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Abstract
Artificial intelligence (AI), particularly deep learning, has demonstrated remarkable performance in medical imaging across a 
variety of modalities, including X-ray, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron 
emission tomography (PET), and pathological imaging. However, most existing state-of-the-art AI techniques are task-specific and 
focus on a limited range of imaging modalities. Compared to these task-specific models, emerging foundation models represent a 
significant milestone in AI development. These models can learn generalized representations of medical images and apply them to 
downstream tasks through zero-shot or few-shot fine-tuning. Foundation models have the potential to address the comprehensive 
and multifactorial challenges encountered in clinical practice. This article reviews the clinical applications of both task-specific 
and foundation models, highlighting their differences, complementarities, and clinical relevance. We also examine their future 
research directions and potential challenges. Unlike the replacement relationship seen between deep learning and traditional 
machine learning, task-specific and foundation models are complementary, despite inherent differences. While foundation models 
primarily focus on segmentation and classification, task-specific models are integrated into nearly all medical image analyses. 
However, with further advancements, foundation models could be applied to other clinical scenarios. In conclusion, all indications 
suggest that task-specific and foundation models, especially the latter, have the potential to drive breakthroughs in medical 
imaging, from image processing to clinical workflows.
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Introduction

Artificial intelligence (AI), particularly with emerging deep 
learning techniques, has shown remarkable performance 
in the acquisition and interpretation of medical imag-
ing. Its applications span all major imaging modalities, 
including X-ray, computed tomography (CT), magnetic 
resonance imaging (MRI), ultrasound, positron emission 
tomography (PET), and pathological imaging.[1–7] Most 
existing state-of-the-art AI algorithms or medical imaging 
systems primarily focus on specific tasks using single or 
limited imaging modalities.[8] In clinical practice, how-
ever, radiologists must identify all potential abnormal 
features across medical images, which is a comprehensive 
and multifactorial task.[9,10] In addition, for relatively rare 
diseases, task-specific AI algorithm training often encoun-
ters heavily imbalanced datasets, leading to significant 

performance degradation.[11,12] Therefore, developing 
medical foundation techniques that can manage various 
tasks and image modalities is crucial for advancing 
broader AI applications in medical imaging.

Recently, large-scale foundation models, such as ChatGPT 
and the Segment Anything Model (SAM), have achieved 
significant success in the fields of natural language pro-
cessing (NLP) and computer vision.[13–15] Pretrained on 
extensive datasets of natural images and/or language, 
these models exhibit strong zero-shot or few-shot generali-
zation capabilities.[13–16] Compared with natural images, 
however, medical images have their unique characteristics. 
First, medical images are acquired from diverse imaging 
devices with different physical properties and energy 
sources, including light, X-rays, ultrasound, nuclear imag-
ing, and magnetic resonance.[11,17–19] Second, medical 

mailto:yangyangqiqi@gmail.com


Chinese Medical Journal 2025;138(6) www.cmj.org

652

images present information on a range of scales, from 
cells to organ systems to the whole body.[20,21] Therefore,  
medical foundation model development cannot be 
achieved by simply fine-tuning the foundation models 
designed for natural images. Instead, domain-specific 
foundation models adapted to the medical field must be 
designed to achieve optimal performance.

Similar to previous development trends, AI advancements 
for natural images would rapidly transition into the medi-
cal imaging field. The SAM in medical images (MedSAM) 
has been proposed to enhance performance in universal 
medical imaging segmentation.[22] Furthermore, modality- 
specific foundation models for X-ray, CT, MRI, and 
ultrasound have been developed.[23–26] These models can 
learn generalized representations of medical images and 
are applied to downstream medical tasks using zero-shot 
or few-shot fine-tuning.[8] As a result, foundation models 
trained on medical images may offer more robust solu-
tions to critical clinical challenges, driving advancements 
in medical imaging and improving disease diagnosis and 
treatment efficacy and efficiency.

In this review, we aimed to provide a comprehensive 
overview of existing task-specific models and recently pro-
posed foundation models in medical imaging, comparing 
their differences and mutual relationship and describing 
their future directions. We conducted a literature search 
using Google Scholar and PubMed for related works and 
published articles after the year 2000, employing the fol-
lowing keywords: task-specific model, transfer learning, 
segmentation, classification, registration, enhancement, 
image generation, foundation model, medical imaging, 
vision foundation model, vision-language foundation 
model, artificial intelligence, and deep learning. To cre-
ate a thorough overview, we selected and organized the  
relevant and recent studies based on the following criteria: 
(1) covering typical image modalities in the medical imag-
ing field; (2) primarily focusing on typical imaging analysis 
tasks; and (3) excluding the analog work in the same field. 
The articles only published in English were included.

Task-Specific Models

Task-specific medical image analysis is one of the most 
important fundamental thinking pathways in medical 
image processing due to the limited capabilities of com-
putational learning to acquire generalized knowledge. 
Complex and comprehensive medical tasks are often 
divided into multiple, distinct specific tasks to achieve 
better performance. The most common tasks include 
segmentation, classification, enhancement, and regis-
tration.[27–30] Traditional machine learning approaches 
address these tasks by relying on human-based feature 
extraction.[31] With the rapid advancements in recent 
years, deep learning techniques demonstrate strong 
capabilities for automatic feature extraction, without the 
need for predefined rules or manual intervention, thereby 
enabling the handling of these tasks more efficiently 
and accurately. Deep learning techniques have shown  
promising performance in automating these tasks. Table 1 
illustrates examples of task-specific models in medical 
imaging.

