 from four mice; KO, n = 13 from four mice).

D-APV (50 µM), an NMDAR antagonist, completely
inhibited LTD in 1–2-week-old WT mice (Figures 2B,D;
D-APV, 100.9 ± 4.2%, n = 9 from four mice; significantly
different from control at p < 0.01, Student’s t-test). This is
consistent with previous studies showing that single pulse LFS
induces NMDAR-dependent LTD in the CA1 region of the
immature hippocampus (Mulkey and Malenka, 1992; Dudek
and Bear, 1993; Kemp et al., 2000; Malenka and Bear, 2004).
However, D-APV did not significantly block LTD in DAKOmice
(Figures 2B,D; D-APV, 79.1 ± 4.6%, n = 12 from five mice).

Because mGluR5, a group 1 mGluR, also mediates LTD in the
hippocampus (Bear et al., 2004; Malenka and Bear, 2004; Lüscher
and Huber, 2010; Yasuda and Mukai, 2015), we tested whether
simultaneous application of an mGluR5 antagonist, MPEP
(10 µM) and D-APV inhibits LTD in developing DAKO mice.
Simultaneous application of MPEP and D-APV blocked LTD in
DAKO mice (Figures 2C,D; D-APV plus MPEP, 103.1 ± 2.7%,
n = 13 from seven mice, which was significantly different from
control at p < 0.0005, one-way ANOVA with Tukey–Kramer
test), although MPEP did not block LTD (Figures 2C,D; MPEP,
75.3± 3.3%, n = 10 from fourmice). This indicates that similar to
LTD induced by 5Hz stimulation in developing rat hippocampus
(Oliet et al., 1997; Yasuda and Mukai, 2015), LTD induced by
1 Hz LFS in developing DAKO mice in the present study can be
mediated by either NMDARs or mGluRs. However, NMDAR-
and mGluR-dependent LTD are not additively induced; the
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FIGURE 1 | Low-frequency stimulation (LFS) does not induce long-term depression (LTD) in DXKO mice. (A) Example of LTD in a P20 wild-type (WT) mouse.
(B) Time course of field excitatory postsynaptic potential (fEPSP) slopes before, during and after LFS in a P18 DXKO mouse. LFS did not induce LTD. (C) Average
time course of LTD experiments in P18–20 WT (n = 14 from four mice) and DXKO mice (n = 12 from five mice). NMDA receptor (NMDAR)-dependent LTD was not
induced in P18–20 DXKO mice, suggesting that either drebrin E or A is required in NMDAR-dependent LTD induction at these ages. (D) Input-output relationship in
P18–20 WT (n = 17 from four mice) and DXKO mice (n = 21 from four mice; ∗∗p < 0.01; ∗∗∗p < 0.001; Student’s t-test). (E) Example of the effects of LFS on fEPSPs
in a P257 (postnatal 36W) WT mouse. (F) Averaged time course of fEPSP slopes before, during, and after LFS in >32W WT (n = 15 from four mice) and DXKO mice
(n = 12 from four mice). LFS did not induce LTD in DXKO mice older than 32 weeks.

amplitude of LTD in control conditions was similar to those of
NMDAR-dependent LTD in the presence of MPEP and mGluR-
dependent LTD in the presence of D-APV in DAKO mice
(Figure 2D). These LTD might partially inhibit to induce each
other in control conditions as reported in the basal amygdala
(Clem and Huganir, 2013) and the amplitude of LTD was not
the sum of those of both LTD.

Next, we examined whether agonist-induced mGluR-
dependent LTD is affected in developing DAKO mice. A low
concentration (50 µM) of DHPG, a group 1 mGluR agonist, did
not show significant long-term effects in WT mice; however, it
induced LTD in DAKO mice (Figures 3A,D; WT, 97.4 ± 4.1%,
n = 14 from five mice; DAKO, 82.8 ± 2.5%, n = 18 from
four mice; p < 0.01, Student’s t-test). Although 100 µM
DHPG induced LTD in WT mice (Figures 3B,D; 90.9 ± 2.0%,

