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Targeting tumor resistance mechanisms
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Abstract

Cancer develops resistance to treatments through many mechanisms. Single-cell analyses reveal the intratumor heterogeneity and 
dynamic relationships between cancer cell subpopulations. These analyses also highlight that various mechanisms of resistance 
may coexist in a given tumor. Studies have unraveled how the microenvironment affects tumor response to treatments and how 
cancer cells may adapt to these treatments. Though challenging, individualized treatment based on the molecular characterization 
of the tumor should become the new standard of care. In the meantime, the success rate of clinical trials in oncology remains 
dramatically low. There is a need to do better and improve the predictability of preclinical models. This requires innovative 
changes in ex vivo models and the culture system currently being used. An innovative ligand design is also urgently needed. The 
limited arsenal of medicinal chemistry reactions and the biases of scaffold selection favor structurally similar compounds with 
linear shapes at the expense of disc and spherical shapes, which leave a large chemical shape space untouched. In this regard, 
venoms have received increasing interest as a wellspring for drug candidates. Overall, the characterization of tumor heterogeneity 
has contributed to advancing our understanding of the mechanisms that underlie cancer resistance to treatments. Targeting these 
mechanisms will require setting key milestones to significantly improve the translatability of preclinical studies to the clinic with 
the hope of increasing the success rate of clinical trials.
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Introduction
Cancer is expected to become the leading cause of death  
worldwide. The Prospective Urban Rural Epidemiology 
(PURE) study revealed that in high-income countries and 
some upper-middle-income countries, deaths from cancer are 
now more common than those from cardiovascular disease 
in individuals who are 35 to 70 years old1. The reasons are  
multifactorial but reflect aging, growth of the population, and  
socioeconomic development2.

Advancements in screening, early diagnosis, and treatment have 
a major impact on the decrease in the overall cancer mortal-
ity rate3. However, tumor resistance to treatments remains the 
greatest challenge in improving the outcomes for patients with 
cancer4. The proof of concept that cancer resistance to chemo-
therapy could develop after multiple drug doses was made  
in 1942 by a multidisciplinary team of Yale University pharma-
cologists and physicians5–7 who administered intravenous injec-
tions of nitrogen mustard to a patient to treat his lymphosarcoma8.  
This clinical trial revealed what is known as acquired drug 
resistance. Further studies have shown that only some cancers 
respond to treatment, unravelling intrinsic resistance. Some  
35 years later, Ling and colleagues demonstrated the role of a  
cell surface glycoprotein, designated as permeability-glycoprotein, 
in the resistance of Chinese hamster ovary cells to colchicine9,10. 
The authors showed that these cells were also resistant to 
a wide range of structurally and mechanistically unrelated 
drugs, which is defined as multidrug resistance9,10. Ten more 
years were necessary to clone the ABCB1 gene encoding  
this permeability-glycoprotein11. This was the first member of 
a large superfamily of membrane proteins comprising 48 mem-
bers divided into seven families, termed ATP-binding cassette 
(ABC) transporters12. Since ABCB1, many other ABC transport-
ers have been associated with drug resistance13. Unfortunately, 
the majority of clinical trials failed to support the modulation  
of these drug efflux transporters as a therapeutic strategy to  
overcome ABC transporter–mediated resistance14. The toxicity 
of these inhibitors remains a major issue, among others, which 
are addressed in some articles13–15. The characterization of cancer 
response to chemotherapy has led to the identification of many 
additional mechanisms of drug resistance driven by a decreased 
expression of uptake transporters, epigenetic alterations, drug  
sequestration, and enhanced DNA damage repair4.

Targeted therapy and immunotherapy have emerged over the 
past two decades. Although these treatments have shown great 
promise in many cancers, their clinical impact remains lim-
ited by the development of cancer resistance mechanisms16,17. 
In this mini-review, we address the current therapeutic develop-
ments to overcome the mechanisms of cancer drug resistance. 
We also propose two key milestones to improve the impact of  
preclinical research on the clinic.

