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Abstract

In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn
to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus
processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two
new supervised learning rules for spiking neurons with temporal coding of information (chronotrons), one that provides
high memory capacity (E-learning), and one that has a higher biological plausibility (I-learning). With I-learning, the neuron
learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of
real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire
neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how
chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs
belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower
bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons’
performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset
of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the
background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding
information in the phase of firing relative to a background rhythm.

Citation: Florian RV (2012) The Chronotron: A Neuron That Learns to Fire Temporally Precise Spike Patterns. PLoS ONE 7(8): e40233. doi:10.1371/
journal.pone.0040233

Editor: Michal Zochowski, University of Michigan, United States of America

Received February 2, 2012; Accepted June 3, 2012; Published August 6, 2012

Copyright: � 2012 Florian. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been sponsored by a grant of the Romanian National Authority for Scientific Research (PNCDI II, Parteneriate, contract no. 11-039/2007)
and by the Max Planck - Coneural Partner Group. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: florian@rist.ro

Introduction

There is increasing evidence that information is represented in

the brain through the precise timing of spikes (temporally coded),

not only through the neural firing rate [1–3]. For example,

temporally structured multicell spiking patterns, organized into

frames, were observed in hippocampus and cortex, and were

associated to memory traces [4,5]. In the olfactory bulb, spike

latencies represent sensory input strength and identity [6,7]. In the

visual cortex, the relative spike timings of quasi-synchronized

neurons, firing in sequences shorter than one cycle of beta/gamma

oscillation, represent stimulus properties, and the information they

carry grows with the oscillation strength [8]. The coding of

information in the phases of spikes relative to a background

oscillation has been observed in many brain regions, including the

visual and prefrontal cortices and the hippocampus [9–14].

Learning in neural networks that represent information through

a firing rate code has been thoroughly studied [15]; however, we

have lacked efficient, theory-supported learning rules for spiking

neurons with temporal coding of information. The tempotron, a

model of a spiking neuron endowed with a specific learning rule,

has shown how a neuron can give a binary response to information

encoded in the precise timings of the afferent spikes [16–18]. But

the tempotron’s output represents information through the

existence or the lack of an output spike during a predefined

period. The timing of the tempotron’s output spikes is arbitrary

and does not carry information. Because of this change in the

representation of information, a tempotron cannot be an

information-carrying input for another tempotron. By contrast,

the ReSuMe learning rule [19,20] allows supervised learning of

spiking neural codes where the output is also temporally coded,

but this rule, as we will show, has a much lower memory capacity

than the E-learning rule introduced here.

Here we present two new supervised learning rules for spiking

neurons, which allow such neurons to process information that is

encoded, for both input and output, in the precise timings of

spikes. We show how single neurons can perform classification of

input spike patterns into multiple categories, using a temporal

coding of information with sub-millisecond precision. The E-

learning rule that we introduce here is analytically derived, with

approximations, and has a high memory capacity. The I-learning

rule is heuristic, but is more biologically plausible, because

synaptic changes depend directly on the synaptic currents at the

timings (actual and target) of the postsynaptic spikes.

We first describe our results, by illustrating the chronotron

problem, introducing our new learning rules, and describing their

performance and their memory capacity. We then compare our

results with previous ones. After a discussion of our results, the

methods used for analytical derivations and computer simulations

are presented in detail at the end of the paper.
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Results

Understanding and illustrating the chronotron problem
We consider the problem of training a spiking neuron by

changing its parameters, such that, for a given input, its output is

as close as possible to some given target spike train (for how the

target spike train may be provided in the brain, see the Discussion

section). Multiple such input–output associations must be

performed with a single set of neural parameters. Information is

represented in both the input and the output through the precise

timings of spikes. We call a neuron that solves this problem a

chronotron.

In order to solve the chronotron problem, appropriate learning

rules should be defined. Here we focus on learning rules that

change the synaptic efficacies of the neuron, although other neural

parameters can also be trained.

Our analysis uses the Spike Response Model (SRM) of spiking

neurons, which reproduces with high accuracy the dynamics of the

complex Hodgkin-Huxley neural model while being amenable to

analytical treatment [21]. The integrate-and-fire neuron is a

particular case of the SRM.

The considered neuron receives inputs through multiple

synapses indexed by j, and the incoming spikes received through

each of these synapses during the considered trial are indexed by f
according to their temporal order. We consider that the arrival of

the f -th presynaptic spike on the synapse j of a neuron at the

moment t
f
j leads to a postsynaptic potential (PSP) whose value as a

function of the time t is the product of synaptic efficacy wj and a

normalized kernel Ej(t,t
f
j ), i.e. wj Ej(t,t

f
j ) (Methods). We consider

here that synaptic changes are applied on a time scale that is much

slower than the time scale of the variation of the PSPs and than the

length of the considered trial, or that, in simulations, synaptic

changes are applied at the end of one or more trials grouped in

batches of information processing within which synaptic efficacies

are held constant. Thus, the synaptic efficacies wj can be

considered effectively constant during a trial, but can change

across trials. We denote as lj the total normalized PSP resulting

from the contribution of past presynaptic spikes coming through

the synapse j,

lj(t)~
X
t
f
j
ƒt

Ej(t,t
f
j ): ð1Þ

The membrane potential u of the neuron is determined by the

integration of the PSPs generated by all presynaptic spikes, and

also by a term g that models the refractoriness caused by the last

spike fired by the studied neuron:

u(t)~g(t)z
X

j

wjlj(t): ð2Þ

When the membrane potential reaches the firing threshold h, a

spike is fired and the membrane potential is reset to the reset

potential ur.

The chronotron problem can be illustrated graphically by

considering a space having the same number of dimensions n as

the number of afferent synapses of the neuron. In this space, the n
synaptic efficacies wj define a vector w and the normalized PSPs lj

define a vector l. The vector l(t) moves around this space, in

time, according to the dynamics of the PSPs, while w changes on

much larger timescales than l. The neuron fires when l(t) touches

a hyperplane that is perpendicular on w and at a distance

h{g(t)ð Þ=DwD of the origin (Methods). After firing, the PSPs are

reset to 0 and thus the trajectories of l(t) always start from the

origin. This is illustrated in Figs. 1 and 2 for a neuron with 2

synapses and in Fig. 3 for a neuron with 3 synapses. The

chronotron problem can be understood as the problem of setting

the spike-generating hyperplane, by changing w, such that it

intersects the trajectory of l(t) at exactly those timings when we

want spikes to be fired. This problem is very similar to the problem

that needs to be solved in reservoir computing [22–24], where the

state of a high-dimensional dynamical system, such as our vector

l, is processed by a (usually) linear discriminator such that the

switch between output states (the crossing of the hyperplane

Figure 1. A graphical illustration of the chronotron problem for
a neuron with 2 synapses. (A) The dynamics of the membrane
potential u. The numbered arrows indicate the timings when the
membrane potential reaches the firing threshold and spikes are fired.
(B) The dynamics of the two components of l. (C) The trajectory of l.
Spikes are generated when the trajectory reaches the spike-generating
hyperplane, which is here a line. The chronotron problem is solved by
adjusting the location of the spike-generating hyperplane, through
changes in w, such that the timings of the fired spikes are the target
ones. The numbered arrows indicate the generation of spikes at the
times when the spike-generating line is reached. The neuron has
g(t)~0.
doi:10.1371/journal.pone.0040233.g001
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defined by the linear discriminator) happens at desired moments of

time.

Similar optimization problems can usually be solved by defining

an error function and then changing the parameters to be

optimized, through methods like gradient descent, which minimize

this error function. The differences between the actual spike train

fired by the neuron for a particular input and, respectively, the

target spike train can be measured using spike train metrics such as

the Victor & Purpura (VP) distance [25]. The VP distance is

defined as the minimum cost for transforming one spike train into

the other by creating, removing or moving spikes [25]. However,

one cannot derive an efficient learning rule using directly this

distance, because the terms corresponding to spikes that should be

created or removed are constant and do not reflect how creating

or removing these spikes depends on the plastic parameters. In

order to solve this issue, we used a new error function, which is a

modification of the VP distance.

E-learning
The VP distance is the sum of the costs assigned to either

insertion of spikes, removal of spikes or shifting the timing of

spikes. The cost of adding or deleting a single spike is set to 1,

while the cost of shifting a spike by an amount Dt is DDtD=tq, where

tq is a positive time constant that is a parameter of the metric.

Instead of constant cost terms for the independent spikes that have

to be created or removed, our error function changes the VP

distance by including terms that depend on the value of the

membrane potential of the neuron at the timings of these spikes.

This allows these terms to be differentiated piecewisely with

respect to the plastic parameters (Methods).

For a given input, the trained neuron fires at the moments tf ,

where f represents the index of the spike in the spike train. The

ordered set of the spikes in the spike train fired by the neuron is

F~ft1,t2, . . .g. The target spike train that the neuron should fire

for that input is ~FF~f~tt1,~tt2, . . .g. In a transformation of minimal

cost, according to the VP metric, of the actual spike train F into

the target one ~FF , the operations involved are the following:

removal of spikes (that are not previously moved); insertion of

spikes (at their target timings, so that they are not moved after

insertion); and shifting of spikes toward their target timings. We

denote as F� the subset of F that represents the spikes that should

be eliminated; and as ~FF� the subset of ~FF that represents the

timings of target spikes at which new spikes should be inserted into

F . We call the spikes in F� and ~FF� independent. The spikes in the

actual spike train that are not eliminated, F{F�, are in a one-to-

one correspondence with the spikes in the target spike train for

which a correspondent is not inserted, ~FF{ ~FF�, and they should be

moved towards their targets. We say that the spikes in

correspondent pairs from F{F� and ~FF{ ~FF� are linked or

paired to their correspondent (match). The existing algorithm that

computes the VP distance between two given spike trains [25] can

be extended in order to also compute the sets F�, ~FF� and their

complements (Methods).

Figure 2. A graphical illustration of the chronotron problem for a neuron with 2 synapses (continued). As in Fig. 1, but for other values
of w, resulted through the application of E-learning, starting from the situation in Fig. 1, and having as a target the generation of one spike at 75 ms.
Left: during learning. Right: after learning converged.
doi:10.1371/journal.pone.0040233.g002
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E-learning aims to minimize the following error function:

E~
X

tf [F�
u(tf )z

X
~ttf [ ~FF�

(h{u(~ttf ))z
cd

2 t2
q

X
(tf , ~ttg)

tf [F{F�
~ttg[ ~FF{ ~FF�

(tf {~ttg)2, ð3Þ

where cd is a positive parameter. The first sum runs over the

independent actual spikes, the second sum runs over the

independent target spikes, and the last sum runs over all unique

pairs of matching spikes. Because the creation and deletion of

spikes and changes in their classification in either F� or F{F�
lead to discontinuous changes of E (Fig. 4 B), gradient descent can

only be ensured piecewisely. The synaptic changes that aim to

minimize the error function through piecewise gradient descent

are Dwj*{LE=Lwj . By performing the derivation and after some

approximations (Methods), we get the E-learning rule:

Dwj~c½
X

~ttf [ ~FF�
lj(~tt

f ){
X

tf [F�
lj(t

f )

z
cr

t2
q

X
(tf , ~ttg )

tf [F{F�
~ttg[ ~FF{ ~FF�

(tf {~ttg) lj(t
f )�, ð4Þ

where c is the learning rate, a positive parameter, and cr another

positive parameter.

E-learning works by modifying each synaptic efficacy wj by

terms that depend on the normalized PSP lj . For all target spikes

that the neuron should fire, for which a spike should be created,

each synaptic efficacy should be increased with a term propor-

tional to lj at the moments of these target spikes. For all output

spikes that should be eliminated, each synaptic efficacy needs to be

decreased with a term proportional to the value of lj at the

moments of these spikes. For all actual spikes that are close to their

target positions and should be moved towards them, each synaptic

efficacy needs to change with a term proportional to the value of lj

at the moments of the actual spikes, multiplied by the temporal

difference between actual and target spikes. Fig. 5 illustrates the

learning rule.