Segmentation

Medical image segmentation tasks involve delineating 
or labeling specific regions or structures within medical 
images. This process includes identifying and extracting 
regions of interest, such as organs, tumors, or lesions, 
from complex medical imaging data. Image segmentation 
plays a crucial role in medical image analysis by accu-
rately delineating structures, enabling precise localization 
and quantitative assessment, and supporting diagnosis 
and personalized treatment. In traditional machine learn-
ing, image segmentation methods mainly rely on gray 
intensity, edge, morphological, and textural features of 
each distinct region, including statistical model-based,[32] 
boundary detection-based,[33] and similarity criteria-based 
methods.[34,35] However, these approaches often struggle 
with images containing irregular shapes and complex 
structures.

With the development of deep learning, fully convolu-
tional neural networks and various modifications of 
these architectures are among the most effective deep 
learning models for medical image segmentation.[36] 
They offer the advantage of analyzing large portions 
of the image simultaneously, thereby reducing repeated 
convolution operations.[36] For example, in brain tumor 
segmentation, Havaei et al[37] proposed a 2D two-path-
way cascading deep neural network—the local and global 
pathways—specifically for glioblastoma segmentation 
in multi-modality MRIs, including T1, T2, T1C, and 
fluid attenuation inversion recovery (FLAIR). This deep 
cascading network effectively exploits both local and 
global contextual features to overcome the lack of 3D 
information, achieving a state-of-the-art Dice score of 
0.85. Another study developed a multi-label 3D U-Net to 
segment subcortical volume, including the choroid plexus, 
lateral posterior ventricle horn, cerebellum, and cavum 
septum pellucidum et vergae, from 3D fetal ultrasound. 
This network also achieved a Dice score exceeding 0.85, 
demonstrating its effectiveness in accurately segmenting 
these complex structures.[38] Intracranial hemorrhage 
segmentation is another typical clinical application of 
AI. Islam et al[39] introduced a novel dilated convolution 
neural network integrated with hypercolumn features, 
trained on 89 CT scans, for automated intracerebral  
hemorrhage segmentation in CT images. The model 
achieved a state-of-the-art Dice score of 89.04%. In addi-
tion to these examples, deep learning techniques have been 
widely applied to various segmentation tasks, including 
brain anatomy,[40–42] ischemic lesions,[43–45] cancer,[46–48] 
liver tumors,[49–51] retinal vessel[52], and among others.

Classification

Classification tasks in medical imaging primarily involve 
determining the presence or absence of abnormalities, 
distinguishing between benign and malignant conditions, 
and predicting prognostic information. These tasks enable 
healthcare professionals to make informed decisions about 
patient management by providing a clear assessment of 
imaging findings. Moreover, accurate classification can 
streamline the diagnostic workflow, allowing for faster 
identification of critical cases that require immediate 
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Table 1: Examples of task-specific models in medical imaging.

Task type Image modality Training datasets Performances References

Segmentation
Brain glioblastomas 

tumor
MR BRATS2013 Dice score of 0.85; Specificity of 0.93; 

Sensitivity of 0.80.

[37]

Subcortical tissue Ultrasound 537 fetal images from gestation 
between 18 and 26 weeks

Dice scores of 0.85, 0.85, 0.78, and 0.90 
for choroid plexus, lateral posterior ven-
tricle horn, cavum septum pellucidum et 
vergae, and cerebellum, respectively.

[38]

ICH CT 89 CT images from ICH 
patients

Dice score of 89.04%; Specificity of 
99.83%; Sensitivity of 91.51%.

[39]

Brain anatomy MR, CT 70 T1w and T2w MRI; 840 
T1w MRI; 62 CT scans

Dice score of above 0.91,0.97, 0.98, and 
0.96 for the entire brain, GM, WM, 
and CSF respectively; Dice scores of 
above 0.97 and 0.95 for WM and GM, 
respectively; Overall Dice score of 0.84 
for eleven intracranial structures.

[40–42]

Ischemic lesions MR, CT 2348 DWI; 103 CT perfusion; 
ISLES 2015 and ISLES 2017

Best Dice score of 0.88 for acute and 
subacute ischemic lesions; Dice score of 
0.68; Dice score of 0.85.

[43–45]

Cancer MR, X-ray 140 T2w and DWI; 139 T1w; 
MIAS dataset

Best Dice score of 0.70 for rectal cancer; 
Dice score of 0.80 for endometrial 
cancer; Dice score and Jaccard score 
of 0.82 and 0.89 for breast cancer, 
respectively.

[46–48]

Liver tumor CT, histology 
images

20 CT scans; IRCADB01; 
80 hematoxylin and eosin 
stained histopathology images

Accuracy of 98.8%; Dice score of 99.2%; 
F1 score of 83.59%

[49–51]

Retinal blood vessel Retinal images 120 retinal images Accuracy of 0.978 [52]

Classification
Alzheimer’s disease MR 489 MR scans Best accuracy rates are 95.87% and 

97.15% on 1.5T and 3T datasets, 
respectively.

[58]

Breast cancer Histology 
images

7909 microscopic biopsy 
images

Accuracy of 95.4% [59]

Lung  adenocarcinoma CT 480 CT scans Best accuracy of 90% and AUC of 0.935 [60]

Brain hemorrhage CT 8855 CT images Accuracy of 93.48% [71]

Brain tumor MR 233 CE-MRI Accuracy of 94.82% [73]

Normal cardiovascular 
tissues and organs

Histology 
images

6000 blocks of images F-score between 0.717 and 0.928 for 
elastic, heart, muscular, connective, vein, 
and light

[73]

Other tasks
Image registration CT and MR 45 short-axis cine MRIs and 

2060 chest CT
Dice scores of 0.89 and 0.88 for cine MRI 

and chest CT, respectively.