A shortcut toward the blueprint of tumor resistance 
mechanisms
Tumor development is a Darwinian process that leads to  
genetically heterogeneous cell populations, which interact with  

one another and with the microenvironment (Figure 1)18. The 
cancer stem cell (CSC) concept adds another level of complex-
ity. Initially, tumor heterogeneity was speculated to result from 
its hierarchical organization, sustained by a few quiescent cells, 
called CSCs, which are resistant to chemo- and radiotherapy.  
CSCs became the target of choice to cure cancer. Although 
their elimination remains a challenge, the concept has evolved 
through extensive studies, which revealed, for instance, the 
plasticity of both CSCs and non-CSCs19. Intra- and intertumor 
heterogeneity is a key feature to address cancer drug resist-
ance, perhaps the Rosetta stone of therapy resistance, to quote 
Marusyk and colleagues20. Therefore, different techniques have  
emerged to address tumor heterogeneity. For instance, the char-
acterization of a subpopulation of cancer cells can be achieved 
by single-cell sequencing21. Another next-generation sequenc-
ing method, multi-regional exome sequencing, provides insight 
into tumor mutation evolution22. However, multiple biopsy 
remains a constraint, and combination with a less-invasive  
approach, such as circulating biomarker analysis (that is, circulat-
ing tumor cells, tumor-derived cell-free DNA, and extracellular 
vesicles), is used to monitor disease development23. Following 
analysis, targeted therapies may be selected on the basis of the 
mutational profile of the tumor. Altogether, this allows treatment  
adaptation based on the discovered mutations.

Furthermore, the development of in vitro models, such as  
organoids, remains a promising tool toward a better understand-
ing of the mechanisms leading to tumor heterogeneity24. The char-
acterization of cancer heterogeneity will contribute to generating  
a blueprint of the mechanisms of resistance to treatments.

Toward therapeutic developments to overcome 
cancer resistance mechanisms
Treatment modulation
The use of drugs at their maximal tolerated dose (MTD) has 
been the gold standard for cancer treatment for years. However, 
the development of chemotherapy resistance, combined with 
high off-target toxicity, has led us to rethink the way to use 
those existing molecules without losing their bioactive effects. 
This has given rise to the growing interest in the notion of met-
ronomic chemotherapy (MC). MC refers to the constant admin-
istration of low doses of a drug without drug-free phases25.  
As mentioned previously, resistance may arise from tumor het-
erogeneity. Compared with conventional therapies, which  
target proliferating tumor cells, MC is a multitargeted therapy 
that mainly targets endothelial cells and tumor vasculature for-
mation, somehow repositioning the initial drug25. As endothelial 
cells are considered genetically stable, they are less suscepti-
ble to developing resistance mechanisms26. MC also acts against 
tumor development through the stimulation of the immune sys-
tem, which is often weakened with MTD-based chemotherapy26,27.  
MC using different classic drugs—such as cyclophospha-
mide, methotrexate, or docetaxel—has been investigated alone 
or in combination in clinical trials to fight breast cancer28.  
Unfortunately, major advances in the field have been delayed 
because of the lack of comprehension of MC mechanisms.  
However, some have recently been suggested to be more powerful 
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when used as maintenance therapy, as depicted for breast cancer  
and some pediatric malignancies38,39. On the other hand, 
research on intermittent chemotherapy (sometimes referred to 
as a treatment holiday) is still ongoing40,41. This adapted regi-
men, including extended drug breaks, would theoretically delay 
resistance, as suggested by Madan and colleagues for taxane  
resistance in prostate cancer42.

Counteracting cell plasticity
Drug exposure has been shown to activate different processes 
drastically changing cell phenotypes, such as transdifferentia-
tion or epithelial-to-mesenchymal transition (EMT), ultimately  
turning cells into treatment-refractory entities that are likely to 
include CSCs43,44. However, numerous studies with a drug holiday 
period showed resensitization to the initial treatment, suggest-
ing a reversible phenotype45,46. This raised the idea of controlling 

and reverting the acquired drug resistance to sustain treatment 
benefits. Indeed, phenotypical changes because of EMT are  
largely attributed to epigenetic modifications43. Three main strat-
egies have been designed to counteract phenotypic changes 
because of cell plasticity and these have been extensively  
reviewed44. The first consists of preventing tumor cell plastic-
ity. This has been investigated by targeting slow-cycling drug-
tolerant cells, thought to be an intermediate step in the cell 
plasticity process. Drug tolerance of these cells is partially 
attributed to chromatin modulation. The use of histone deacety-
lase inhibitors or DNA methylation inhibitors in combination  
with chemotherapy or immunotherapy may result in an effec-
tive treatment for cancer resistance47,48. The second strategy 
aims to target the new cell fate. Here, it relies on taking advan-
tage of the molecular characteristics of the mesenchymal cell. 
For instance, the tyrosine kinase receptor AXL has been in the  