The E-learning rule is appropriate for both excitatory and

inhibitory synapses. If we consider that the excitatory synapses

have a positive synaptic efficacy wj and the inhibitory synapses

have a negative one, the learning rule in the form presented above

can be applied to both cases. Without an extra bounding of the

synaptic efficacies, E-learning will transform an excitatory synapse

into an inhibitory one or viceversa, as needed for performing the

task.

E-learning aims to minimize the error function by performing

piecewise gradient descent. The inherent discontinuities intro-

duced in the error function by creation or removal of spikes or by

creation or breaking of matching pairs of actual and target spikes

may possibly lead to both increases and decreases of the error

function. However, the terms that reflect in the error function

spikes that should be created or removed ensure that the

membrane potential is increased or, respectively decreased at the

corresponding timings, such that the number of spikes becomes

the desired one and the actual spikes are close to the target ones.

Because the learning rule uses approximations, it is possible that

gradient descent is not ensured, not even piecewisely. Thus, the

optimality of E-learning cannot be guaranteed analytically.

However, as the simulations have shown, E-learning is more

efficient for chronotron training than the other existing learning

rules, having a much higher memory capacity.

It is possible to devise a continuous error function that is then

properly derivable, yielding a proper gradient descent that can be

guaranteed analytically. However, the continuous error function

would be much more complex than the current one, yielding a

complex learning rule. This would encumber an intuitive

understanding of the learning rule, as it is possible with E-

learning. A learning rule based on a continuous error function will

be presented elsewhere.

I-learning
The second learning rule that we developed is heuristic and is

inspired by both the E-learning rule and the existing ReSuMe

learning rule [19,20] (Methods). The I-learning rule is defined by

Figure 3. A graphical illustration of the chronotron problem for
a neuron with 3 synapses. (A) The dynamics of the membrane
potential u. The numbered arrows indicate the timings when the
membrane potential reaches the firing threshold and spikes are fired.
(B) The dynamics of the three components of l. (C) The trajectory of l.
Spikes are generated when the trajectory reaches the spike-generating
hyperplane, which is here the black plane. The numbered arrows
indicate the generation of spikes at the timings when the spike-
generating hyperplane is reached. The neuron has g(t)~0.
doi:10.1371/journal.pone.0040233.g003
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Figure 4. The error landscape for a neuron with two synapses and the descent on this landscape during learning. The neuron receives
several input spikes on each synapse, the same as in Figs. 1 and 2, and has to fire one spike at a predefined target timing, the same as in Fig. 2. (A), (B)
A contour plot of the VP and E distances between the actual spike train and the target spike train as a function of the values of the synaptic efficacies.
The thick lines correspond to discontinuities of the distances. (A) VP distance. (B) E distance. (C), (D), (E) The dynamics of the synaptic efficacies
according to the learning rules. The black lines represent actual trajectories of the synaptic efficacies. The vectors represent synaptic changes. The
green line corresponds to the values of the synaptic efficacies for which the output corresponds to the target spike train. (C) E-learning. (D) I-learning.
(E) ReSuMe.
doi:10.1371/journal.pone.0040233.g004

Figure 5. A graphical illustration of the plastic changes implied by the learning rules. The graphs show the spike timings and, for one
synapse, the dynamics of the synaptic current I , the normalized PSP l and the synaptic changes Dw implied by the two learning rules. It is considered
that one input spike arrives at this synapse at t~0. The synaptic changes are shown to be localized temporally along the events that cause them; the
actual application of the synaptic changes can be delayed with respect to these events. (A) One independent target spike and no actual spike. (B) A
pair of matching target and actual spikes, the actual one following the target one. (C) One independent actual spike and no target spike. (D) A pair of
matching target and actual spikes, the target one following the actual one.
doi:10.1371/journal.pone.0040233.g005
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Dwj~c sign(wj)
X
~ttf [ ~FF

Ij(~tt
f ){

X
tf [F

Ij(t
f )

24 35, ð5Þ

where c is the learning rate, a positive parameter, and Ij is the

synaptic current on the synapse j. In our simulations, synaptic

currents were modeled as a difference between two exponentials

(Methods).

As in ReSuMe, actual and target output spikes lead to synaptic

changes of equal amplitude but of opposite signs, such that when

the actual spike train corresponds to the target one the terms

cancel out and synapses become stable. In ReSuMe, synaptic

changes depend exponentially on the relative timings of pairs of

pre- and postsynaptic spikes, as in some models of spike-timing-

dependent plasticity. In contrast, here we consider that synaptic

changes depend on the value of the synaptic current at the timings

of spikes. This learning rule is thus biologically-plausible, since it

depends on quantities that are locally available to the synapse.

Target spikes determine synaptic potentiation, while actual spikes

lead to synaptic depression. We call this synaptic current-

dependent rule I-learning (Fig. 5).

Because Ij is proportional to wj , synaptic changes under I-

learning converge to zero when wj approaches zero, for small c.

Thus, the I-learning rule does not allow an excitatory synapse to

become inhibitory or viceversa. This corresponds to how neurons

in the brain release neurotransmitters that lead, for a particular

presynaptic neuron, to either excitation or inhibition of postsyn-

aptic neurons having potentials not far from the resting potentials

(Dale’s principle) [26].

In E-learning, synaptic changes caused by activity within a trial

can be computed only at the end of the trial, because one needs

the actual spikes fired during the entire trial under study in order

to compute which spikes are independent and which are linked,

although one can imagine approximate algorithms for matching

the spike trains, which would also work online. In I-learning,

synaptic changes can also be applied online, which is more

biologically relevant.

Performance of the learning rules
We have studied these rules in computer simulations involving

integrate-and-fire neurons. Both learning rules allow a neuron to

perform temporally-accurate input-output mappings. Fig. 6

illustrates learning of a mapping between one input pattern (the

spike trains coming through all input synapses) and one output

spike train consisting of three spikes. The learning rules perform a

descent in the landscape defined by the VP or E distance (Fig. 4).

We studied next setups where the chronotron had to memorize

multiple input-output associations. Both the input and the output

encoded information in the precise spike timings: both input and

output spike trains consisted of one spike per trial and the timing of

this spike represented the information (time-to-first-spike coding or

latency coding). The length of spike patterns (and of one

simulation trial) was 200 ms. The latency of a spike with respect

to the beginning of a trial can correspond to the phase of a spike

with respect to a background oscillation, modeling a phase-of-

firing encoding of information, and multiple trials can correspond

to multiple periods of the oscillation. This could model experi-

mentally-observed situations where phase locking of spikes relative

to a theta rhythm is associated to encoding and memorizing of

information [6,9,10,13,14].

Fig. 7 illustrates learning of a mapping between 10 different

input patterns and one output spike train consisting of one spike at

the middle of the trial interval. The neuron learns to perform this

mapping, for all 10 input patterns, using the same set of synaptic

efficacies. For example, for E-learning, in 99.9% of 10,000

realizations, the neuron was able to fire the correct number of

Figure 6. Learning of a mapping between one input pattern
and one output spike train. The trained neuron receives inputs from
500 neurons. The spike trains received from these neurons form the
input pattern. Each input spike train consists of one spike within the
200 ms of a trial, generated at a random timing having an uniform
distribution within the trial. The target output spike train consists of
spikes at 50, 100 and 150 ms. (A) Part of the input pattern and the
output spike train of the trained neuron, corresponding to this input,
before learning. Only some of the 500 input spike trains are illustrated.
(B) The synaptic efficacies change according to E-learning, such that the
trained neuron’s output reproduces the target spike train. Left: The
output spike train during learning. Right: The VP distance between the
actual and the target output spike train, during learning. The target
output is reproduced after less than 15 epochs (presentations of the
input pattern). (C) The VP distance between the actual and the target
output spike train during learning, for E-learning and I-learning:
averages and standard deviations over 10,000 realizations of the same
experiment. Each realization uses different, random input spike trains
and initial values of the synaptic efficacies.
doi:10.1371/journal.pone.0040233.g006
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spikes (one spike) and the spike had an average timing difference of

less than 0.03 ms with respect to the timing of the target spike,

after about 8 minutes of learning (simulated time; 241 learning

epochs). In 95% of realizations, the average timing error was less

than 1 ms after 1.6 minutes of learning (48 learning epochs).

Learning worked even when the inputs were jittered, i.e. at each

trial, input spikes were displaced around the reference timing

according to a gaussian distribution. For example, in the same

conditions as before but with an input jittered with a 5 ms

amplitude, in more than 95% of the realizations, the neuron fired

one spike with an average timing error of less than 2 ms, after

about 8 minutes of learning (225 epochs). A 5 ms gaussian jitter

amplitude corresponds to a 3.99 ms average timing displacement

of the input spikes (Methods), so, in this case, the mapping also led

to noise reduction, by doubling the precision of spike timing.

Fig. 8 presents the distribution of the synaptic efficacies, before

and after learning, for the experiments presented in Fig. 7. This

distribution has been computed over the 10,000 realizations of the

experiments. With I-learning, all synapses stay excitatory, like they

were generated initially, although a significant fraction of them

become close to zero, after learning. E-learning allows synapses to

change sign. When the input is subject to jitter, the synaptic

distributions after learning become broader than in the case of no

jitter.

Memory capacity of the chronotron
The chronotron is able to perform generic classification tasks,

where p input patterns must be classified into c categories through

hetero-association. For all the different input patterns in one

category, the chronotron must fire the same output spike train,

Figure 7. Learning of a mapping between 10 input patterns, with and without jitter, and one output spike train. Left: The VP distance
between the actual and the target output spike train. Center: The timing difference Dt between matching spikes and the target spikes. Right: The
probability Pm that the fired spikes matched the target ones. The graphs represent averages and standard deviations over input patterns and over
10,000 realizations. (A)–(D): Evolution during learning, as a function of the learning epoch. (A), (B): No jitter. (C), (D): A gaussian jitter with an amplitude
of 5 ms is added to each presentation of the input patterns. (E), (F): Values after 400 learning epochs, as a function of the amplitude of the input jitter.
(A), (C), (E): E-learning. (B), (D), (F): I-learning. The inputs and the trial length are as in Fig. 6. The target output spike train consists of one spike at
100 ms.
doi:10.1371/journal.pone.0040233.g007
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using the same set of synaptic efficacies. In our simulations, equal

number of patterns were randomly assigned to each category.

The ability of neurons to memorize mappings corresponding

to classification tasks increases with the number of input

synapses n. The ratio a~p=n (the number of input patterns

memorized per input synapse) represents the load imposed by

the task on the neuron. A characteristic of the neuron’s ability

to learn is the maximum load for which the mappings are

performed correctly [16], which we call the capacity am of the

neuron. We considered that the chronotron had a correct

output when target spikes were reproduced with a 1 ms

precision, which corresponds to the lower end of the 0.15–

5 ms range of the precision of spikes observed in several areas

of the brain [27–34]. In our setup, in both input and target

output spike trains there was one spike per trial and

information was encoded in the spike latencies. Except where

specified, the input spike trains consisted, for each of the n

synapses, of one spike generated at a random timing,

distributed uniformly, and the target spike train for each

category k[f1, . . . ,cg consisted of one spike at k T=(cz1)
(Methods). Fig. 9 illustrates the performance of the chronotron

in simulations where inputs were classified into c~3 categories.

For the particular studied setup, both I-learning and ReSuMe

led to a capacity between 0.02 and 0.04, while E-learning led to

a capacity up to am&0:22 patterns per synapse.

The load and the capacity have been used to characterize

neurons with binary outputs, which memorize one bit of

information for every pattern. The chronotron can classify inputs

in more than one category, and for c categories it memorizes

i~ log2 (c) bits of information for every input pattern. Therefore,

a better measure for the chronotron’s learning ability is the

information load i~a i and the corresponding information

capacity im, equal to the maximum information load. The number

of categories into which a chronotron with latency coding of

information classifies its inputs is limited only by the temporal

precision of the output spike. For example, if this temporal

precision is 1 ms, with the particular setup presented here, the

chronotron can encode up to about c~80 categories (Methods).