n = 11 from five mice), LTD in DAKO mice was more robust
(Figures 3B,D; 77.7 ± 2.8%, n = 19 from five mice; p < 0.05;
one-way ANOVA with Tukey–Kramer test). DHPG activates
both mGluR1 and mGluR5, and mGluR1 is also involved in
DHPG-induced LTD (Volk et al., 2006; Kumar and Foster,
2007). Therefore, we tested the effects of an mGluR1 selective
inhibitor, YM 298198, on DHPG-induced LTD. 5 µM YM
298198 did not affect 100 µM DHPG-induced LTD in WT
mice (Figures 3C,D; 89.6 ± 2.4%, n = 16 from four mice).
However, YM 298198 reduced DHPG-induced LTD in DAKO
mice (Figures 3C,D; 88.8 ± 3.2%, n = 18 from five mice;
significantly different from control DAKO mice at p < 0.05;
one-way ANOVA with Tukey–Kramer test). These results
indicate that group 1 mGluR-dependent LTD is enhanced in
developing DAKOmice.
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FIGURE 2 | LTD is both NMDAR- and metabotropic glutamate receptor (mGluR)5-dependent in the developing hippocampus of drebrin a knockout (DAKO) mice.
(A) Average time course of LTD in 1–2-week postnatal WT (n = 13 from four mice) and DAKO mice (n = 14 from four mice). (B) Average time course of LTD in the
absence or presence of D-APV in 1–2-week-old WT (n = 9 from four mice) and DAKO mice (n = 12 from five mice). D-APV completely blocked LTD in developing WT
mice, however, D-APV did not affect LTD in developing DAKO mice. (C) Average time course of LTD in the presence of MPEP (n = 10 from four mice) or D-APV plus
MPEP (n = 13 from seven mice) in 1–2-week-old DAKO mice. D-APV and MPEP were applied throughout experiments. LTD was not blocked by MPEP treatments;
however, LTD was inhibited when D-APV and MPEP were applied simultaneously in developing DAKO mice. (D) Summary of the effects of D-APV and MPEP on LTD
in 1–2-week-old WT and DAKO mice. The percentage of fEPSPs 55–60 min after LFS is shown. ∗∗p < 0.01, Student’s t-test; ∗∗∗p < 0.001, one-way ANOVA with
Tukey–Kramer test.

mGluR5-Dependent LTD Is Induced in the
Hippocampus of Adult DAKO Mice
Previously, we reported that LTP was impaired in adult DAKO
mice (Kojima et al., 2016); therefore, we considered that other
synaptic plasticity mechanisms might be abnormally induced
in the hippocampus of adult DAKO mice. We tested whether
LTD was induced in 33–53-week-old DAKO mice. LFS did not
induce LTD in adult WT mice and occasionally caused a small
enhancement of fEPSPs (Figure 4; 104.0± 4.7%, n = 12 from four
mice). This result is consistent with previous studies showing
that LTD is barely induced by single pulse LFS in the adult
hippocampus (Dudek and Bear, 1993; Kemp et al., 2000). On the
other hand, LFS induced LTD in adult DAKO mice (Figure 4;
78.7 ± 3.5%, n = 21 from eight mice; which was significantly
different from the WT at p < 0.005, Tukey–Kramer test). LTD
in adult DAKO mice was not associated with significant changes
in paired-pulse ratio (Supplementary Figure S3; baseline,
1.38 ± 0.04; 60 min after LFS, 1.41 ± 0.04, n = 5 from two
mice), suggesting that decreased transmitter release is unlikely to
be involved. D-APV did not affect LTD (Figure 4; 78.6 ± 3.8%,
n = 12 from three mice), but MPEP inhibited LTD in adult
DAKO mice (Figure 4; MPEP, 96.9 ± 3.3%, n = 16 from eight
mice, which was significantly different from control DAKOmice
at p < 0.05, one-way ANOVA with Tukey–Kramer test). These
results indicate that LTD induction in the hippocampus of adult
DAKOmice is mediated by mGluR5s.