Figure 1. Blueprint of tumor resistance mechanisms. A tumor is composed of genetically and epigenetically heterogeneous cell  
populations that interact with one another and with the microenvironment. Genetic alterations in signaling pathways that control cell 
proliferation, apoptosis, DNA repair, or expression of genes mediating treatment resistance are common hallmarks of cancer29. These 
cells often display chromosomal instabilities and carry extrachromosomal DNA (ecDNA). These ecDNAs were shown to drive genetic  
heterogeneity, promote tumor aggressiveness, and lead to drug resistance30. Epigenetic alterations drive cancer phenotype. Mutations have 
been identified in various classes of epigenetic modifiers involved in DNA methylation, chromatin remodeling, or histone post-translational 
modifications. Epigenetics also play a key role in the development of resistance mechanisms against anticancer treatments31. Perturbations 
in lipid metabolism lead to alterations in the biophysical properties of the lipid bilayer. Furthermore, cancer cells often express a wide 
array of drug efflux transporters and uptake transporters, including ATP-binding cassette (ABC) transporters, non-ABC transporters, and 
solute carriers. Overall, these alterations have a major impact on drug uptake. There is a complex and dynamic interplay between the 
microenvironment and the tumor through continuous paracrine communication between tumoral and stromal cells. Hypoxia leads to the 
upregulation of many genes that mediate resistance to treatments, but it may dramatically impact the effectiveness of drugs depending on 
their redox properties. The acidic extracellular compartment also has important effects on the success of chemotherapy. Likewise, there is a 
continuous interaction between the tumor and the immune system. Although immunotherapy holds great promise, mechanisms of resistance 
have been identified, and these inevitably limit the clinical impact of this treatment strategy16,32. Lastly, the microbiome has gained much 
attention over the past years33. Studies have revealed that the gut microbiome may influence the outcome of immunotherapy34,35 or promote 
chemoresistance to colorectal cancer36,37. Advances in the understanding of intratumor heterogeneity (ITH), the microenvironment, and their 
complex dynamic interplay will allow us to generate the blueprint of the mechanisms of cancer resistance to treatments.
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spotlight as a front door to kill cancer cells undergoing EMT.  
AXL inhibition leads to cell resensitization to different chemo-
therapeutics, such as mitotic inhibitors, tyrosine kinase inhibi-
tors, or platinum-based therapies49. Finally, the new cell fate is 
reversed, so promoting mesenchymal-to-epithelial transition  
(MET) is the third strategy considered. Reactivation of the  
E-cadherin promoter by cholera toxin and forskolin results in 
MET induction and resensitization to doxorubicin, paclitaxel,  
EGFR inhibitors, and proteasome inhibitors50. However, this 
option has to be designed wisely, as it could also promote meta-
static colony formation43. Differentiation therapy to reverse abnor-
mal stemness signaling pathways in CSCs also constitutes a  
popular research project to thwart resistance51.

Combinational therapies targeting resistance mechanisms
Combinational therapy requires the characterization of 
the resistance-driving mechanism. For example, second  
mitochondria-derived activator of caspases (SMAC) mimet-
ics improve the sensitization of different cancer types to classic 
chemotherapeutics. SMAC directly binds to X-linked chromo-
some inhibitors of apoptosis proteins to prevent its inhibitory 
effect on apoptosis-effector caspases, such as caspases 3, 7,  
and 952,53. Clinical trials evaluating SMAC mimetics—such as 
birinapant, LCL161, or debio 1143—as monotherapy revealed a 
moderate response54. However, they showed a significant effect 
when used as a complement for chemotherapy. A phase II clini-
cal studies combining birinapant and irinotecan has highlighted 
the potential of the combination to treat irinotecan-refractory 
metastatic colorectal cancer (NCT01188499)55. Another phase II 
study published promising results on the combination of paclit-
axel and LCL161 in triple-negative breast cancer (NCT01617668), 
supporting the interest in SMAC mimetics in combination  
with chemotherapy56.