When information is encoded in the spike latencies, the

simulations showed that the chronotron’s capacity does not

depend on the number of categories c (Fig. 10). The maximum

information capacity of the chronotron, for E-learning and the

particular setup that we used, can be then computed as im&1:39
bits per synapse (Methods). Extrapolating, this means that a

chronotron with about 10,000 input synapses would be able to fire

a spike at the correct timing, with a 1 ms precision, among up to

80 possible ones, for about 2,200 different, random input patterns,

and thus to memorize about 13.9 kilobits of information. The

information capacity of the perceptron is 2 bits per synapse and

the one of the tempotron is around 3 bits per synapse [16].

However, if more than two input categories have to be

discriminated, the chronotron has the advantage of being able to

carry computations that need multiple perceptrons or tempotrons

to be performed, being thus more efficient. Unlike the tempotron,

the chronotron uses the same coding of information for both

inputs and outputs and is therefore able to interact with other

chronotrons.

The capacities computed here for the chronotron are lower

bounds, since it might be possible to develop learning rules which

are more efficient than E-learning and to devise setups with more

efficient encoding of information.

Dependence on the setup parameters
In our setups, information was represented in the precise

timings of spikes relative to the beginning of trials of constant

duration. If trials correspond to periods of a background

oscillation, the timing of spikes corresponds to the phase relative

to this oscillation. Simulations performed in this framework have

shown that chronotrons have the best efficacy when both input

and output spike trains consist of one spike per trial (period).

Setups where inputs or outputs consisted of more than one spike,

or where some of the inputs fired no spikes, had suboptimal

performance in terms of learning speed and memory capacity

(Figs. 11, 12, and 13). However, learning was still possible under

all of these conditions, unless the input pattern included too few

spikes (less than about 100, for our setup).

Chronotron’s efficacy was not affected by the initial state of

their membrane potential at the beginning of trials if target spike

times were set at a delay relative to the beginning of the trial of

more than about 4 times the time constant of the membrane

potential’s exponential decay (Fig. 14).

In our setup, the chronotron had an optimal memory capacity if

the trial length (the oscillation period) was about 8–10 times larger

than the membrane time constant (Fig. 15). Since typical neurons

in the brain have membrane time constants between 8 and 100 ms

[35–40], this would correspond to oscillation periods between 64

Figure 8. The distribution of the synaptic efficacies, before and
after learning, for the experiments presented in Fig. 7. (A)
Before learning. (B)–(E) After 400 learning epochs. (B), (D) E-learning. (C),
(E) I-learning. (B), (C) No jitter. (D), (E) A gaussian jitter with an amplitude
of 5 ms is applied to the inputs.
doi:10.1371/journal.pone.0040233.g008
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and 1000 ms (frequencies between 1 and about 16 Hz), an interval

that covers the theta rhythm.

The chronotron’s performance did not depend on the reset

potential if it was lower than half of the firing threshold h and

declined slowly for higher reset potentials, which are, however,

artificially high (Fig. 16).

In Fig. 17, parameters were optimized to lead to the

minimum average number of learning epochs needed for

correct learning for a setup with a relatively low load, a~0:02.

For the setup that was optimized and for the optimal

parameters, ReSuMe had the fastest learning (16.75+7.43

epochs), followed by I-learning (23.39+6.87 epochs) and E-

learning (36.48+7.61 epochs). However, the advantages of the

first two learning rules over E-learning disappeared for setups

with higher loads or higher number of input synapses than the

optimized setup, when the other parameters were kept the

same.

In our simulations, the synaptic changes defined by the learning

rules were accumulated and were applied to the synapses at the

end of each batch consisting of p trials (presentations of the p input

patterns) [41,42]. Simulations of E-learning where synaptic

changes were applied at the end of each trial required a slightly

higher number of epochs for correct learning, but led to the same

memory capacity (Fig. 18 A). Simulations of I-learning where

synaptic changes were applied either at the end of each trial or

online, triggered by postsynaptic spikes (as in Fig. 5) did not lead to

results significantly different than simulations with batch updating

of the synapses (Fig. 18 B).

Figure 9. The performance of the chronotron learning rules for a classification problem. The input patterns are classified into 3 classes.
(A)–(C) The average minimum number of epochs required for correct learning is displayed as a function of the load a, for various values of the
number of input synapses n. Note the scale differences. (A) E-learning. (B) I-learning. (C) ReSuMe. (D) The maximum load for which correct learning
can be achieved (the capacity am), as a function of n. E-learning has a much better performance than I-learning or ReSuMe. For E-learning, simulations
for higher n were not performed because of the high computational cost, due to the high capacity resulted through this learning rule. Averages were
computed over 500 realizations with different, random initial conditions.
doi:10.1371/journal.pone.0040233.g009
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Comparison to other results
The first supervised learning method for spiking neurons was

SpikeProp [43,44], a method inspired by the backpropagation

algorithm used for training classical neural networks. SpikeProp

works by minimizing the difference between the timing of an

output spike and the desired timing. The first versions of the

learning method required a feedforward network and that each

neuron in the network fires only once during a trial. Later

versions [45–51] extended the method for including a momen-

tum term; adapting the synaptic delays, time constants and

neurons’ thresholds during learning; for networks where the input

(but not the output) neurons fire more than once per trial; for

recurrent networks; and for improving learning speed under

certain assumptions. However, the method is designed for

adjusting just the timing of a single (first) spike per output

neuron and assumes that the synapses are such that each output

neuron fires at least one spike for the given inputs. The method is

not suitable for adjusting the number of output spikes nor for

training a neuron to fire given output spike patterns that extend

beyond the first spike.

Carnell and Richardson [52] devised a method for modifying

the synaptic weights such as the weighted sum of the presynaptic

spike trains (in an algebraic representation) converge to a desired

one. If the neuron model is such that the firing of the postsynaptic

neuron is close to this weighted sum, then the method allows the

supervised learning of a target output spike train. The method is

quite original and general, but ignores the details of the dynamics

of the postsynaptic potential and of the neuronal membrane.

Pfister et al. [53] have derived supervised learning rules for

probabilistic neurons. The learning method is based on gradient

ascent in the space of synaptic efficacies, which maximizes the

likelihood of having a trained neuron firing at the desired

moments. Because of the probabilistic framework, the learning

rules do not involve the actual timing of the output spikes, but the

probability of having a particular output spike train given a

particular input spike train. Calculating such a probability while

taking into account the reset of the membrane potential after the

spikes of the output neuron is computationally challenging and not

biologically plausible.

Legenstein and colleagues [54,55] have studied a supervised,

biologically-inspired learning method for spiking neurons that

works by clamping neurons to the desired output and applying

spike timing–dependent plasticity (STDP) to the afferent synapses

of the trained neurons. Under certain conditions, after learning,

the neurons yield the desired output even after the teaching signal

is removed. The effectiveness of this learning method has been

proved analytically only for Poisson input spike trains, and there

are worst case scenarios where the method fails, but simulations

have shown that the method is effective in more general

conditions. The method works only when synapses have hard

bounds, by driving synaptic efficacies toward these bounds. Thus,

the output patterns that this method can learn are restricted to

those that can be generated by synapses that have either minimum

(zero) or maximum efficacy. A similar rule can be used for

supervised learning of patterns by networks [56], but not by single

neurons.

The tempotron [16] implements supervised learning for a

particular task where an output neuron either fires one spike or

does not fire during a predetermined time interval, when

presented with an input spike pattern that encodes information

in the precise spike timings. The approach assumes that after the

neuron emits a spike in response to a input pattern all other

incoming spikes have no effect at all on the neuron (are shunted),

which is artificial. The timing of the output spike cannot be

controlled with this method, and thus the output of a tempotron

cannot be used as an information-carrying input for another

tempotron. The tempotron has a binary response and therefore its

output cannot distinguish between more than two input categories.

Although it is claimed that it is biologically plausible, the

tempotron learning rule requires information that is nonlocal in

time, needing to monitor the maximum of the output, and

information that is not available to the neuron, such as the

maximum of the membrane potential that would have been

reached if the neuron would have not fired. We have shown that

Figure 10. The dependence on the number of categories c of the performance of E-learning for a classification problem. (A) The
average minimum number of epochs required for correct learning, as a function of the load a, for various numbers of categories c. Regardless of c, the
points fall on the same curve. (B) The maximum load for which correct learning is achieved (the capacity am), as a function of the number of
categories c. The shaded area represents the uncertainty due to the fact that the load can vary only discretely, in steps of c=n, for a particular c. The
capacity is approximately constant for all c.
doi:10.1371/journal.pone.0040233.g010
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the tempotron is equivalent to a particularization of the ReSuMe

learning rule [17]. A learning rule by Urbanczik and Senn [18]

improves the original tempotron learning rule but is still focused

on the artificial tempotron setup.

Barak and Tsodyks [57] have developed learning rules that

increase the variance of the input current evoked by a set of

learned patterns relative to that obtained from random back-

ground patterns. The trained neuron then has a larger firing rate

when presented with one of the learned patterns, as compared to

when presented with a typical background pattern. The learning

rules are quite complex, with low biological plausibility. They

allow a neuron to recognize input patterns of precisely timed

spikes, but the timing of the output spikes is not controlled by these

rules. The memory capacity computed for these learning rules, for

just the recognition of patterns, is an order of magnitude smaller

than the maximum memory capacity we obtained for mapping

memorized patterns to specific outputs (Methods). Other complex

setups for recognizing spike patterns were also developed [58–61].

A few other supervised learning methods for spiking neurons or

neural networks also exist but work only for some specific cases,

such as neurons receiving oscillatory inhibition [62], population-

temporal coding [63], theta neurons [64,65], neurons with very

large membrane decay time constants and constant interspike

intervals for the inputs [66], networks with time to first spike

coding for classification through plasticity of synaptic delays [67],

neurons having two presynaptic and one postsynaptic spikes per

learning cycle [68], specific configurations, composed of several

modules, of the trained network [69].

ReSuMe [19,20,70–74] is a general supervised learning method

for spiking neurons that allows learning of arbitrary output spike

trains. It is the only existing learning rule that is comparable to the

ones introduced here. This learning rule has been conjectured by

analogy to the Widrow-Hoff rule for analog neurons. Simulations

have shown that not all the terms of the conjectured learning rule

are needed for learning [74]. To date, it has been shown

analytically that ReSuMe will converge to an optimal solution only

for the case of one input spike and one target output spike [70].

We have shown here (Fig. 9) that E-learning leads to a much

higher memory capacity than ReSuMe. The higher performance

of E-learning can be attributed to the analytical derivation of the

Figure 11. The dependence of chronotron performance on the
number of output spikes per trial. The neuron had to learn to have
the same output for all inputs, using E-learning. The output consisted of
o output spikes, placed at k T=(oz1), for k[f1, . . . ,og. (A) The
maximum load (the capacity am) as a function of the number of output
spikes o. (B) The number of learning epochs required for correct
learning as a function of the number of output spikes o, for various
loads a. (C) The number of learning epochs required for correct learning
as a function of load, for various numbers of output spikes o. Best
performance was achieved for a single output spike per trial.
doi:10.1371/journal.pone.0040233.g011

Figure 12. The dependence of chronotron performance on the
firing rate of the inputs. The inputs were generated using a Gamma
process having a normalized average period (the average period over
the trial length) w (Methods). (A) The maximum load (the capacity am) as
a function of the normalized average period w. (B) The number of
learning epochs required for correct learning as a function of the
normalized average period w, for various loads a. (C) The number of
learning epochs required for correct learning as a function of load a, for
various values of the normalized average period w. Best capacity was
achieved for values of w around 1, i.e. a single input spike per trial, for
each synapse, on average, while fastest learning was achieved for w
around 0.5.
doi:10.1371/journal.pone.0040233.g012
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E-learning rule, although the derivation included approximations

that preclude analytical guarantees on the optimality of E-

learning.