Abnormal Accumulation of
Membrane-Bound Drebrin in
Synaptosomes in Adult DAKO Mice
Previously, we reported that drebrin E is highly accumulated
in synaptosomes prepared from DAKO mice, although the
synaptosomal distribution of other synapse resident proteins,
including CaMKIIα, Homer, PSD-95 and synaptophysin, is
not different between WT and DAKO mice (Kojima et al.,
2010). We confirmed that drebrin E was significantly more
abundant in developing DAKO mice compared than drebrin
A in WT mice (Figure 5A; WT, 1.00 ± 0.14, n = 3; DAKO,
3.88 ± 0.49, n = 3; p < 0.01, Student’s t-test). Also, drebrin
E was still much more accumulated in synaptosomes from
adult DAKO mice than drebin A in WT mice (Figure 5B;
WT, 1.00 ± 0.25, n = 4; DAKO, 7.50 ± 1.40, n = 4;
p < 0.01).

mGluR-Dependent LTD Is Not Enhanced in
DXKO Mice
To investigate whether excessive accumulation of drebrin E
or the absence of drebrin A is involved in enhanced mGluR-
dependent LTD in DAKOmice.

We have shown that LFS did not induce LTD in adult brain
of either WT or DXKO mice (Figure 1F). This suggests that
LFS-induced mGluR-dependent LTD in adult DAKO mice is
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FIGURE 3 | mGluR-dependent LTD is enhanced in developing DAKO mice. (A) Average time course of the effects of 50 µM DHPG on synaptic transmission in the
2-week-old hippocampus of WT (n = 14 from five mice) and DAKO mice (n = 18 from four mice). A low concentration of DHPG induced LTD in DAKO mice, although
it did not exert long-term effects on synaptic transmission in WT mice. (B) Average time course of LTD induced by 100 µM DHPG in the 2-week-old hippocampus of
WT (n = 11 from five mice) and DAKO mice (n = 19 from five mice). (C) Average time course of 100 µM DHPG-induced LTD in the presence of 5 µM YM 298198 in
WT (n = 16 from four mice) and DAKO mice (n = 18 from five mice). (D) Summary of DHPG-induced LTD experiments in developing WT and DAKO mice (∗∗p < 0.01;
Student’s t-test; ∗p < 0.05; one-way ANOVA with Tukey–Kramer test).

not due to the absence of drebrin A but due to the excessive
accumulation of drebrin E.

Next, we examined the long-term effects of DHPGon synaptic
transmission in developing DXKO mice. Changes in fEPSPs
induced by 50 µMDHPG was not different between 2-week-old
WT and DXKO mice (Figure 6A; WT, 94.9 ± 3.6%, n = 11 from
four mice; DXKO, 95.6 ± 4.8%, n = 14 from six mice).
LTD induced by 100 µM DHPG were not different between
2-week-old WT and DXKO mice (Figure 6B; WT, 84.7 ± 2.9%,

n = 14 from four mice; DXKO, 82.0 ± 3.7%, n = 9 from four
mice). This also suggests that excessive accumulation of drebrin E
is responsible for the aberrant mGluR-dependent LTD observed
in adult DAKOmice.

DISCUSSION

Here, we show that drebrin is required in NMDAR-dependent
LTD induction and that isoform conversion from drebrin E to

FIGURE 4 | mGluR5-dependent LTD is aberrantly induced in adult DAKO mice. (A,B) Average time course (A) and summary (B) of LTD experiments in WT
(n = 12 from four mice) and DAKO mice (control, n = 21 from eight mice; D-APV, n = 12 from three mice; MPEP, n = 16 from eight mice) at >32 weeks postnatal
(∗p < 0.05; ∗∗p < 0.01; one-way ANOVA with Tukey–Kramer test).
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FIGURE 5 | Drebrin E accumulates in synaptosome from DAKO mice. (A) Quantitative analyses of drebrin content in synaptosome from the cerebral cortices of
developing WT (n = 3) and DAKO mice (n = 3). Equal amounts of protein (25 µg/lane) were subjected to SDS-PAGE/Western blot analysis. Blots were probed with
antibodies against drebrin, β-tubulin and β-actin, and positive bands were visualized with enhanced chemiluminescence (ECL) system. The intensities of ECL signals
for drebrin was quantified and the drebrin levels were shown as the ratio of DAKO to WT and are presented as means ± SEM. Note that the amount of drebrin in
synpatosome of DAKO mice was significantlly higher thatn that of WT mice both in developing and adult mice (∗∗p < 0.01; Student’s t-test,). (B) Quantitative
analyses of drebrin content in synaptosome from adult WT (n = 4) and DAKO mice (n = 4). For original western blot images, see Supplementary Figure S4.