[74]

Image registration CT and MR 45 short-axis cine MRIs and 
2060 lung CT

Normalized cross-correlation of 0.947 
and 0.956 for chest CT and cine MRI, 
respectively.

[75]

Enhancement of signal-
to-noise ratio

CT Close to 6000 2D full-dose and 
corresponding low-dose (1/4 
of the full-dose) CT images

PSNR of 47.90 and SSIM index of 0.9753 [76]

Enhancement of signal-
to-noise ratio

MR 49 high-field-strength MRI 
and corresponding 64mT 
MRI with T1-weighted, 
T2-weighted and FLAIR

∆NCC of 0.041, 0.044, and 0.027 for 
T1w, T2w, and FLAIR.

[77]

Image generation: gener-
ating synthetic FLAIR

MR 1416 DWI and FLAIR Synthetic FLAIR with diagnostic perfor-
mances similar to real FLAIR

[78]

Image generation: gener-
ating synthetic CTA

CT 1749 non-contrast CT and 
corresponding CTA

Synthesizes CTA with diagnostic perfor-
mances similar to real CTA images

[79]

AUCs: Area of under curves; CE-MRI: Contrast-enhanced MRI; CSF: Cerebrospinal fluid; CT: Computed tomography; CTA: CT angiography; 
DCE-MR: Dynamic contrast-enhanced MR; DWI: Diffusion-weighted images; FFDM: Full-field digital mammography; FLAIR: Fluid attenuation 
inversion recovery; GM: Gray matter; ICH: Intracerebral hemorrhage; MIAS: Mammographic Image Analysis Society; MR: Magnetic resonance; 
MRI: Magnetic resonance imaging; NCC: Normalized cross-correlation; PSNR: Peak signal-to-noise ratio; SSIM: Structural similarity; WM: White 
matter.
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attention. It also facilitates the development of risk strati-
fication models, helping to prioritize patient treatment 
based on the likelihood of disease progression. Similar to 
segmentation, traditional classification machine learning 
techniques also rely on feature engineering, where the dif-
ferences between categories are manually extracted, and 
clustering methods are then used to distinguish between 
these categories. Common classification methods include 
support vector machine (SVM),[53,54] decision trees,[55] 
random forest,[56] and k-nearest neighbors.[35,57]

Deep learning-based classifiers typically use convolutional 
neural networks to extract features, followed by fully 
connected layers for classification. Similar to segmen-
tation tasks, many deep learning classifiers are trained 
from scratch or use pretrained features to optimize per-
formance. For example, in classifying Alzheimer’s disease 
(AD), a convolutional neural network based on GoogleNet 
architecture was trained to identify AD patients using 
diffusion-tensor images with a high accuracy of over 96% 
when distinguishing them from normal controls.[58] To 
distinguish benign from malignant breast cancer, Nawaz 
et al[59] proposed a DenseNet architecture for multi-class 
breast cancer classification using histopathological 
images. This model was trained on 7909 microscopic 
biopsy images and achieved high performance, with an 
accuracy of 95.4%. For prognostication in non-small cell 
adenocarcinoma lung cancer, Paul et al[60] developed a 
VGGNet-based network to extract deep features from CT 
images to predict short- and long-term survival outcomes, 
achieving state-of-the-art performance with an accuracy 
of 90% and an AUC of 0.935.

Another effective deep learning approach for classifica-
tion tasks is transfer learning, a novel strategy for training 
models with limited datasets, based on the notion that 
knowledge can be transferred at the parametric level 
of deep learning models.[61] The deep learning models 
were trained on pretraining datasets, allowing the pre-
trained model parameters to be utilized for new tasks. 
Networks such as LeNet,[62] AlexNet,[63] VGGNet,[64] 
ResNet,[65] GoogleNet,[66] DenseNet,[67] XceptionNet,[68] 
and SqueezeNet[69] were pretrained on the ImageNet 
dataset[70] before being fine-tuned for other classification 
tasks. A study by Dawud et al[71] detected brain hemor-
rhage on CT images using a SVM based on a pretrained 
AlexNet. The findings showed that the pretrained AlexNet- 
based SVM outperformed a convolutional neural network 
created from scratch. In addition, Swati et al[72] reported 
similar results for brain tumor detection on multi-mo-
dality MRIs. In cardiac image analysis, Mazo et al[73] 
proposed using pretrained ResNet, VGGNet, VGG16, 
and Inception transfer learning models to identify nor-
mal cardiovascular tissues and organs, achieving F-score  
values ranging from 0.717 to 0.928.

Other imaging-related tasks

While most deep learning applications in medical imaging 
have focused on classification and segmentation tasks, 
other imaging-related tasks, such as registration, enhance-
ment, and image generation, have also seen significant 
advancements using deep learning techniques. Image 

registration addresses the spatial alignment of different 
medical images, either from different modalities or from 
different time points. By ensuring that corresponding 
anatomical structures align correctly, image registration 
allows for improved treatment planning, monitoring 
disease progression, and multimodal data integration for 
comprehensive assessments. Vos et al[74] proposed an unsu-
pervised deep learning multi-modality image registration 
framework based on traditional affine and deformable 
similarity metrics. This framework was trained on 45 car-
diac cine MRI scans and 2060 chest CT images, providing 
outstanding registration performance for both cardiac 
cine MRI and chest CT images. In another approach, 
probability distribution knowledge was incorporated to 
enhance registration performance through Bayesian deep 
learning techniques. The architecture achieved improved 
performance in cardiac MRI and lung CT scans.[75]