I-learning is quite similar to ReSuMe. As in ReSuMe, in I-

learning actual and target postsynaptic spikes lead to synaptic

changes of opposite signs, such that when the actual spike train

corresponds to the target one the terms cancel out and synapses

become stable, and thus the basic mechanism is identical. In

contrast to the typical form of ReSuMe, where synaptic changes

depend exponentially on pairs of pre- and postsynaptic spikes, as

in some models of spike-timing-dependent plasticity, in I-learning

synaptic changes depend on the value of the synaptic current. In

the case that synaptic currents are exponentials, I-learning would

be identical to a form of ReSuMe where the non-Hebbian terms

are set to zero. Variants of ReSuMe where the exponentials have

been replaced by other types of functions, including differences

between two exponentials (double-exponentials) like in our model

of I-learning, have been previously studied [74] but these double-

exponentials have not been previously associated to the synaptic

currents. ReSuMe is typically presented as using exponential

functions and non-zero non-Hebbian terms [20]; the lack of these

in I-learning makes it distinct from ReSuMe. Because the rising

part of the double-exponentials is deleterious to learning [74] and

because I-learning does not allow synapses to change sign, unlike

ReSuMe, I-learning has, in most cases, a lower performance than

ReSuMe (Figs. 9, 17). However, unlike in the experiment with

double-exponentials in [74], where, additionally to the terms that

we used in I-learning some anti-Hebbian terms have been used

Figure 13. The dependence of chronotron performance on the
probability Ps that input synapses receive no spikes. At the
beginning of the experiment, each input spike train was set up as either
one spike generated at a random timing or, with a probability Ps, of no
spikes. Input patterns did not change during learning. (A) The
maximum load (the capacity am) as a function of the no firing
probability Ps. (B) The number of learning epochs required for correct
learning as a function of the no firing probability Ps, for various loads a.
(C) The number of learning epochs required for correct learning as a
function of load a, for various values of the no firing probability Ps . Best
capacity was achieved for values of Ps less or equal to 0.1, while fastest
learning was achieved when there was no input with no spikes. For
large Ps there are not enough input spikes to drive the neuron and, as
expected, performance drops.
doi:10.1371/journal.pone.0040233.g013

Figure 14. The dependence of chronotron performance on the
timing of the output spike and on the initial state of the
membrane potential. The neuron had to learn to have the same
output for all inputs. The output was one spike at a given timing y. At
the beginning of each trial, the membrane potential u was either set to
0:8 h, as in the other experiments (stable initial state), or was generated
randomly, with a uniform distribution, between 0 and 0:8 h (random
initial state). (A) The maximum load (the capacity am) as a function of
the timing of the output spike y. (B) The number of learning epochs
required for correct learning as a function of the timing of the output
spike y, for various loads a. (C) exp ({y=tm), as a reference for
comparing the effect on learning of the initial conditions, as a function
of the timing of the output spike y. For this setup, the capacity and the
learning time for reaching the correct output, for stable initial state,
does not depend on y if it is larger than about 40 ms. Because of the
exponential decay of the membrane potential of the chronotron with a
time constant tm , the effect of the random initial state of the membrane
potential on the chronotron’s performance, as a function of the output
spike timing y, becomes insignificant at about y&4 tm, similarly to
exp ({y=tm), as exp ({4)&0:018.
doi:10.1371/journal.pone.0040233.g014
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and a lack of convergence has been observed, in our experiments

I-learning converged well to the target output (Fig. 6, 7). Real

synaptic currents do involve a non-zero rising time and thus using

double-exponentials in modeling currents is biologically relevant.

For a review of supervised learning methods for spiking neural

networks, see [75].

Discussion

We have shown that, through appropriate learning methods,

spiking neurons are able to process and memorize information that

is encoded in the precise timing of spikes. We presented two new

spike-timing-based learning rules, E-learning and I-learning,

which allow neurons to fire specific spike trains in response to

specific input patterns of spike timings, by modifying accordingly

their synaptic efficacies. E-learning leads to high memory capacity,

while I-learning is more biologically plausible.

There obviously are input-output mappings that are mechanis-

tically impossible to be performed by a spiking neuron. For

example, when there is no input, the neuron obviously cannot fire.

A sufficient number of input spikes that arrive uncorrelated on

each of its synapses leads to a wide range of outputs that the

neuron is able to map to these inputs, by adjusting the synaptic

efficacies. But if the neuron has to perform several different input-

output mappings with the same set of synaptic efficacies, the

various mappings constrain each other through the synaptic

efficacies. These constraints lead to the mechanistical impossibility

that the neuron performs new input-output mappings beyond the

current ones, and thus to a finite memory capacity of the neuron.

We computed lower bounds of the memory capacity of a spiking

neuron with temporal coding of information and studied how this

depends on various parameters of the setup.

The chronotron can model situations where information is

coded in the time of the first spike relative to the onset of salient

stimuli [2], or situations where information is coded in the phase of

spiking relative to a background oscillation. Some of the results

presented here underline the role of oscillations for temporal

information processing. First, oscillations segment time into frames

(periods), offering a reference for temporal encoding of informa-

tion in spike latencies (phases) [76]. Second, in the parts of the

cycles where neurons are globally inhibited or global excitation is

low, oscillations ensure that neurons are reset such that they are

able to process independently the inputs corresponding to different

frames (periods). If this reset is such that it allows the chronotron to

Figure 15. The dependence of chronotron performance on trial
length T . (A) The maximum load (the capacity am) as a function of the
trial length T . (B) The number of learning epochs required for correct
learning as a function of the trial length T , for various loads a. (C) The
number of learning epochs required for correct learning as a function of
load a, for various values of the trial length T . Best performance was
achieved for T~80 . . . 100 ms (the relevant parameter is T=tm ,
T=tm~8 . . . 10).
doi:10.1371/journal.pone.0040233.g015

Figure 16. The dependence of chronotron performance on the
reset potential ur. (A) The maximum load (the capacity am) as a
function of the reset potential ur. (B) The number of learning epochs
required for correct learning as a function of the reset potential ur , for
various loads a. (C) The number of learning epochs required for correct
learning as a function of load a, for various values of the reset potential
ur . The performance does not depend on the reset potential if it is lower
than half of the firing threshold, h=2~10 mV.
doi:10.1371/journal.pone.0040233.g016

The Chronotron

PLOS ONE | www.plosone.org 14 August 2012 | Volume 7 | Issue 8 | e40233



get into the resting state or another baseline state (the chronotron

is inhibited or does not receive significant input for a duration of

about 4–6 times the membrane time constant or more), then the

absolute latencies, relative to the oscillation period, of the input

spikes do not matter for the chronotron, but just the relative

timings of spikes in the input pattern. The output spikes of the

chronotron would then encode information in their relative

timings with respect to the input spikes. The relevance of

oscillations to temporal coding is consistent to the results of

Havenith et al. [8] where the information carried by neurons in

the visual cortex through their relative firing times was found to

increase considerably with the oscillation strength. It has also been

shown that the hippocampal theta rhythm is necessary for learning

by rats of the Morris water maze [77] and that it enhances

learning in eyeblink classical conditioning in rabbits [78,79].

Oscillations also enhance the temporal precision of action

potentials [80]. Although the parameters of most of our

simulations correspond to a theta rhythm, the simulations’ results

remain the same when all temporal parameters are rescaled, and

thus the results are also relevant for neurons that are subject to a

gamma rhythm or other oscillations.

In the brain, when the spike phase encodes information relative

to a background oscillation, the neurons fire no more than one

spike per cycle in some, but not all, experiments [4,6,8–10,14].

Our results showed that firing one spike per cycle is optimal for

processing and memorization of phase-of-firing temporally

encoded information by spiking neurons. In many cases, neurons

in the brain skip oscillation cycles, which implies that the neurons

that skip cycles do not participate in all input patterns received by

postsynaptic neurons. This means that postsynaptic chronotrons

will have an effective number of inputs lower than the real one,

which would reduce the memory capacity as compared to the case

when all input neurons fire one spike per cycle. However, this does

not preclude the possibility that chronotrons process and

memorize information in oscillatory networks where neurons skip

cycles or where neurons fire more than one spike per cycle.

I-learning implies that synaptic changes are proportional to the

corresponding synaptic currents, which are quantities that are

locally available to the synapse. Postsynaptic spikes lead to synaptic

depression similar to anti-Hebbian spike timing-dependent plas-

ticity (STDP) [81–89], while the timings of target postsynaptic

spikes trigger potentiation. The depression and potentiation should

balance each other when actual spikes occur at the target timings.

The target timings could be indicated by spikes coming from

other, teacher neurons, through special teaching synapses [90].

The firing of these teacher neurons should lead to heterosynaptic

associative changes [91–93] according to the I-learning rule and

should not have a significant impact on the trained neuron’s

potential [90]. The potentiation generated through such a

mechanism should be balanced by anti-Hebbian STDP when

the trained neuron reproduces the firing of the teacher neuron. In

Figure 17. The performance of learning rules when their
parameters were optimized for fast learning for p~20,
n~1,000 (a~0:02). (A) The number of learning epochs required for
correct learning as a function of the load a, for n~1,000. Correct
learning was not achieved for I-learning and ReSuMe for a larger than
0.03. (B) The number of learning epochs required for correct learning as
a function of the number of input synapses n. Correct learning was not
achieved for I-learning for n~500 nor n larger than 6,000. Averages and
standard deviations over 500 realizations. The arrows indicate the
conditions for which the parameters were optimized.
doi:10.1371/journal.pone.0040233.g017

Figure 18. The dependence of chronotron performance on
when synapses are updated during simulations. The number of
learning epochs required for correct learning as a function of the load a,
for various methods of applying the synaptic changes according to the
learning rules: batch updating (synapses are changed at the end of each
batch of p trials, each one corresponding to one of the input patterns);
trial updating (synapses are changed at the end of each trial); online
updating (synapses are changed after each target or actual postsyn-
aptic spike — for I-learning only). (A) E-learning. (B) I-learning.
doi:10.1371/journal.pone.0040233.g018
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this case, the trained neuron’s firing should then become

increasingly correlated to the one of the teacher neuron, eventually

mimicking its firing with a lag corresponding to the delay of the

arrival of the teaching spikes. If the trained neuron learns from

several teacher neurons, it should learn to fire when either one of

the teacher neurons fires, acting thus as a kind of multiplexer. If

the trained neuron does not need to reproduce the entire activity

of teaching neurons, but just the one during salient events,

teaching could be modulated by a neuromodulator. Neuromodu-

lation of supervised learning could be similar to the control of

induction of associative plasticity in Purkinje cells through targeted

modulation of instructive climbing fiber synapses [94] or the

neuromodulation of STDP [95–102]. Just as STDP [103–105] or

its neuromodulation [106,107] were predicted theoretically in

advance of experimental verification, future experiments may find

plasticity mechanisms similar to I-learning in the brain. For

example, such mechanisms might be responsible for neural

synchronization that modulates neural interactions [108], such

as the synchronization of thalamic neurons needed for driving the

cortex through weak synapses [109]; for encoding of information

through synchronization [110]; or for the fine temporal tuning of

excitation relative to inhibition that contributes to stimulus

selectivity in rat somatosensory cortex [111].

Besides the particular supervised learning rules introduced here,

other learning mechanisms, such as reinforcement learning, or

developmental mechanisms selected through evolution, could lead

to a chronotron-like processing of temporally-coded information.

Many computational applications of the presented learning rules

are possible. For example, the supervised learning rules presented

here could be used to train readout neurons of liquid state machines,

for which perceptrons or spiking neurons with rate coding of outputs

were previously used [23]. Using spiking neurons with temporal

coding as readouts for liquid state machines makes their information

representation compatible to the one of spiking neurons in the

liquid, thus allowing the outputs of the readouts to be fed back into

the liquid. Such feedback significantly improves the computing

power of liquid state machines [112], allowing the development of

better models of information processing in the brain. Another

possible application is the decoding of neural signals. Less efficient

learning rules than the ones presented here have been already

applied successfully, and with better results than alternative

methods, to train simulated spiking neural networks to extract

arm movement direction and hand orientation intent from the

timing of spike trains recorded from monkeys [113]. These are just a

few examples of the potential uses of the learning rules presented

here. These rules open the way to a plethora of future experiments

that will explore how information encoded in the precise timing of

spikes can be processed and memorized. This should lead to a better

understanding of the information-processing features of neurons in

the brain.