drebrin A is required to suppress group 1 mGluR-dependent
LTD in the adult hippocampus. In the developing hippocampus,
LFS induced NMDAR-dependent LTD in DAKO mice as well
as WT mice. This indicates that isoform conversion of drebrin
is not required for NMDAR-dependent LTD induction. On the
other hand, LFS induced mGluR5-dependent LTD in DAKO
mice throughout development and adulthood, but not in WT or
DXKO mice. In DAKO mice, excessive accumulation of drebrin
E was observed in synaptosomes in the developing and adult
brain. Therefore, sustained expression of drebrin E in DAKO
mice is responsible for induction of mGluR5-dependent LTD in
the adult hippocampus.

LTD, an activity-dependent decrease in synaptic efficacy,
is dominant in the developing brain and disappears in the
adult brain (Dudek and Bear, 1993; Kemp et al., 2000). This
suggests that LTD is important in developmental activity-
dependent remodeling of neural connections that were generated
according to genetic information. On the other hand, while
LTD is classified into NMDAR-dependent LTD or mGluR-

dependent LTD, in some brain disorders including anxiety
disorder and depression, mGluR-dependent LTD is enhanced
in adults (Niswender and Conn, 2010). Moreover, enhanced
mGluR-dependent LTD is hypothesized to underlie mental
retardation in fragile X syndrome, an autism spectrum disorder
(Lüscher and Huber, 2010; Niswender and Conn, 2010; Bhakar
et al., 2012). In addition, LTD becomes inducible again in
aged animals that develop memory decline, suggesting that LTD
might cause memory decline (Norris et al., 1996; Foster, 1999;
Rosenzweig and Barnes, 2003). Thus, inappropriate expression
of LTD could cause a decrease in brain function. In DAKOmice,
enhancedmGluR5-dependent LTD is induced in adulthood. This
is consistent with our previous studies showing that DAKO
mice develop impairment of hippocampus-dependent contextual
fear memory in adulthood (Kojima et al., 2016). In addition to
the enhanced mGluR5-dependent LTD, LTP declines in adult
DAKO mice (Kojima et al., 2016). The increase of mGluR5-
dependent LTD and the decrease of LTP may both contribute
to the memory impairment in adult DAKO mice. Collectively,

FIGURE 6 | DHPG-induced LTD is not enhanced in developing DXKO mice. (A) Average time course of 50 µM DHPG-induced LTD in 2-week-old WT (n = 11 from
four mice) and DXKO mice (n = 14 from six mice). (B) Average time course of 100 µM DHPG-induced LTD in 2-week-old WT (n = 14 from four mice) and DXKO mice
(n = 9 from four mice).
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the isoform conversion promotes normal adult brain function by
suppressing mGluR5-dependent LTD.

Involvement of mGluR1 in mGluR-dependent LTD in the
CA1 region is still in debate. Only mGluR5 is required to induce
mGluR-dependent LTD (Fitzjohn et al., 1999; Eng et al., 2016),
however, some articles reports that group 1 mGluR-dependent
LTD requires mGluR1 activation (Volk et al., 2006; Kumar
and Foster, 2007). The conditions in which mGluR1 is also
required in mGluR-dependent LTD in the CA1 region have not
been clearly understood. However, we found that YM 298198,
a mGluR1 selective inhibitor, partially inhibited DHPG-induced
LTD in developing DAKO mice (Figures 3C,D), suggesting that
mGluR1 function is also enhanced in DAKOmice.