In addition to registration, image enhancement techniques 
have significantly contributed to improving the spatial 
resolution and signal-to-noise ratio of medical images. 
Enhanced images enable healthcare professionals to 
make more accurate diagnoses and assessments because 
they provide better visibility of anatomical structures 
and abnormalities. Li[76] developed a cycle-consistent 
generative adversarial network (CycleGAN) to enhance 
the signal-to-noise ratio in low-dose CT images. This 
model demonstrated comparable performance in the 
peak signal-to-noise ratio and structural similarity index 
between full- and denoised low-dose CT images. A key 
advantage of this model is that it does not require aligned 
full- and low-dose CT image pairs for training. A similar 
deep learning architecture also demonstrated outstanding 
enhancement performance for low-field-strength MRI. 
Lucas et al[77] used the CycleGAN architecture to improve 
64mT low-field-strength MRI quality. Trained on paired 
low- and high-field-strength MRIs from 49 multiple 
sclerosis patients, CycleGAN exhibited state-of-the-art 
performance in evaluating brain morphometry and white 
matter lesions.

Image generation has recently emerged as a research  
interest in deep learning. This modality facilitates the 
creation of new image modalities or modifies existing 
ones based on learned patterns and features from training 
datasets. These tasks can generate entirely new images, 
simulate variations of existing ones, or enhance certain 
features, aiding data augmentation, visualization, and 
personalized medicine. For example, deep learning-based 
image synthesis methods could reduce the MRI scan times. 
Benzakoun et al[78] proposed a deep learning method to 
generate synthetic FLAIR images from diffusion-weighted 
images (DWI) for ischemic stroke patients, significantly 
reducing MRI duration. The generated synthetic FLAIR 
images demonstrated comparable diagnostic performance 
to real FLAIR images in identifying the DWI-FLAIR 
mismatch, a critical marker for assessing ischemic 
stroke progression. Another example involves synthetic 
iodinated contrast agent-free CT angiography image genera-
tion using generative adversarial network (GAN)-based  
methods, reducing the allergy risk associated with iodi-
nated contrast agents.[79]
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Foundation Models

Foundation models have gained prominence in AI in 
recent years, largely due to their impressive performance 
in NLP. Generative pretrained transformer (GPT) models 
are one of the best-known foundation models and have 
demonstrated impressive performance across a variety of 
NLP tasks, such as question response, translation, and 
sentence comprehension. Inspired by GPT models, foun-
dation models that learn universal image representation 
have been developed to tackle computer vision tasks, 
including segmentation, classification, and visual concepts 
understanding. These models are typically trained on vast 
datasets, enabling them to learn general representations 
and capabilities that can be effectively transferred across 
various domains and applications [Figure  1]. Most 
existing foundation models in medical imaging analysis 
are built upon transformer architecture, which primarily 
consists of three components: a vision transformer-based 
image encoder for extracting image features; a prompt 
encoder for integrating user interactions from different 
prompt modes, including point, bounding boxes, and 
masks; and a mask decoder for predicting segmentation 
results using image and prompt embeddings [Figure  2]. 
Foundation models differ significantly from traditional 
pretrained transfer learning models. Pretrained transfer 
learning models are designed to tackle specific down-
stream tasks closely related to the pretraining dataset and 
often require large amounts of labeled data for supervised 
fine-tuning.[80] However, foundation models can handle 
a broad range of tasks using a singular set of model 

weights by zero-shot or few-shot learning, or prompt 
engineering.[81,82] Based on pretrained dataset modalities 
and clinical scenarios, foundation models are typically 
classified into three categories: general vision foundation 
models, modality-specific vision foundation models, and 
vision-language foundation models [Table 2].

General vision foundation models

SAM is a new general vision foundation model for image 
segmentation, pretrained on 11 million natural images 
with one billion masks. SAM can perform promptable seg-
mentation tasks beyond the datasets used during training 
with zero-shot generalization, demonstrating impressive 
performance on natural images.[14] To evaluate its per-
formance on medical images, Roy et al[83] used SAM to 
segment multiple abdominal organs on CT images using 
promptable points or boxes. Although its performance 
was not excellent, SAM showed significant potential 
as a promising candidate for downstream tasks. Deng  
et al[84] also employed SAM to segment tumor, non-tumor 
tissue, and cell nuclei on whole-slide images (WSI). Their 
findings revealed that SAM’s performance was signifi-
cantly inferior to that of task-specific models, particularly 
in cell nuclei segmentation where its performance was 
deemed unacceptable. Mazurowski et al[85] and Shi et al[86]  
observed similar results.

The SAM’s significant performance differences on natural 
vs. medical images highlight the fundamental distinctions 
between these two image types. To address the knowledge 
gap between natural and medical images, MedSAM fine-
tunes SAM using over one million 2D medical images 
for universal segmentation tasks.[22] MedSAM demon-
strated better performance than UNet-based task-specific  
models, with median Dice scores of 94.0, 94.4, 81.5, 
and 98.4 for segmenting intracranial hemorrhage on CT, 
glioma on magnetic resonance (MR) T1, pneumothorax 
on X-ray, and polyps on endoscopy images, respectively. 
However, its out-of-the-box performance on vessel-like 
segmentation tasks remains unsatisfactory.[22] In addition, 
for 3D volumetric medical images, Wang et al[87] intro-
duced SAM-Med3D, a modified version of SAM designed 
for 3D segmentation tasks. Trained from scratch on over 
131,000 3D masks across 247 categories, SAM-Med3D 
outperforms both SAM and MedSAM in multiple organ 
and lesion segmentation tasks.