Methods

The neural model
Our analysis uses the Spike Response Model (SRM) of spiking

neurons, which reproduces with high accuracy the dynamics of the

complex Hodgkin-Huxley neural model while being amenable to

analytical treatment [21,114]. For this model, the dynamics of the

membrane potential u of a neuron as a function of the time t is

given by

u(t)~g(t,̂tt)z
X

j

wj

X
f

Ej(t,̂tt,t
f
j ), ð6Þ

where g is a kernel that represents the refractoriness caused by the

last spike of the neuron; t̂t is the last time the neuron fired before t;
the first sum runs over all synapses j afferent to the considered

neuron; wj is the synaptic efficacy of the synapse j; the second sum

runs over the set of the timings when spikes coming through

synapse j reach the postsynaptic neuron, t
f
j [F j ; Ej is a normalized

kernel that determines the postsynaptic potential (PSP) caused by a

presynaptic spike. We consider here that synaptic changes are

applied on a time scale that is much slower than the time scale of

the variation of the PSPs and than the length of the considered

trial, or that, in simulations, synaptic changes are accumulated and

applied at the end of one or more trials grouped in batches of

information processing within which synaptic efficacies are held

constant. Thus, the synaptic efficacies wj can be considered

effectively constant during a trial, but can change across trials. We

have chosen the reference of the membrane potential such that the

resting potential of the neuron is 0. The E kernel is causal, i.e.

Ej(t,̂tt,t
f
j )~0 for tvt

f
j , and also decays to 0 for t??. We denote as

lj the total normalized PSP resulting from the contribution of past

presynaptic spikes coming through the synapse j,

lj(t,̂tt,F j)~
X

f

Ej(t,̂tt,t
f
j ) ð7Þ

and therefore

u(t)~g(t,̂tt)z
X

j

wj lj(t,̂tt,F j): ð8Þ

When the membrane potential reaches the firing threshold h, the

neuron fires a spike and the membrane potential is reset.

Graphical illustration of the chronotron problem
We consider the problem of training the plastic parameters of a

spiking neuron, such that the spike train of the trained neuron is,

for a given input, as close as possible to some given target spike

train. Although we focus here on training the synaptic efficacies,

the plastic parameters may also be the synaptic delays, the firing

threshold, the membrane time constant, etc.

We consider the vector w having as components the synaptic

efficacies wj and the vector l(t,̂tt,fF jg) having as components the

normalized PSPs lj(t,̂tt,F j). Each of these vectors has a dimension

equal to the number of synapses, n. The equation that defines the

dynamics of the Spike Response Model, Eq. 8, can be then

rewritten in vectorial form as

u(t)~g(t,̂tt)zw:l(t,̂tt,fF jg): ð9Þ

The dynamics of the normalized PSPs define a trajectory of l in

the corresponding n-dimensional space. After each postsynaptic

spike, the normalized PSPs are reset to 0 and thus this trajectory

always starts from the origin of the space. The neuron fires a spike

when u(t)~h, or

w:l(t,̂tt,fF jg)~h{g(t,̂tt): ð10Þ

The magnitude of the projection of the l vector on the w vector

is (w:l)=DwD. Thus, the neuron fires a spike when the magnitude of

the projection of l on w reaches h{g(t,̂tt)ð Þ=DwD, i.e. l reaches a

spike-generating hyperplane which is perpendicular on the vector
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w and at a distance h{g(t,̂tt)ð Þ=DwD of the origin. This is illustrated

in Figs. 1 and 2 for a neuron with 2 synapses and in Fig. 3 for a

neuron with 3 synapses. These artificially low numbers of synapses

were chosen because it is difficult to visualize spaces with

dimensions higher than 3.

The chronotron problem can then be understood as setting the

vector w such that the spike-generating hyperplane that it defines

is such that l reaches it at the moments of the target spikes.

Analytical derivation of the E-learning rule
For a given input, the trained neuron fires at the moments tf ,

where f represents the index of the spike in the spike train. The

ordered set of the spikes in the spike train fired by the neuron is

F~ft1,t2, . . .g. The target spike train that the neuron should fire

for that input is ~FF~f~tt1,~tt2, . . .g.
The key to solving the chronotron problem is finding

appropriate error functions that can be afterwards minimized

through methods like gradient descent in the space of the plastic

parameters. In order to find such an error function, we start from

the Victor & Purpura (VP) family of metrics based on spike times

that defines distances between pairs of spike trains [25,115]. The

distance between two spike trains is defined as the minimum cost

required to transform one into the other. This is the sum of the

costs assigned to either insertion of spikes, removal of spikes or

shifting the timing of spikes. The cost of adding or deleting a single

spike is set to 1, while the cost of shifting a spike by an amount Dt

is s(DDtD=tq), where s is a positive, increasing function with

s(0)~0, and tq is a positive time constant that is a parameter of

the metric. The commonly used form of this function is simply

s(x)~x [25,115].

Because the transformation is of minimal cost, the operations

that define it are severely constrained. The same spike cannot be

both moved and deleted, nor inserted and moved, nor inserted

and deleted. A spike can be moved in only one direction, and the

trajectories of moved spikes should not intersect [25]. Thus, in a

transformation of minimal cost of the actual spike train F into the

target one ~FF , the operations involved are the following: removal of

spikes (that are not previously moved); insertion of spikes (at their

target timings, so that they are not moved after insertion); and

shifting of spikes toward their target timings. The order of these

operations is irrelevant.

We denote as F� the subset of F that represents the spikes that

should be eliminated; and as ~FF� the subset of ~FF that represents the

timings of target spikes at which new spikes should be inserted into

F . The spikes in the actual spike train that are not eliminated,

F{F�, are in a one-to-one correspondence with the spikes in the

target spike train for which a correspondent is not inserted,
~FF{ ~FF�, and they should be moved towards their targets. We say

that the spikes in F� and ~FF� are independent, while the spikes in

F{F� and ~FF{ ~FF� are linked or paired to their correspondent

(match). The VP distance is then

EVP~
X

tf [F�
1z

X
~ttf [ ~FF�

1z
X

(tf , ~ttg)

tf [F{F�
~ttg[ ~FF{ ~FF�

s(Dtf {~ttg D=tq), ð11Þ

where the first sum equals the number of elements in F�, the

second sum equals the number of elements in ~FF�, and the last sum

runs over all unique pairs of matching spikes.

The existing algorithm that computes the VP distance between

two given spike trains [25,115] can be extended in order to also

compute the sets F�, ~FF� and their complements. We present this

extended algorithm in a separate section, below.

Thus, we can determine which of the actual spikes fired by the

trained neuron should be removed, which target spikes do not

have a correspondent and thus new spikes should be created to

match them, and which spikes should be moved and toward which

of the targets, in order to transform the actual spike train into the

target one with a minimal cost. The plastic parameters should then

change in order to perform this transformation.

For an existing spike at tf that should be moved towards ~ttg, the

error that should be minimized is s(Dtf {~ttg D=tq). This can be

differentiated piecewisely with respect to the plastic parameters,

so that the changes of the parameters that lead to a decrease of

the error can be computed. However, the spikes in F� and ~FF�
that are independent contribute to the distance a constant term of

1 each, and this is not differentiable with respect to the plastic

parameters. In order to be able to minimize the contribution of

these terms to the distance between the spike trains, we must

focus more closely on the mechanisms of spike creation and

removal.

The neuron fires a spike when its membrane potential u
reaches the firing threshold h; after a spike is emitted, the

membrane potential is reset to ur. If a new spike should be

created at a target timing ~ttf , this is because the membrane

potential is not high enough at that moment. In order to

minimize the spike train distance by creating a new spike, we

should thus minimize the error h{u(~ttf ). This reflects the amount

with which the membrane potential should increase at ~ttf in order

to reach the threshold and let the neuron fire at the target timing.

Analogously, if an actual spike at tf should be removed we should

decrease the membrane potential at that timing and minimize

u(tf ). Note that we minimize the membrane potential at the

current moments of the spikes to be removed. The membrane

potential at a generic moment of these spikes equals the firing

threshold, thus being a constant that cannot be minimized. The

effect of this minimization will be, in most cases, a change of the

timing of these spikes, until their elimination.

These error terms that depend on the values of the membrane

potential at the timings of the spikes are piecewisely differentiable

with respect to the plastic parameters. We will replace, in the error

function to be minimized by changes in the plastic parameters, the

constant terms corresponding to independent actual and target

spikes with these new error terms. Because the new error terms are

not commensurable with the original spike train distance, we scale

the original terms by a constant, positive parameter cd . The final

error function that we seek to minimize is thus

E~
X

tf [F�
u(tf )z

X
~ttf [ ~FF�

(h{u(~ttf ))zcd

X
(tf , ~ttg )

tf [F{F�
~ttg[ ~FF{ ~FF�

s(Dtf {~ttg D=tq):ð12Þ

The first sum is over the independent actual spikes, the second

sum is over the independent target spikes, and the last sum is over

unique pairs of linked spikes, consisting of one target spike and one

actual spike that should be moved towards the target one.

We aim to minimize this error function by piecewise gradient

descent in the space of the plastic parameters of the trained

neuron. We will consider here training the efficacies wj of the

synapses afferent to the neuron, where the index j indicates the

synapse. The synaptic changes that aim to minimize the error

function are thus
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Dwj*{
LE

Lwj

: ð13Þ

We have

L
Lwj

s
Dtf {~ttg D

tq

� �
~s’

Dtf {~ttg D
tq

� �
sign(tf {~ttg)

tq

Ltf

Lwj

, ð14Þ

where s’(x)~ds(x)=dx. Because of the presence of the absolute

value function in the argument of s, the derivative presented in the

equation above is discontinuous when the actual spike is at its

target timing, tf {~ttg?0, unless we have s’(0)~0. We would like

to fulfill this condition in order to avoid, during learning,

oscillations of the emitted spikes around the target positions.

The typically used linear function s(x)~x does not fulfill this

condition. Because of this, here we will use

s(x)~
1

2
x2: ð15Þ

Like for the commonly used form s(x)~x, for our choice of s the

switch from considering two spikes (one from each of the two spike

trains) as independent to considering them as linked is when the

difference of their timings, in absolute value, is DDtswitchD~2 tq.

This is because a pair of independent spikes contributes to the

distance with a term of 1 each, for a total of 2 (one actual spike

should be removed and a matching spike for the target one should

be created); and s(DDtswitchD=tq)~s(2)~2.

We have s’(x)~x and

L
Lwj

s
Dtf {~ttg D

tq

� �
~

tf {~ttg

t2
q

Ltf

Lwj

: ð16Þ

The derivative of the firing time of the neuron with respect to a

synaptic efficacy can be computed by taking into consideration

that the firing time depends on the synaptic efficacies through its

dependence on the dynamics of the membrane potential of the

neuron. However, the membrane potential at a generic firing time

is always constant, equal to the firing threshold, and thus we have

[44,116]:

u(tf )~h ð17Þ

du(tf )~0: ð18Þ

By expanding the last equation, we get

Lu(tf )

Lwj

dwjz
Lu(tf )

Lt

Ltf

Lwj

dwj~0 ð19Þ

and, finally,

Ltf

Lwj

~{
1

Lu(tf )

Lt

Lu(tf )

Lwj

: ð20Þ

By introducing Eqs. 12, 16, and 20 into Eq. 13, we get:

Dwj*
X

~tt f [ ~FF�

Lu(~tt f )

Lwj

{
X

t f [F�

Lu(t f )

Lwj

z
cd

t2
q

X
(t f , ~tt g)

t f [F{F�
~tt g[ ~FF{ ~FF�

t f {~tt g

Lu(t f )

Lt

Lu(t f )

Lwj

:

In order to be able to compute the derivatives of the membrane

potential with respect to the synaptic efficacies, we have to choose

a specific neural model. As discussed above, here we use the Spike

Response Model, Eq. 8. We can then compute

Lu(t)

Lwj

~
Lg(t,̂tt)

L̂tt

L̂tt

Lwj

zlj(t,̂tt,F j)z
X

k

wk

Llk(t,̂tt,F j)

L̂tt

L̂tt

Lwj

ð22Þ

Lu(t)

Lwj

~lj(t,̂tt,F j)z
Lg(t,̂tt)

L̂tt
z
X

k

wk

Llk(t,̂tt,F j)

L̂tt

" #
L̂tt

Lwj

ð23Þ

Lu(t)

Lwj

~lj(t,̂tt,F j)z
Lu(t)

L̂tt

L̂tt

Lwj

ð24Þ

In order to simplify the learning rule, its presentation and its

computational implementation, we neglected the last term in the

last equation and we used for the simulations the approximation

Lu(t)

Lwj

&lj(t,̂tt,F j): ð25Þ

The neglected term is not necessarily numerically negligible, but

however the simulations have shown that the learning rule

performs well under this approximation.