Taking advantage of ABC transporter expression
In the past few years, light energy has become a promising strat-
egy to overcome multidrug resistance. Mao and colleagues 
developed an antibody targeting ABCB1 conjugated with a 
photosensitizing agent57. Localized light activation, via near-
infrared laser irradiation of the photosensitizing agent, leads to 
tumor-specific cytotoxicity via reactive oxygen species (ROS) 
production. ROS oxidizes NADH into NAD+, which alters the 
proton gradient across the inner mitochondrial membrane and  
interferes with ATP synthase. The lack of ATP leads to inactive 
ABC transporters and cell death. Photodynamic therapy has 
made its way to clinics in a phase 1/2a trial for the treatment of  
head and neck cancer (NCT02422979).

Toward additional potential therapeutic approaches
Mitochondrial transplantation has emerged as a new approach 
to restore mitochondrial function in a variety of diseases58.  
Patients with myocardial ischemia-reperfusion injury were the 
first clinical application of mitochondrial transplantation59. After 
treatment, all patients showed improved myocardial systolic 
function. In cancer cell lines, mitochondrial transplantation has 
been shown to restore impaired mitochondrial function, which  
impacts chemoresistance and cancer proliferation60–62. The anti-
cancer effects were shown to be independent of the toxicity 

mediated by the transplantation methods. However, as high-
lighted by Gollihue and colleagues, injection of the mitochondria 
into tissue could lead to immune response and inflammatory 
reaction even if not reported in different animal models63.  
Moreover, incorporation mechanisms are still rarely described63. 
There is a long way to go before the clinical application of  
mitochondrial transplantation in cancer treatment.

It is now well established that microRNAs (miRNAs) regulate  
numerous pathways, including oncogenic-driving processes. 
This highlights their potential as targets, using anti-miRs or 
miRNA mimics, known as miRNA replacement therapy. Anti-
miRs specifically bind and inhibit miRNA, while miRNA  
mimics restore the function of a silenced miRNA64. In a phase 
I clinical trial (NCT01829971), the safety of miR-34 mimics, 
replenishing the function of the endogenous miR-34 family 
involved in p53-related DNA damage response and apoptosis, is 
being evaluated in patients with solid tumors and hematologic  
malignancies64,65. However, this therapeutic strategy may lead 
to toxicity through off-target or on-target activity in other  
tissues and immunogenic reaction to the RNA itself or to 
the excipient used in the delivery system. Therefore, using  
miRNAs as therapeutics requires further optimization and  
extensive monitoring66.

The concept of synthetic lethality consists of a synthetic lethal 
pair, in which one is a gene product with a cancer-specific  
mutation and the other one is the drug target67. A clinical 
example of this concept is the use of PARP inhibitors to treat  
BRCA-mutant ovarian cancers68. These inhibitors have limited 
toxicity on normal cells carrying at least one copy of the BRCA 
gene. This is of particular interest, as it currently constitutes 
the only way to take advantage of tumor suppressor gene loss. 
The development of CRISPR technologies has helped set up  
in-depth screening to discover new synthetic lethal pairs67.

We can also cite the development of proteolysis-targeting  
chimeric molecules (PROTACs). PROTACs are made up of 
a ligand of the target protein and of an E3 ligase recruiting  
element, attached together by a linker69,70. The system degrades 
the protein of interest by using the endogenous ubiquitin  
proteasome system69,70. Two PROTACS against the androgen 
receptor and the estrogen receptor (called ARV-110 and 
ARV-471, respectively) recently reached phase I clinical trial  
(NCT03888612 and NCT04072952), underlining the interest  
in this new therapeutic strategy.