The aforementioned works demonstrate that a unified, 
generalized foundation model cannot achieve excellent per-
formance across both natural and medical images due to the 
significant feature differences between them. However, these 
foundation models may potentially improve performance in 
specific medical imaging modalities. Currently, foundational 
models have been proposed primarily for segmentation 
tasks, but more comprehensive foundational models that 
span multiple tasks may be developed in the future.

Modality-specific foundation models

Due to the underperformance of general foundation  
models in medical imaging analysis tasks, modality-specific 

Figure 1: Datasets cover various imaging modalities and multiple anatomical structures 
in medical imaging.
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foundation models have been developed to address the 
unique challenges associated with particular imaging 
modalities. Modality-specific foundation models are 
typically built upon general foundation models and are 
trained on large-scale medical images from a specific 
modality to leverage the images’ unique characteristics.

Modality-specific foundation models for 2D medical 
imaging analysis were initially developed because the 2D 
image dimensions are similar to those of natural images. 
The primary 2D medical imaging modalities include 
computational pathology, retinal imaging, transparent 
medical images, and X-rays. Xu et al[6] developed a 
pathology foundation model for WSI images, supporting 
9 cancer subtyping tasks and 17 pathomics tasks across 
31 major tissue types. This model was trained on 1.3 
billion 256 × 256 pathology images from 30,000 patients, 
achieving state-of-the-art performance in 25 out of 26 
tasks. For example, for EGFR mutation prediction, this 
foundation model achieved improvements of 23.5% and 
66.4% in area under the receiver operating characteristic 
curve (AUROC) and area under precision-recall curve 
(AUPRC), respectively, compared to the second-best 
model. Kim et al[88] introduced a dermatological image 
foundation model called MONET, trained on 105,550 
images, and designed to address diagnostic challenges 
arising from the heterogeneity of diseases, skin tones, 
and imaging modalities. In 21 classification tasks, such 
as erythema, MONET achieved a mean AUROC of 
0.766, outperforming the fully supervised task-specific 
ResNet-50 model, which had a mean AUROC of 0.692. 
Yu et al[89] proposed a retinal foundation model to learn 
universal representations from multimodal retinal images, 
including color fundus photography and optical coherence 
tomography. By training on over 180,000 retinal images, 
this model outperformed others in three diagnostic clas-
sification tasks: diabetic retinopathy grading, glaucoma 
detection, and multi-disease diagnosis, with the AUROC 
for each task exceeding 0.78. In the X-ray imaging field, 
X-ray foundation models have also been developed for 

various tasks, such as chest X-ray diagnosis[1,90,91] and 
X-ray image segmentation.[92,93]

Compared to 2D medical images, 3D medical images 
offer more accurate volume estimation, detailed anatomical 
information, and better spatial context. However, most 
SAM-based foundation models experience a decline in 
performance when applied to 3D medical image analysis.[9] 
To address these challenges, modality-specific foundation 
models for 3D medical images have recently been pro-
posed. Cox et al[94] developed an MRI-specific foundation 
model for multimodal brain 3D segmentation tasks using 
a two-stage pretraining approach based on vision trans-
formers. This model was trained on T1- and T2-weighted 
FLAIR from 41,400 participants. In the first stage, the 
model learns generalized features, such as the shapes and 
sizes of various brain structures. The second stage focuses 
on disease-specific features, such as the geometric shapes 
of tumors and lesions, as well as their spatial placements 
within the brain. The model demonstrated significantly 
superior performance compared to previously successful 
fully supervised deep learning models in both tumor 
and anatomical segmentation tasks, with mean Dice 
coefficients of 0.9115 and 0.721, respectively. Huang  
et al[26] designed a CT-specific foundation model for 
universal segmentation tasks, trained on 1204 images 
with 104 anatomical structures. This model also exhibited 
approximately 10% improvement in the mean Dice coef-
ficients compared to existing supervised deep learning 
models in segmenting anatomical structures within the 
TotalSegmentator dataset. Zhang et al[95] proposed a 
brain lesion-specific foundation model for various brain 
lesion types on MRI. This model was trained on 6585 
3D brain MRIs and achieved excellent performance for 
14 brain lesion segmentation tasks. In addition to CT 
and MRIs, Liu et al[96] created a 3D optical coherence 
tomography (OCT) foundation model, named OCTCube, 
to generalize various diagnostic tasks for retinal disease, 
outperforming existing models.

Figure 2: The typical architecture of an existing foundation model in medical imaging analysis. The image encoder extracts image features, and the prompt encoder integrates user 
interactions from different prompt modes, including points, bounding boxes, and masks. The mask decoder is used to predict segmentation outputs using image and prompt embeddings.
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Table 2: Examples of foundation models in medical imaging.

Foundation model type Image modality Training datasets Performances References

General vision foundation models
SAM Natural images 11 million natural images with 1 

billion masks
Did not achieve state-of-the-art performance in 

medical imaging.

[14]

MedSAM Medical images Over 1 million 2D medical images Median Dice scores of 94.0%, 94.4%, 81.5%, 
and 98.4% for segmenting intracranial 
hemorrhage on CT, glioma on T1w MR, 
pneumothorax on X-ray, and polyps on 
endoscopy images, respectively. However, 
unsatisfactory performance on vessel-like 
segmentation tasks.