Another approximation that we used was to replace the factor

1=½Lu(tf )=Lt� in Eq. 21 with a constant. This is needed because

this factor diverges numerically when a spike is fired while the

membrane potential barely reaches the threshold and Lu(t f )=Lt is

close to 0. This divergence reflects a discontinuity of the studied

system [48]: in this situation, an infinitesimally small change of a

synaptic efficacy can lead to a finite change of the error function, if

this results in the removal of the considered spike. Our error

function deals with spike creation or removal trough the two terms

that ensure that the membrane potential is increased or,

respectively, decreased at the desired timings, such that the

number of spikes becomes the desired one and the actual spikes

(21)
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are close to the target ones. It is thus safe to enforce a hard bound

for the divergent factor or, as we did here, to replace it with a

constant. This constant is positive, because a spike is generated

only when the membrane potential increases. We fold this

constant and cd into a new positive constant, cr.

The resulting learning rule, that we call E-learning, is thus

Dwj~c½
X

~ttf [ ~FF�
lj(~tt

f ,b~ttf~ttf ,F j){
X

tf [F�
lj(t

f ,̂ttf ,F j)

z
cr

t2
q

X
(tf , ~ttg)

tf [F{F�
~ttg[ ~FF{ ~FF�

(tf {~ttg) lj(t
f ,̂ttf ,F j)�, ð26Þ

where c is the learning rate, a positive parameter.

The E-learning rule can be described more intuitively as follows.

For each of the target spikes, if these target spikes are independent

(do not have a corresponding actual spike close to them), each

synapse j is potentiated proportionally to the normalized PSP lj at

the moments of these target spikes. For each of the independent

actual spikes (that do not have a corresponding target spike close to

them), each synapse is decreased proportionally to the normalized

PSP at the moments of these actual spikes. For each pair of

matching spikes, each synapse changes proportionally to the

difference between the timing of the actual spike and the timing of

the target spike in the pair, and also proportionally to the

normalized PSP at the moment of the actual spike. The first two

terms of the learning rule will create or remove spikes in order to

match them to the target ones. The last term of the learning rule

will move the actual spikes that match the target ones toward their

targets. When the timing of the spikes coincide to their targets, the

changes of the synaptic efficacies suggested by the learning rule

become zero and thus learning stops.

The E-learning rule can also be understood intuitively by

considering snapshots of the trajectory of l(t) at the timings of

target and actual spikes of the trained neuron. The equation

defining the E-learning rule, Eq. 26, can be written in vectorial

form as

Dw~c½
X

~ttf [ ~FF�
l(~ttf ,b~ttf~ttf ,fF jg){

X
tf [F�

l(tf ,̂ttf ,fF jg)

z
cr

t2
q

X
(tf , ~ttg)

tf [F{F�
~ttg[ ~FF{ ~FF�

(tf {~ttg) l(tf ,̂ttf ,fF jg)�: ð27Þ

At the timings ~ttf of independent target spikes, the spike-generating

hyperplane must be brought closer to the l(~ttf ) vector and

therefore the w:l(~ttf ) product must be increased. This can be done

best, for a given perturbation of w, by increasing just the

component of w that is parallel to the l(~ttf ), which would lead w to

turn towards l(~ttf ). This leads to setting Dw*l(~ttf ), hence the first

term of Eq. 27. At the timings tf of independent actual spikes,

l(tf ) reaches the spike-generating hyperplane which must be then

moved away from l(tf ) and thus it leads to Dw*{l(tf ), hence

the second term of Eq. 27.

When an actual spike at tf is followed closely by a matching

target spike at ~ttg, bringing the spike-generating hyperplane closer

to l(~ttg) is deleterious since it does not take into account that l
has just been reset to 0 because of the recent actual spike. In this

case, what should be done is just delaying the actual spike. This

could be done by moving the spike-generating hyperplane away

from l(tf ), proportionally to tf {~ttg. When a target spike at ~ttg is

followed closely by a matching actual spike at tf , bringing the

spike-generating hyperplane closer to l(~ttg), in the same way as in

the case of an independent target spike described above, would

bring the timing of the actual spike closer to the target one, but in

an imprecise fashion. We would like that the convergence of the

actual spike towards the target one to be smooth. The third

term of Eq. 27, Dw*(tf {~ttg)l(tf ), takes care of the last two

situations.

The I-learning rule
The form of the synaptic changes indicated by the previously

described E-learning rule depends on whether spikes are

independent or not, being different in the two cases. While, as

the simulations have shown, this learning rule is very efficient, the

biological plausibility of this switch of the form of the synaptic

changes is debatable. For this reason, we sought a more

biologically plausible supervised learning rule.

We consider the limit tq?0, when all spikes are independent:

F~F� and ~FF~ ~FF�. In this case, the E-learning rule will keep just

its first two terms, which depend on the normalized postsynaptic

potentials. The switch of the form of the synaptic changes as a

function of the pairing status of the spikes is then removed.

However, due to the spike generation mechanism, the postsynaptic

potentials suffer a discontinuity after each actual spike, being reset

to zero. If there is no distinct treatment of pairs of close actual and

target spikes, this leads to a discontinuity of the synaptic changes

when an actual spike oscillates around a target one. Learning does

not converge to a stable firing of the actual spikes at the target

timings. Moreover, it is not clear whether the normalized

postsynaptic potential (i.e., the postsynaptic potential with the

synaptic efficacy factored out) is a quantity locally available to the

synapse.

For these reasons, we heuristically defined a new learning rule.

As before, we wanted the synaptic changes to depend on a

quantity that reflects the contribution of each synapse to the

membrane potential, a quantity that would be correlated to lj ,

which is used by the analytically-derived E-learning rule. As in E-

learning with tq?0, the synaptic changes for excitatory synapses

should be determined by synaptic increases proportional to the

value of the considered quantity at the timing of the target spikes

and by synaptic decreases proportional to the value of that

quantity at the timing of the actual spikes. In this case, when the

actual spikes coincide with the target ones, the terms cancel out,

resulting in the convergence of the learning rule. Another

condition was that the sum of the terms corresponding to a pair

of close actual and target spikes converges continuously to zero

when the actual spikes moves towards the target one. We also

wanted that the quantity used by the learning rule to be locally

available to the synapse, thus ensuring its biological plausibility.

We thus used the synaptic current, Ij , as this quantity. The

resulting learning rule, that we call I-learning, is thus:

Dwj~c sign(wj)
X
~ttf [ ~FF

Ij(~tt
f ){

X
tf [F

Ij(t
f )

24 35, ð28Þ

with c being the learning rate, a positive constant. Although we did

not make it explicit in the notation, the synaptic currents Ij on

each synapse obviously depend on the parts of the presynaptic

spike trains F j coming through that synapse previous to the

moment at which Ij is evaluated. The sign(wj) in the learning rule
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(i.e., +1 as a function of whether the synapse is excitatory or

inhibitory) reflects that the sign of the synaptic changes depends on

the sign of the synaptic efficacy. For excitatory synapses, both wj

and Ij are positive, while for inhibitory synapses both are negative.

ReSuMe
We have also performed simulations using the ReSuMe

learning rule [19,20,73,74], in order to compare it to the new

learning rules introduced here. We used the following form of

ReSuMe [20]:

Dwj~c
X
~ttf [ ~FF

aRz
X

t
g
j
v~tt f

exp {
~ttf {t

g
j

tR

 !264
375

8><>:
{
X
tf [F

aRz
X

t
g
j
vt f

exp {
tf {t

g
j

tR

 !264
375
9>=>;,

ð29Þ

where c is the learning rate, aR is a non-Hebbian term, and tR is a

time constant, all being positive parameters of the learning rule.

Details of the neural model
In order to be able to test the learning rules in a computer

simulation, we must define the forms of the E and g kernels of the

Spike Response Model. We define them to correspond to the

classical leaky integrate-and-fire neural model, which is a

particular case of the Spike Response Model [21]. A further

choice must be made for the form of the synaptic currents. We

modeled the kernel a that reflects the form of the synaptic current

generated by the arrival of a presynaptic spike through the synapse

j at the timing t
f
j as a difference of two exponentials (double-

exponential current):

a(t,t
f
j )~

1

ts{tr

exp {
t{t

f
j

ts

 !
{ exp {

t{t
f
j

tr

 !" #
, ð30Þ

for t§t
f
j , where ts and tr are positive parameters (time constants).

The a kernel is illustrated in Fig. 19 A.

The synaptic current contributed by one spike at t
f
j is the

product of the synaptic efficacy wj and of the normalized a kernel:

I
f
j (t,t

f
j )~wj a(t,t

f
j ): ð31Þ

The a kernel is normalized:

ð?
t
f
j

a(t,t
f
j ) dt~1, ð32Þ

and therefore the synaptic efficacy wj represents the total charge

transmitted to the postsynaptic neuron as a consequence of one

presynaptic spike.

The synaptic current generated through the synapse j by one or

more presynaptic spikes is

Ij(t)~
X

t
f
j
[F j

t
f
j
ƒt

I
f
j (t,t

f
j ), ð33Þ

and the total synaptic current received by the neuron from all

synapses is

I(t)~
X

j

Ij(t): ð34Þ

The dynamics of the membrane potential u of the leaky

integrate-and-fire neuron is defined by

du(t)

dt
~{

u(t)

tm

z
I(t)

C
, ð35Þ

where tm is the time constant of the neuron’s leakage and C is the

capacity of the neuron’s membrane (we use here a scale for the

membrane potential where the resting potential is 0). When the

membrane potential reaches the threshold h, the neuron fires a

spike and the membrane potential is reset to the reset potential ur.

By integrating the last equation between the moment t̂t of the

last emitted spike before t, and, respectively, t, we get

u(t)~ur exp {
t{t̂t

tm

� �
z

1

C

ðt

t̂t

I(s) exp {
t{s

tm

� �
ds: ð36Þ

By expanding I(s) into its components generated by each

presynaptic spike, we get

u(t)~ur exp {
t{t̂t

tm

� �
z

1

C

X
j

wj

X
t
f
j
ƒt

ðt

t̂t

aj(s,t
f
j ) exp {

t{s

tm

� �
ds:

We define:

g(t,̂tt)~ur exp {
t{t̂t

tm

� �
ð38Þ

Figure 19. The kernels used in the simulation of the integrate-
and-fire neuron. (A) The a kernel. (B), (C) The E kernel. In (B) there is no
postsynaptic spike. In (C), a postsynaptic spike is fired at t~10 ms. A
presynaptic spike is received at t~0.
doi:10.1371/journal.pone.0040233.g019

(37)
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Ej(t,̂tt,t
f
j )~

1

C

ðt

t̂t

aj(s,t
f
j ) exp {

t{s

tm

� �
ds ð39Þ

We can then express the dynamics of the integrate-and-fire neuron

in the form of the Spike Response Model, Eq. 6:

u(t)~g(t,̂tt)z
X

j

wj

X
f

Ej(t,̂tt,t
f
j ): ð40Þ

After performing the integration in Eq. 39 by taking into

account the form of the a kernel given by Eq. 30, we get:

Ej(t,̂tt,t
f
j )~

tm

C (ts{tr)

|

ts

tm{ts

exp ({
t{t

f
j

tm

){ exp ({
t{t

f
j

ts

)

" #

{
tr

tm{tr

exp ({
t{t

f
j

tm

){ exp ({
t{t

f
j

tr

)

" #
, if t§t

f
j wt̂t,

ts

tm{ts

exp ({
t{t̂t

tm

) exp ({
t̂t{t

f
j

ts

){ exp ({
t{t

f
j

ts

)

" #

{
tr

tm{tr

exp ({
t{t̂t

tm

) exp ({
t̂t{t

f
j

tr

){ exp ({
t{t

f
j

tr

)

" #
, if t§t̂t§t

f
j ,

0, otherwise:

0BBBBBBBBBBBBBBBBBBBBB@

ð41Þ

The form of E is illustrated in Fig. 19 B, C.