Setting milestones
Time has come for a new paradigm shift in the way we think of 
preclinical models. The last one occurred more than 30 years 
ago with the development of the NCI-60 panel of cancer cell  
lines71,72. The major objective of this change was to improve 
the limited predictability of transplantable murine neoplasms 
for solid tumors. Since then, larger cancer cell line panels 
have been created to reflect the genomic diversity of human  
cancers73,74. In a recent study, the probability of success of a  
clinical trial in oncology was estimated to be 3.4%75,76. Many  
reasons may explain why most clinical trials fail77. Among these, 
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the predictability of preclinical models remains limited. At  
this stage, we should shift from incremental improvements 
of these models, which have been observed over the past 30 
years, to an innovative change. Ex vivo models that recapitu-
late the intra- and intertumor heterogeneity in a culture system 
that better simulates the in vivo situation are needed78,79. In this 
regard, human pluripotent stem cell– or adult stem cell–derived 
organoid models showed great potential in modeling human  
diseases80. Cancers have been studied using organoids  
generated either from the genetic engineering of stem cells 
or directly from tumor biopsy81,82. Efforts have been directed 
toward mimicking the tumor microenvironment and developing  
organoids-on-a-chip83,84. In a recent study, Koike and colleagues 
demonstrated the feasibility of using human organoids to study 
the communication between different organs, more precisely 
the liver, the pancreas, and the gastrointestinal tract85. It was 
also shown that the vascular network can be generated in these  
models86. Technology has evolved, and sophisticated chamber 
devices have been proposed87–89. It is not an exaggeration to say 
that there is currently no unsurmountable obstacle for recapitu-
lating the complexity of cancers and integrating these powerful  
models into preclinical research.

A limited number of reactions also dominate the chemical land-
scape of medicinal chemistry, which, combined with the biases 
of scaffold selection, favor structurally similar compounds  
with linear shapes. There is a compelling need for an innovative 
ligand design90. Perhaps one way out would consist of putting 
more effort toward the characterization of venoms91,92. It is  
estimated that 200,000 venomous species exist, which represent 
around 40 million toxins; of these, fewer than 5,000 have been 
pharmacologically characterized. Venomics—which integrate 
genomic, transcriptomic, and proteomic approaches to the study of 
venoms—is gaining interest as a strategy for drug discovery93–95.  
Tozuleristide uses chlorotoxin, a 36–amino acid peptide  
isolated from the venom of the deathstalker scorpion Leiurus 
quinquestriatus, and an infrared dye92. It is being evaluated as a  
new diagnostic drug in a phase II/III clinical trial to deter-
mine how well the drug can help distinguish between tumor and  
normal tissue during surgery in pediatric primary central  
nervous system tumors (NCT03579602). What is unique with 
this peptide is that it is retained in the tumor and can cross  
the blood–brain barrier96. Chlorotoxin molecular targets include 
the CLC-3 voltage-gated chloride channel, annexin-2, and 

matrix metalloproteinase-296–99. SOR-C13 is a carboxy-terminal  
truncation of soricidin, a 54-residue paralytic peptide found in 
the venom of the short-tailed shrew Blarina brevicauda. This  
peptide blocks Ca2+ uptake via inhibition of TRPV6 channel100.  
A phase I trial revealed that SOR-C13 was safe and generally 
well tolerated in patients with advanced tumors of epithe-
lial origin (NCT01578564). The study also suggested that  
SOR-C13 has anticancer activity with stable disease observed in 
more than half of the patients evaluated101. Many other peptides 
have been shown to have an anticancer effect, but the major-
ity of these studies are still at the very preliminary stage102–105. 
Burkholderia lethal factor 1 (BLF1) is a monomeric toxin from 
the bacteria Burkholderia pseudomallei, which inhibits transla-
tion initiation by inactivation of eukaryotic initiation transla-
tion factor 4A (eIF4A) through deamidation of the glutamine  
339106. BFL1 was shown to selectively induce apoptosis in  
MYCN-amplified neuroblastoma cell lines107. It is worth  
mentioning that Tv1, a venom peptide from the marine snail  
Terebra variegata, was shown to selectively kill hepatocellular 
carcinoma cells in syngeneic tumor-bearing mice. The proposed 
mechanism of action includes the binding of Tv1 to TRPC6 
and/or the TRPV6 channel, which leads to calcium-dependent  
apoptosis108. To the best of our knowledge, neither BFL1 nor 
Tv1 has entered clinical trials. This library of natural prod-
ucts, mostly unexplored, holds great promise for the treatment 
of cancer, especially for those who are intrinsically resistant to 
chemotherapy or develop resistance to targeted therapy, such as  
the case with hepatocellular carcinoma109.

These are two key milestones that can realistically be achieved 
in the very near future. From there on, we may reasonably 
speculate that the number of compounds reaching clinical  
practice should increase tremendously.
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