[22]

SAM-Med3D Medical images Medical images with over 131,000 
3D masks across 247 categories

Outperforms both SAM and MedSAM in 
multiple organ and lesion segmentation  
tasks

[87]

Modality-specific vision foundation models
Pathology foundation 

model
Pathology images 1.3 billion 256 × 256 pathology 

images
Achieving state-of-the-art performance in 25 out 

of 26 tasks and significantly outperforming 
the second-best method on 18 tasks.

[6]

Dermatological founda-
tion model

Dermatological 
images

105,550 dermatological images Outperforming the fully supervised task- 
specific ResNet-50 model in 21  
classification tasks.

[88]

Retinal foundation 
model

Retinal images Over 180,000 retinal images Outperforming others in three diagnostic 
classification tasks: diabetic retinopathy 
grading, glaucoma detection, and multi-dis-
ease diagnosis.

[89]

MRI-specific foundation 
model

MR T1w and T2w FLAIR from 41,400 
participants

Outperforming fully supervised learning deep 
learning models in both tumor and anatomi-
cal segmentation tasks.

[94]

CT-specific foundation 
model

CT 1204 images with 104 anatomical 
structures

Outperforming fully supervised learning deep 
learning models in segmenting anatomical 
structures.

[26]

Brain Lesion-specific 
foundation model

MR 6585 3D brain MR images Achieving state-of-the-art performance for 14 
brain lesion segmentation tasks.

[95]

3D OCT foundation 
model

OCT 26,605 3D OCT volumes Outperforming fully supervised learning deep 
learning models on 27 out of 29 tasks

[96]

Vision-language foundation models
Pathology image-text 

foundation model
X-ray 377,110 chest X-ray images and 

corresponding radiology  
reports

Outperformed a fully supervised model in the 
detection of three pathologies.

[1]

Histopathology 
vision-language 
foundation model

Histopathology 
images

Over 1.17 million histopathology 
images paired with correspond-
ing captions

Achieving state-of-the-art performance across 
various downstream tasks, including histology 
image classification, segmentation, and 
captioning.

[99]

Retinal vision-language 
foundation model

Retinal images 1.6 million retinal images with 
explicit labels

Achieving state-of-the-art performance in the 
diagnosis and prediction of sight-threatening 
eye diseases, heart failure, and myocardial 
infarction.

[100]

CT vision-language 
foundation model

CT 6+ million images from 15,331 
CTs, corresponding EHR diagno-
sis codes (1.8+ million codes), 
and corresponding radiology 
reports (6+ million tokens)

Achieving acceptable performance across 6 
evaluation task types comprising 752 individ-
ual tasks.

[101]

Echocardiogram 
vision-language 
foundation model

Ultrasound 1,032,975 cardiac ultrasound 
videos and corresponding expert 
text

AUC of over 0.77 in identifying clinical transi-
tions and assessing cardiac function.

[102]

Text-promptable seg-
mentation foundation 
model

Medical images 22,000 3D medical images across 
497 classes and 6502 anatomical 
terminologies

Outperforming MedSAM when driven by text 
prompts.

[103]

Text-promptable founda-
tion model

Medical images EndoVis2017 and EndoVis2018 Achieving state-of-the-art performance in 
surgical instrument segmentation.

[104]

AUC: Area of under curve; AUROC: Area under the receiver operating curve; CT: Computed tomography; FLAIR: Fluid attenuation inversion 
recovery; HER: Electronic health record; MedSAM: SAM in medical images; MRI: Magnetic resonance imaging; OCT: Optical coherence tomography; 
SAM: Segment Anything Model.
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Although modality-specific foundation models sacrifice 
the ability to handle cross-modality tasks, their per-
formance in handling tasks within a specific modality 
surpasses that of general foundation models and even 
exceeds fully supervised deep learning models. This is due 
to the ability of modality-specific models to leverage the 
unique characteristics of each imaging modality and opti-
mize their architecture and training processes for those 
specific modalities. As a result, modality-specific founda-
tion models demonstrate stronger potential in addressing 
downstream medical tasks more effectively.

Vision-language foundation models

Vision-language foundation models, which comprise a 
specialized subset of foundation models, combine visual 
and linguistic information to enhance medical image 
interpretation and analysis.[97] These models are trained 
to encode images and text into unified and compact rep-
resentations, enabling them to perform a wide range of 
prediction tasks with zero-shot generalization. In clinical 
practice, medical images are often paired with correspond-
ing radiology reports. These reports embed rich medical 
imaging knowledge, offering a strong foundation for the 
rapid development of vision-language foundation models 
in the field of medical imaging.[98] Existing research on 
vision-language foundation models primarily focuses on 
two key areas: automated medical image interpretation 
and text-prompted medical image analysis.

In the area of automated medical image interpretation, 
Tiu et al[1] presented a self-supervised image-text foun-
dation model for pathology classification tasks. It was 
trained on chest X-ray images paired with radiology 
reports and demonstrated performance comparable to 
those of radiologists. Li et al[98] developed a vision-lan-
guage foundation model to refine redundant descriptions 
in radiology reports. In histopathology, Lu et al[99] 
introduced a vision-language foundation model named 
CONCH, which was trained on over 1.17 million his-
topathology images paired with corresponding captions. 
CONCH achieved state-of-the-art performance across 
various downstream tasks, including histology image 
classification, segmentation, and captioning. Similarly, 
Zhou et al[100] designed a vision-language foundation 
model specifically for retinal images to overcome the limi-
tations of task-specific models. By training on 1.6 million 
retinal images with explicit labels, this model exhibited 
superior performance in the diagnosis and prediction of 
sight-threatening eye diseases, heart failure, and myocar-
dial infarction through zero-shot or few-shot fine-tuning. 
In addition to foundation models for 2D medical images, 
Blankemeier et al[101] and Christensen et al[102] developed 
vision-language foundation models for 3D CT images and 
echocardiogram videos, both of which achieved state-of-
the-art performance.