Long isoforms of Homer (Homer 1b, 1c, 2 and 3) are
scaffold proteins for group 1 mGluRs, and they downregulate
mGluR5 function in the normal brain (Ronesi et al., 2012).
However, in fragile X model mice, Homer 1a, a short isoform
that cannot multimerize with other Homer isoforms, binds
to mGluR5 (Giuffrida et al., 2005) and disrupts interaction
between mGluRs and long isoforms of Homer. This makes
mGluRs constitutively active, resulting in the enhancement
of mGluR5-dependent LTD (Ronesi et al., 2012). Thus, the
induction of mGluR5-dependent LTD is strictly restricted in the
normal brain. Both drebrin isoforms have two binding sites for
Homers (Shiraishi-Yamaguchi et al., 2009), which bind to group
1 mGluRs and regulate their activity (Ronesi et al., 2012). This
raised the possibility that drebrin, Homer and mGluRs form
complexes. In addition, most drebrin A is bound to F-actin but
a portion of drebrin E is not bound to F-actin in the adult brain
(Aoki et al., 2005; Kojima et al., 2010). Therefore, excess drebrin E
might bind to Homer-group 1 mGluR complexes in DAKOmice
and modulate mGluR5 functions, resulting in the induction of
abnormal group 1 mGluR-dependent LTD.

In developing WT and DAKO mice, LFS induced NMDAR-
dependent LTD. However, LFS did not induce NMDAR-
dependent LTD in P18–20 DXKO mice (Figure 1), suggesting
that drebrin is necessary for NMDAR-dependent LTD in the
hippocampus. Expression of drebrin E and NMDAR-dependent
LTD is robust in the neonatal hippocampus and decreases
in parallel with development (Dudek and Bear, 1993; Kemp
et al., 2000; Aoki et al., 2005; Kojima et al., 2016); therefore,
drebrin Emight bemore important for NMDAR-dependent LTD
induction than drebrin A. However, drebrin E is not sufficient to
induce NMDAR-dependent LTD, because NMDAR-dependent
LTD is not induced in adult DAKO mice that express large
amounts of drebrin E (Figures 4, 5).

Direct interactions between drebrin and intracellular
signaling molecules critical for NMDAR-dependent LTD
induction (e.g., calcineurin, protein phosphatase 1 and rap;
Malenka and Bear, 2004) have not been elucidated. Previously,
we reported that calcium influx through NMDARs is sufficient
to induce NMDAR-dependent LTD in the P11–14 hippocampus
and that calcium release through ryanodine receptors supports
NMDAR-dependent LTD in the P18 and older hippocampus
(Yasuda and Mukai, 2015). In addition, deletion of drebrin
prevents extracellular calcium supply triggered by depletion
of intracellular stores (Mercer et al., 2010). These raise a

possibility that drebrin regulates calcium release from ryanodine
receptors. Calcium might not be sufficiently supplied through
ryanodine receptors in P18–20 DXKO mice, resulting in the
failure of NMDAR-dependent LTD induction. In contrast,
NMDAR-dependent LTD is induced in the hippocampus of
P13–16 another line of drebrin KO mice (Willmes et al., 2017).
We speculate that dependence on ryanodine receptors for
the induction of NMDAR-dependent LTD becomes gradually
higher during P15–17. However, calcium influx through
NMDAR might still have been sufficient to induce LTD in
P15–16 drebrin KO mice, presumably because LTD was induced
by stimulation, which evokes fEPSPs of approximately 1.5 mV
(Willmes et al., 2017) and NMDARs could have been fully
activated during recordings, although we usually record fEPSPs
with an amplitude of 0.3–0.4 mV.

Homer proteins bind to drebrin, and regulate calcium
release from internal stores by binding to ryanodine receptors
(Gasperini et al., 2009; Pouliquin and Dulhunty, 2009);
therefore, involvement of drebrin-Homer complexes in calcium
mobilization in dendritic spines warrants further investigation.

We have previously reported that spine length of the apical
dendrite of CA1 pyramidal cells is significantly longer in adult
DAKO mice than that in WT mice (Kojima et al., 2016). Since
these mice exhibited abnormal LTD, as well as impaired LTP,
there might be a correlation between LTP/LTD and spine length.
Although the causal relationship is still unclear, fmr1-KO mice,
an animal model of autism spectrum disorders, show abnormal
spine configurations (elongated spines and increased density)
and also show the enhanced mGluR-dependent LTD in the
hippocampus. Thus, it is possible that the abnormal regulation
of spine morphology leads to synaptic dysfunction in complex
psychiatric disorders. Therefore, to determine which possibility is
likely, DXKO mice should be useful. Changes in spine structures
in DXKOmice should be investigated in the future.
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