Computer simulations
The learning rules were tested and explored in computer

simulations. We trained an integrate-and-fire neuron with double-

exponential synaptic currents, as previously described. The neuron

had a membrane time constant tm~10 ms, a capacity

C~2:5 nF, a firing threshold h~20 mV, and the resting potential

was 0. Except in Fig. 16, the neuron had a reset potential equal to

the resting potential, ur~0. The time constants that define the

dynamics of the synaptic currents were ts~5 ms and

tr~1:25 ms.

Since we were interested in the coding of information in the

precise timing of the spikes, we used an event-driven simulation

[117] where the timing of input spikes were represented with

machine precision and the timing of the trained neuron’s spikes

were computed with a precision of 10{5 ms.

The neuron received inputs through n synapses. In Figs. 6, 7,

10, 11, 12, 13, 14, 15, 16, and 18 we used n~500, while in Figs. 9

and 17 n was variable, but at least 500. At the beginning of

learning experiments, synaptic efficacies were generated random-

ly, with an uniform distribution between 0 and wm. In Figs. 6 and

7 we used wm~2,000=n pC, while in Figs. 9 and 10, 11, 12, 13,

14, 15, 16, 17, and 18 we used wm~1,000=n pC.

The neuron was trained to learn p input patterns by firing a pre-

determined output spike train for each of the inputs. An input

pattern consisted of the ensemble of the n input spike trains

coming through the n synapses during the interval T . Except in

Fig. 15, the length T of the input patterns was of 200 ms. During

learning, the input patterns were presented sequentially, in batches

consisting of the p patterns. Except in Fig. 18, the synaptic changes

defined by the learning rules were accumulated and were applied

to the synapses at the end of each batch. A presentation of one

input pattern and the simulation of the output of the trained

neuron corresponding to this input is called a trial. Each batch of

presentations of the p patterns (trials) is called an epoch. Except in

Fig. 14, at the beginning of each trial, the membrane potential of

the neuron was reset to 0.8 of the value of the firing threshold h;

this value was used in order to allow the neuron to fire even at

moments close to the beginning of the trial.

The learning rates that we used were, for E-learning:

c~1,250=(n p) pCnF in Fig. 6, c~2,500=(n p) pCnF in Fig. 7,

and c~5,000=(n p) pCnF in Figs. 9, 10, 11, 14, 15, 16, and 18.

We also used cr~15 ms. For I-learning, the learning rates were

c~5=p ms in Figs. 6 and 7, and c~20=p ms in Figs. 9 and 18.

These values were close to the optimal ones. The inverse

proportionality to p reflects the accumulation of the synaptic

changes during the presentation of the p patterns. The inverse

proportionality with n for E-learning but not for I-learning reflects

that the average value of the synaptic efficacies scales inversely

proportional to the number of synapses, for about the same

behavior of the neuron. In I-learning the changes of synaptic

efficacies are proportional to the synaptic current, which is already

scaled inversely proportional to the number of synapses as it is

proportional to the synaptic efficacy, and thus no scaling with n is

needed for the learning rate. We also used tq~10 ms.

The I-learning rule implies that changes of synaptic efficacies

are proportional to the synaptic current and thus to the values of

the synaptic efficacies. Thus, if the initial synaptic efficacies are all

positive, they cannot become negative if the learning rates are

sufficiently small. The application in batches of synaptic changes

or rounding errors may, however, allow a sign change of the

synaptic efficacies in a computer simulation. In our simulations

with I-learning we enforced that synaptic efficacies stayed positive,

by using a hard bound. For E-learning, we allowed the synapses to

switch sign, according to the changes suggested by the learning

rule.

In Figs. 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, and 18, the input spike

trains consisted, for each of the n synapses, of one spike generated

at a random timing, distributed uniformly between 0 and T
(latency coding of information).

In Fig. 7, we considered that the actual spike matched the target

one if there was exactly one actual spike and its timing was within

tq of the target timing. The probability Pm that the fired spikes

matched the target ones was the number of patterns within a trial

for which the actual spikes matched the target one, divided by the

total number of patterns, p~10.

In the experiments presented in Figs. 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, and 18, we trained the neuron to perform classifications

by setting its target output to be the same for several different,

randomly generated, inputs. The number c of the different outputs

was the number of categories into which the neuron classified the p
input patterns. We assigned equal number of patterns into each

category, and therefore p was an integer multiple of c. We

considered that an input-output association was learned correctly

by the trained neuron if the number of the actual output spikes was

the one in the target spike train and each of the output spikes was

fired within less than 1 ms of the target timing. We considered that

the chronotron was able to learn correctly a particular setup if all

input-output mappings were learned correctly in no more than

10,000 epochs.

The output used a latency-coded representation of the

information. Except in Figs. 11 and 14, the target spike train for

each category k[f1, . . . ,cg consisted of one spike at k T=(cz1).

For each realization of the experiments, both the input patterns

and the initial synaptic efficacies were generated randomly. In

Figs. 9, 10 and 12, for various values of the number of inputs n we

The Chronotron

PLOS ONE | www.plosone.org 21 August 2012 | Volume 7 | Issue 8 | e40233



increased the load a~p=n until the chronotron was not able to

learn correctly all the 500 random realizations of the setup. The

capacity for a particular setup was the maximum load for which

the chronotron was able to learn correctly that setup, lower than

the first load for which the chronotron was not able to learn

correctly the setup. In Figs. 11, 13, 14, 15, 16, and 18, the capacity

was the maximum load for which chronotron was able to learn

correctly a particular setup, lower than the first load for which the

chronotron was not able to learn correctly more than 1% of the

500 random realizations of the setup. For each setup and load, we

recorded the minimum number of epochs e after which the

chronotron was able to learn correctly the setup.

In Figs. 9, 12, 13, 15, 16, and 18, the experiments were

performed with c~3 categories, in Figs. 7, 11 and 14 with c~1, in

Fig. 17 with c~5, and in Fig. 10 the number of categories varied.

For E-learning, simulations for n higher than 2,000 were not

performed in Fig. 9 because of the high computational cost, due to

the high capacity resulted through this learning rule. For example,

the simulations required for obtaining the results presented for

n~2,000 took about 13 days on a computer with 8 Xeon cores

running in parallel at 2.33 GHz.

For the simulations using ReSuMe in Fig. 9, we used

c~75,000=(n p) pC and tR~20 ms. These were optimal param-

eters, that led to the lowest occurrence of cases where correct

learning was not achieved for p~21, n~500 (a~0:042), c~3,

from a scan of the c, tR parameter space with a resolution of

2,500=(n p) pC and, respectively, 2 ms. We also used aR~0. We

verified that, for n~500, the capacity did not increase if we used

nonzero aR, for various values spanning several orders of

magnitude.

In Fig. 1, we used w~(90,70) pC. In Fig. 2, learning converged

for w&(53:75,70:32) pC. In Figs. 1, 2, and 4, we used

F 1~f0,35,100,156,188g ms and F 2~f15,55,70,120,170g ms.

In Figs. 2 and 4, the target spike train was ~FF~f75g ms.

In Fig. 3, we used w~(20,70,55) pC, F 1~f0,235,468,550,
649,734,826,962g ms, F 2~f30,177,285,396,782,922g ms, and

F 3~f107,452,586,945g ms.

Exploring the dependence on the setup parameters
In Fig. 11, we explored the chronotron performance as a

function of the number of output spikes per trial, for a setup where

the chronotron had to fire the same output for all inputs. The

setup was as in Fig. 9, with E-learning and n~500, except that

c~1, and that the output consisted of o output spikes, placed at

k T=(oz1), for k[f1, . . . ,og.
In Fig. 12, we explored the chronotron performance as a

function of the firing rate of the inputs. Here, the input spike trains

were generated using a Gamma process of order 3 and time

constant tC, i.e. the interspike intervals were generated randomly

with a probability distribution, for an interspike interval t,

P(t)~
t2

t3
C

exp ({t=tC)

2
: ð42Þ

This leads to input spike trains having an average firing rate of

1=tC and an average interspike interval (period) tC. The learning

rate was adapted to the input firing rate,

c~5,000 (tC=T)=(n p) pCnF. Except the input and the learning

rate, the setup was as in Fig. 9, with E-learning and n~500. We

studied the performance as a function of the normalized average

period w~tC=T . The probability distribution of the number of

input spikes per trial, for several values of w, is illustrated in Fig. 20.

In Fig. 13, at the beginning of the experiment, each input spike

train was set up as either one spike generated at a random timing,

distributed uniformly between 0 and T , as before, or, with a

probability Ps, of no spikes. Input patterns did not change during

learning. We explored the chronotron performance as a function

of the no firing probability Ps. The learning rate was adapted as

c~5,000=(n p)=(1{Ps) pCnF. Except the input and the learning

rate, the setup was as in Fig. 9, with E-learning and n~500.

In Fig. 14, we explored the chronotron performance as a

function of the timing of the output spike and of the initial state of

the membrane potential. The neuron had to learn to have the

same output for all inputs. The output was one spike at a given

timing y relative to the beginning of the trial. At the beginning of

each trial, the membrane potential u was either set to 0:8 h, as in

the other experiments (stable initial state), or was generated

randomly, with a uniform distribution, between 0 and 0:8 h
(random initial state). Except the target output and the initial state

of the membrane potential, the setup was as in Fig. 9, with E-

learning, n~500, and c~1.

In Fig. 15, we explored the chronotron performance as a

function of the trial length T . Except the trial length, the setup was

as in Fig. 9, with E-learning and n~500. Since the setup is

invariant to a change of the time scale, the relevant parameters are

the relative time scales T=tm, T=ts, T=tr, T=tq.

In Fig. 16, we explored the chronotron performance as a

function of the reset potential ur. Except the reset potential, the

setup was as in Fig. 9, with E-learning and n~500.

In Fig. 17, we used parameters optimized for fast learning for a

setup with a relatively low load, p~20, n~1,000 (a~0:02), with

c~5. Parameters were optimized to lead to the minimum average

number of learning epochs needed for correct learning for this

setup. Averages were computed over 500 realizations with random

initial conditions and inputs. Inputs and outputs were latency-

coded, as in Fig. 9. The parameters that resulted from the

optimization were: for E-learning, c~11,800=(n p) pCnF,

cr~87:5 ms, tq~23:5 ms; for I-learning, c~30:5=p ms; for

ReSuMe, c~96,000=(n p) pC, tR~10 ms, aR~0.

In Fig. 18, we explored the dependence of chronotron

performance on when synapses are updated during the simulation.

Synapses were updated by applying the synaptic changes defined

by the learning rules and accumulated between the updates. Here

we updated the synapses either at the end of each batch (epoch)

consisting of presentations of the p input patterns (batch updating),

as in the other experiments; at the end of each trial (presentation of

one input pattern) (trial updating); or, for I-learning, immediately

following each actual or target postsynaptic spikes, as in Fig. 5

(online updating). In trial updating, the order of the presentations

of the input patterns was chosen randomly at the beginning of

each batch. Except the method for updating synapses, the setup

was as in Fig. 9, with E-learning and n~500.