Text-promptable medical image analysis aims to stream-
line the semi-automated annotation process. High-quality 
and publicly available annotated medical data are 
essential for developing foundation models. However, 
the data collection is often expensive and time-consum-
ing due to the high level of domain expertise required. 

Zhao et al[103] developed a text-promptable segmentation 
foundation model trained on 22,000 3D medical images 
across 497 classes and 6502 anatomical terminologies. 
Compared to MedSAM, this model demonstrates supe-
rior performance, scalability, and robustness when driven 
by text prompts. Similarly, Zhou et al[104] proposed a 
text-promptable foundation model for surgical instru-
ment segmentation.

Vision-language foundation models, which integrate 
image and text knowledge, hold potential for healthcare 
applications. These applications range from generating 
descriptive captions for medical images to supporting 
decision-making systems. However, these models are 
still in their early stages, as they currently incorporate 
large-scale language models as a prompting module 
without achieving deep vision and linguistic knowledge 
integration. In the future, as information silos in hospitals 
are dismantled, vision-language foundation models are 
expected to play an increasingly critical role in healthcare 
applications.

Differences between Task-Specific and Foundation Models

As described above, task-specific models have been 
applied to a wide range of specialized tasks in medical 
image analysis, while foundation models have demon-
strated potential for deeper integration into the medical 
imaging workflow, offering a more generalized and scala-
ble approach. Although both task-specific and foundation 
models achieve state-of-the-art performance in medical 
imaging, they differ in their inherent characteristics.

First, task-specific models primarily focus on addressing 
particular tasks, often using a single or limited type of 
imaging modality to achieve optimal performance in 
a specific domain.[8] In contrast, foundation models  
aim to develop generalized representations that ena-
ble them to perform multitasking and multimodal 
analyses across diverse imaging modalities and tasks.[8] 
For example, although modality-specific foundation 
models are trained on a specific imaging modality, their 
datasets include a diverse range of subtypes within that  
modality and cover multiple human organs. However, 
some task-specific models are also trained using a specific 
image modality, but their training datasets include only 
a few modality-specific image subtypes and focus on a 
particular organ, such as ischemic lesion segmentation 
using brain DWI, FLAIR, and apparent diffusion coeffi-
cient, or breast cancer identification using mammography. 
In addition, there are significant differences between 
general foundation models and task-specific models. 
General foundation models emphasize managing multiple 
downstream tasks, such as classification, detection, seg-
mentation, and registration, using a single set of model 
weights.[9,105] While transfer learning in task-specific 
models shares similarities with foundation models, there 
are natural distinctions between them. Pretrained transfer 
learning models are designed to address specific down-
stream tasks closely related to the pretraining dataset and 
often achieve outstanding performance in those areas.[106] 
These models focus on optimizing performance for par-
ticular tasks rather than expanding their applicability to 
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a wider range of tasks. Foundation models, on the other 
hand, focus more on handling a broader range of tasks 
through zero-shot or few-shot fine-tuning.[20]

Second, data form the cornerstone for both task-specific 
and foundation models, but the models’ data requirements 
differ significantly. Task-specific models typically require 
a single or limited image modality type to achieve good 
performance. In contrast, foundation models, particularly 
general foundation ones, benefit from exposure to various 
image modalities to enhance their generalization capabili-
ties. Regarding image count, while many task-specific 
models can perform well with relatively smaller datasets, 
foundation models often rely on extensive datasets to 
perform optimally. There has always been a shortage 
of publicly available, high-quality annotated datasets 
in medical imaging for training deep learning models. 
Vision-language foundation models provide a highly 
efficient text-promptable annotation approach, which is 
essential for overcoming the medical data bottleneck.

Next, task-specific and foundation models differ in 
their medical image analysis task performance. General 
foundation models often underperform compared to 
task-specific models when handling specific medical tasks 
due to the significant feature differences between natural 
and medical images, as well as variability within different 
medical image modalities. Natural images are primarily 
acquired from visible light imaging, while medical images 
are obtained from a variety of imaging devices with dif-
ferent physical properties and energy sources, including 
light, X-rays, ultrasound, nuclear imaging, and magnetic 
resonance. These differences in physical imaging prin-
ciples lead to image feature variations. However, many 
modality-specific foundation models can outperform 
task-specific models, which may improve with large-scale 
datasets and reduce feature complexity.

Finally, task-specific models currently have a broader 
range of clinical applications compared to foundation 
models. While foundation models can perform multi-
ple tasks using a single set of model weights, most are 
primarily developed for segmentation and classification 
analyses. In contrast, task-specific models encompass a 
wider array of medical image analysis tasks, including 
classification, segmentation, registration, localization, 
detection, enhancement, and prediction.

Complementarities between Task-Specific and Foundation 
Models

Although task-specific and foundation models have some 
natural differences, they also have a strong complemen-
tary relationship. Looking back at AI history, especially 
with the rise of deep learning techniques, many traditional 
machine learning methods have been replaced by deep 
learning in medical image analysis. During AI develop-
ment from task-specific models to foundation models, 
the relationship between novel techniques and traditional 
methods is complementary.

Foundation models effectively compensate for the short-
comings of task-specific models with long-tailed data. In 

these scenarios, the datasets are often heavily imbalanced, 
with common disease cases coexisting with relatively few 
rare disease cases. This imbalance leads to significant per-
formance degradation. In task-specific models, however, 
data augmentation techniques increase the few annotated 
cases to fully leverage the available supervised data. The 
techniques include rotation, cropping, and noise addition. 
However, the performance improvement remains limited 
because no additional information is introduced for 
training task-specific models. Compared to task-specific 
models, the few-shot capabilities of foundation models 
perfectly address the performance degradation seen with 
rare diseases with long-tailed data. Foundation models 
are pretrained on large-scale datasets to learn general 
representations, reducing the amount of labeled data 
required for training. As a result, foundation models can 
perform well on rare disease cases using zero-shot or few-
shot fine-tuning.

Generally, both foundation and task-specific models handle 
medical image analysis tasks by gaining knowledge. Foun-
dation and task-specific models can represent the initial 
and advanced stages of knowledge acquisition. Founda-
tion models focus on learning generalized representations 
in the initial learning stage, while task-specific models 
concentrate on acquiring in-depth and domain-specific 
knowledge at the advanced learning stage. Integrating 
both generalized and specialized knowledge leads to a 
comprehensive understanding. Therefore, combining the 
strengths of foundation and task-specific models may fur-
ther improve their performance in medical image analysis.

Task-specific and foundation models may also mutually 
reinforce each other in technological development. Due 
to the widespread use of task-specific models in medical 
imaging, large-scale and high-quality publicly available 
annotated datasets have accumulated. These datasets 
provide a solid foundation for foundation model develop-
ment. In addition, the development of vision-language 
foundation models, which integrate visual and linguistic 
interpretations, significantly reduces the difficulties 
associated with annotating datasets and further enhances 
task-specific model performance. As a result, creating 
complementary deep learning models that combine mul-
timodal data, such as images, text, and voice, could be a 
promising field for future research.

Future Directions and Challenges

Both task-specific and foundation models show strong 
potential to drive advancements in medical imaging, 
based on their respective performances.

One future research direction could be to develop foun-
dation models with a stronger capability for learning 
generalized representations that can incorporate a range 
of scales (cell, tissue, organ, and the whole body) and 
various image types (light, electrons, lasers, X-rays, ultra-
sound, nuclear physics, and MR), as well as non-image 
data (text, voice, and video). These foundation models 
could provide a more comprehensive understanding of 
diseases and aid medical professionals in developing more 
accurate and personalized treatment plans. A potential 
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clinical application would make the radiology workflow 
more efficient and accurate. Image, text, and audio are the 
primary data modalities used throughout the radiology 
workflow. By leveraging the multi-modality foundation 
models that integrate these modalities, they could freely 
transform knowledge representations, benefiting the auto-
matic drafting of structured radiology reports, describing 
possible abnormalities, and diagnosing diseases.

Another future research direction could be to design deep 
learning architectures with cross-task connections from 
foundation models to downstream task-specific models, 
which is essential for expanding clinical applications. For 
instance, segmentation foundation models can be used to 
refine a downstream registration-specific model. These 
cross-task architectures provide the capability to fine-
tune a broader range of downstream task-specific models, 
making them adaptable to more clinical scenarios. One 
potential cross-task architecture is the integration of foun-
dation and task-specific models. Foundation models are 
used to store generalized knowledge, while task-specific 
models are designed as output modes, similar to multi- 
plug outlets, that adapt to different scenarios. Existing 
foundation models, such as SAM, are designed to learn 
knowledge about segmenting objects from large-scale 
images. However, in cross-task architectures, foundation 
models are built to gain knowledge not specifically for 
segmentation, but for generalized knowledge without 
specific goals. The task-specific models in cross-task 
architectures are designed like multi-plug outlets, allow-
ing the use of generalized knowledge stored in foundation 
models across different clinical scenarios.

However, advancing the use of task-specific and founda-
tion models in medical imaging is challenging. Large-scale 
and high-quality open-source datasets not only drive the 
rapid development of these models but also raise more 
concerns about privacy preservation. Therefore, one of 
the future challenges is how to share large-scale knowledge 
flexibly and effectively. If foundation models can be developed  
to acquire generalized knowledge without specific 
goals, this knowledge could be stored within the models 
themselves, rather than relying on original datasets. This 
approach could help overcome current limitations. Fur-
thermore, foundation models such as SAM and MedSAM 
have been integrated into medical image software for 
annotating datasets. It is still unclear whether AI-aided 
annotated datasets can continuously improve the perfor-
mance of deep learning models. One study demonstrated 
that training on generated datasets may cause irreversi-
ble defects in large language models.[107] Consequently, 
another challenge is how to manage the use of AI-aided 
annotated datasets.

Conclusion

In conclusion, we introduced the clinical applications of 
task-specific and foundation models in medical imaging. 
Task-specific models have been widely applied to almost all 
medical image analysis tasks. Although foundation models 
currently focus on segmentation and classification tasks, 
they could expand into other clinical scenarios. We also 
elucidated the differences and complementarities between 

task-specific and foundation models. Unlike the relation-
ship in which deep learning techniques have replaced 
traditional machine learning methods, task-specific models 
and foundation models have a more complementary rela-
tionship, despite some inherent distinctions. Given their 
outstanding performance in addressing medical image 
analysis tasks, we explored the models’ future research 
directions and potential challenges. Foundation models 
with a stronger capability for learning generalized rep-
resentations and creating novel deep learning architecture 
with cross-task connections between foundation models 
and downstream task-specific models may be developed. 
In summary, task-specific and foundation models have the 
potential to drive breakthroughs in medical imaging, from 
image processing to clinical workflows.
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