The information capacity of the chronotron
The load a of a neuronal classifier is the number of patterns it

memorizes per each input synapse of the neuron. If the neuron has

n input synapses and it memorizes p patterns, the load is

a~
p

n
: ð43Þ

We define the information load i of a neuronal classifier as the

quantity of information it can store for each of the input patterns

for which it memorizes the correct output, per each input synapse

of the neuron. We assume that the patterns are classified into c
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categories, and the same number of patterns is assigned to each

category. The neuron stores then i~ log2 (c) bits of information

for each pattern, and the information load is

i~
p i

n
~a i: ð44Þ

The information capacity im of a neuronal classifier is the

maximum information load it can carry. It depends on both the

maximum load am it can carry as well as on the maximum

quantity of information it can store for each pattern, if they are

independent.

For the perceptron and the tempotron, which can classify

patterns in just c~2 categories, we have i~1 and thus the

information load equals the (pattern) load and the information

capacity equals the (pattern) capacity.

For chronotrons with latency coding of their outputs, firing one

spike per trial, the information capacity depends on the temporal

precision of the output spike and on the duration of the interval in

which the output spike can be fired with no loss of capacity. We

consider that T0 is the time interval, at the beginning of each trial,

where, if the target spike is located, learning capacity is reduced

(see Fig. 14). A chronotron firing one output spike per trial, having

a precision of the output spike of +dt, can encode, for a trial

duration T , at most cm~(T{T0)=(2 dt) categories. The infor-

mation capacity of the chronotron is then

im~am log2 (cm): ð45Þ

The maximum capacity obtained in our simulations for E-learning

was am&0:22, and simulations showed that this does not depend

on the number of categories c (Fig. 10). For T~200 ms,

dt~1 ms, T0&40 ms, we get the maximum number of categories

cm&80, the corresponding information memorized per pattern

im~ log2 (cm)&6:32 bits per pattern, and the information

capacity im&1:39 bits per input synapse.

An even higher capacity can be obtained if we also consider

output spike trains consisting of more than one spike per trial.

Barak and Tsodyks [57] have developed a learning rule that

allows an integrate-and-fire neuron with exponential currents to

recognize input patterns from a given set, by increasing its firing

rate for learned patterns in comparison to the one for background

inputs. The maximum number of patterns that this rule can learn

is pm~n ts’=T , where ts’ is the decay time constant of the

exponential neurons. Thus, the capacity of this rule is

am~pm=n~ts’=T . If we extrapolate this result to neurons with

double-exponential currents by assuming that the same relation-

ship applies if we consider the largest time constant of the double-

exponential current, ts in our case, instead of ts’, then the capacity

of a neuron for recognizing patterns would be, for our setup,

am~ts=T~0:025. It can be seen then that the capacity that we

obtained in simulations through E-learning, about 0.22, for having

a particular, precisely-timed spike output pattern for each input, is

about an order of magnitude larger than the capacity computed

for just the recognition of patterns using a firing rate code.

The algorithm for computing the sets of spikes to be
removed, inserted or moved

Victor and Purpura [25,115] presented an algorithm for

computing the distance between spike trains that they defined,

but not one for indicating the pairs of matching spikes (consisting

of one spike from each spike train) and the sets of independent

spikes that the distance implies. This information represents the

structure of the pair of spike trains, as defined by the metric. Here

we extend the Victor & Purpura algorithm with the capacity of

computing this structure.

When the two spike trains that are compared consist of one that

is fixed (the target one) and one that is modifiable (the actual one),

as in our supervised learning problem, the set ~FF� of independent

spikes in the target spike train corresponds to timings when new

spikes should be created in the actual spike train; the set F� of

independent spikes in the actual spike train represents the spikes

that have to be removed; and pairs of matching spikes define the

set of actual spikes that have to move and their targets.

The original algorithm [25,115] computes the distance between

spike trains inductively, as follows. Let Di, j be the distance

between the spike trains composed of the first i spikes of F ,

F i~ft1,t2, . . . tig, and, respectively, the first j spikes of ~FF ,
~FF j~f~tt1,~tt2, . . .~ttjg. Di, j is computed as:

Di, j~ min Di{1, jz1, Di, j{1z1,
�

Di{1, j{1zs(jti{~ttj j=tq)
�
:

ð46Þ

The elements from which the induction starts are Di, 0~i and

D0, j~j, because it is considered that F 0~ ~FF 0~1 (the distance

between a train of i spikes and a train of no spikes is i because all

spikes must be removed or correspondents for all must be inserted

for a cost of 1 each). If there are n spikes in F and ~nn spikes in ~FF ,

the algorithm needs to use a nz1 by ~nnz1 matrix that stores the

Di, j values for the various i and j. The actual distance between the

full spike trains is Dn, ~nn, the element at the bottom right of the

matrix. Because the computation of each Di, j element requires all

Figure 20. The distribution of the number of input spikes per
trial, for inputs generated using a Gamma process, as in Fig.
12. (A) The normalized average period is w~0:5. (B) w~1. (C) w~2. (D)
w~3. (E) w~4.
doi:10.1371/journal.pone.0040233.g020
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the three values placed above, left and above left in the matrix, all

the elements in the matrix have to be computed inductively.

The choice of the minimum of the three values performed at

the computation of each element Di, j of the matrix (except the

ones in the left and top edges of the matrix, i~0 or j~0) reflects

an optimal choice of the status of the last spikes in the partial

spike trains corresponding to the considered element. The

optimal status of the last spikes depends on the structure of the

pair of partial spike trains that precedes them. If the minimum is

Di{1, jz1, then the spike at ti has a contribution of 1 to the

distance and it is thus independent of any spike in the reciprocal

spike train ~FF j ; the spike at ~ttj may or may not be independent, as

a function of the structure of the (F i{1, ~FF j) pair of spike trains. If

the minimum is Di, j{1z1, then the spike at ~ttj is independent of

any spike in the reciprocal spike train F i; again, the spike at ti

may or may not be independent, as a function of the structure of

the (F i, ~FF j{1). If the minimum is Di{1, j{1zs(Dti{~ttj D=tq) then

the actual spike at ti is linked to the target one at ~ttj and will have

to move towards it.

If more than one of the three values have the minimum value,

then, at least theoretically, they might represent different,

alternative choices of the optimal structure of the (F i, ~FF j) pair

of spike trains. We will consider here that a pair of spikes (ti,~ttj) is

linked if and only if Di{1, j{1zs(Dti{~ttj D=tq) is a strict minimum,

i.e. it is the only one of the three choices that corresponds to the

minimum value of Di, j . If it is equal to another minimum, the

link has just been broken and we will consider the alternative

structure. If Di{1, jz1 and Di, j{1z1 are equal minima, they

might correspond to different structures, as a function of the

structures of (F i{1, ~FF j) and (F i, ~FF j{1). However, if these

structures involve pairs of linked spikes, it is extremely

improbable that the equality Di{1, j~Di, j{1 will hold exactly,

especially in a numerical computer simulation. The equality can

hold with a non-vanishing probability when all spikes in

(F i{1, ~FF j) and (F i, ~FF j{1) are independent, in which case the

two alternative structures for (F i, ~FF j) are actually identical, since

they both consider that all the spikes are independent. Even in

the improbable case that the equality holds when links do exist,

for our purpose of supervised learning is is sufficient to consider

only one of the alternatives, as long as we are consistent in the

choice of this alternative.

It can be shown that, if Di{1, j{1zs(Dti{~ttj D=tq) is a strict

minimum value for computing Di, j , then s(Dti{~ttj D=tq)v2 and

thus the two spikes are linked (not independent), as follows. The

addition of a spike at ti to the pair of spike trains F i{1 and ~FF j{1

can increase the distance with at most 1, because in the worst case

the spike will be removed for a cost of 1. We thus have

Di, j{1ƒDi{1, j{1z1 ð47Þ

Di, j{1z1ƒDi{1, j{1z2: ð48Þ

But if Di{1, j{1zs(Dti{~ttj D=tq) is a strict minimum, then

Di{1, j{1zs(Dti{~ttj D=tq)vDi, j{1z1 ð49Þ

and from the last two equations we get

Di{1, j{1zs(Dti{~ttj D=tq)vDi{1, j{1z2 ð50Þ

s(Dti{~ttj D=tq)v2, ð51Þ

which was to be demonstrated.

The algorithm for computing the structure of the pair of spike

trains (F , ~FF ) has to compute the structure inductively, along with

the computation of the distance between the spike trains. We will

thus have to store the structure of all pairs of partial spike trains

(F i, ~FF j) for i~0 . . . n and j~0 . . . ~nn. This structure is defined by

indicating for each spike whether it is independent or not; if it is

linked (not independent), it will also have to indicate the index of

the spike in the other train to which it is linked. The structure of

(F i, ~FF j) is formed by the pair (Si, j ,~SSi, j) where the first element is

the structure information for F i when used for computed Di, j and

the second element is the structure information for ~FF j when used

for computed Di, j . More precisely, Si, j is a list in which each

element indicates whether the corresponding spike k, with

k~1 . . . i, is independent, which we denote through an element

(k,0); or whether the spike is linked to a spike l in the other spike

train, which we denote through an element (k,l). The list ~SSi, j has

an analogous meaning for the spikes in the target spike train ~FF j .

Algorithm 1 lists the entire procedure of computing the

structure of the pair of spike trains along with the distance

between them.

Input: The pair of spike trains F , ~FF ; the parameter tq; the

function s
Output: The distance between the spike trains and the

structure of the spike trains corresponding to this distance

D0, 0 : ~0;

S0, 0 : ~ ;
~SS0, 0 : ~ ;

Set the left edge of the matrix

for i : ~1 . . . n do

Di, 0 : ~i;

Si, 0 : ~Si{1, 0|(i,0);
~SSi, 0 : ~

Set the top edge of the matrix

for j : ~1 . . . ~nn do

D0, j : ~j;

S0, j : ~ ;
~SS0, j : ~~SS0, j{1|(j,0);

Perform the inductive computation

for i : ~1 . . . n do

for j : ~1 . . . ~nn do

Compute (Di, j ,(Si, j ,~SSi, j))

z : ~Di{1, j{1zs(Dti{~ttj D=tq);

if Di{1, jƒ Di, j{1 ^ Di{1, jz1ƒz then

Spike j is independent

Di, j : ~Di{1, jz1;

Si, j : ~Si{1, j|(i,0);
~SSi, j : ~~SSi{1, j ;

else if Di, j{1z1ƒz then

Spike i is independent

Di, j : ~Di, j{1z1;

Si, j : ~Si, j{1;
~SSi, j : ~~SSi, j{1|(j,0);

else

Spikes i and j are linked

Di, j : ~z;

Si, j : ~Si{1, j{1|(i,j);
~SSi, j : ~~SSi{1, j{1|(j,i);

return (Dn, ~nn,(Sn, ~nn,~SSn, ~nn));
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Algorithm 1: The algorithm for computing the distance

between two spike trains and the structure of these spike trains

corresponding to the distance. The text in italics represents

comments.

Average displacement for gaussian jitter
In Fig. 7, input spikes were displaced randomly around the

reference timing according to a gaussian distribution with an

amplitude z. The probability density of a (positive or negative)

displacement dt is

P(dt)~
1ffiffiffiffiffiffiffiffiffiffiffi

2 pz2
p exp {

dt2

2 z2

� �
: ð52Þ

The probability density of a given displacement, in absolute value,

is

P(DdtD)~2 P(dt): ð53Þ

The average displacement (in absolute value) is then

DdtD~
ð?

0

P(DxD) x dx ð54Þ

~

ð?
0

ffiffiffiffiffiffiffi
2

pz2

s
exp {

x2

2 z2

� �
x dx ð55Þ

~

ffiffiffi
2

p

r
z: ð56Þ

For z~5 ms, we get DdtD^3:99 ms.
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