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Identification of key genes and novel
immune infiltration-associated
biomarkers of sepsis

Chao Xu1,*, Jianbo Xu2,*, Ling Lu1, Wendan Tian1, Jinling Ma1

and Meng Wu1

Abstract

Sepsis is the major cause of mortality in the intensive care unit. The aim of this study was to identify the key prognostic

biomarkers of abnormal expression and immune infiltration in sepsis. In this study, a total of 36 differentially expressed

genes were identified to be mainly involved in a number of immune-related Gene Ontology terms and Kyoto

Encyclopedia of Genes and Genomes pathways. The hub genes (MMP9 and C3AR1) were significantly related to the

prognosis of sepsis patients. The immune infiltration analysis indicated a significant difference in the relative cell content

of naive B cells, follicular Th cells, activated NK cells, eosinophils, neutrophils and monocytes between sepsis and normal

controls. Weighted gene co-expression network analysis and a de-convolution algorithm that quantifies the cellular

composition of immune cells were used to analyse the sepsis expression data from the Gene Expression Omnibus

database and to identify modules related to differential immune cells. CEBPB is the key immune-related gene that may be

involved in sepsis. Gene set enrichment analysis revealed that CEBPB is involved in the processes of T cell selection, B

cell–mediated immunity, NK cell activation and pathways of T cells, B cells and NK cells. Therefore, CEBPB may play a key

role in the biological and immunological processes of sepsis.
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Introduction

Sepsis is a major cause of mortality in the intensive care
unit (ICU), and the burden of sepsis remains consider-
ably high.1,2 Estimates suggest that sepsis affects mil-
lions of people worldwide, and annually causes nearly
six million deaths; the mortality rate varies from 30%
to 60% in the ICU.3,4 Sepsis is currently defined as a
life-threatening organ dysfunction that is caused by a
dysregulated host response to infection.5 Sepsis is char-
acterised by the complex pathophysiology and hetero-
geneous phenotypes of affected patients regarding the
symptoms, response to treatment and outcomes.6 At
present, there is no gold standard to diagnose sepsis,
and its clinical assessment is often difficult. Therefore,
the use of additional biomarkers to diagnose patients is
attractive.7,8 Biomarkers can be the key to personalised
medicine in sepsis whereby patients receive tailored
treatment based on their unique characteristics.

The systemic immune response plays a crucial role in
the pathogenesis of severe sepsis. The immune response
in sepsis can be divided into two main phases: a pro-
inflammatory phase and an anti-inflammatory phase.9

In the early phase of sepsis in previously healthy indi-
viduals, pro-inflammatory processes dominate the
immune response. However, growing evidence suggests
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that novel immunological biomarkers can be used as

potential predictors of the outcome of sepsis.10

Therefore, the exploration of immune-related prognos-

tic markers is an important focus of studies on sepsis.
The rapid development of bioinformatics has pro-

duced numerous tools for the identification of bio-

markers.11 Weighted gene co-expression network

analysis (WGCNA) is an effective tool that can be

used to identify relevant patterns of the genes to deter-

mine relevant modules and key genes for specific dis-

eases.12 This algorithm has been extensively used to

identify biomarkers at the transcriptional level.13 Cell-

type Identification by Estimating Relative Subsets Of

RNA Transcripts (CIBERSORT) is another bioinfor-

matics tool for the analysis of gene expression data.

This tool quantifies the cellular composition of

immune cells using a deconvolution algorithm.14 This

algorithm has been successfully used to approximate

the level of immune cell infiltration in various diseases,

such as cancer. The aims of this study were to identify

the key biomarkers of the abnormally expressed genes

and immune infiltration in sepsis and to provide targets

for diagnosis and therapy of sepsis.

Methods

Data selection and processing

The sepsis RNA expression data were downloaded

from the Gene Expression Omnibus (GEO; http://

www.ncbi.nlm.nih.gov/geo/). Data from the GSE

64457, GSE 28750 and GSE 12624 data sets were

used for differential expression analysis, and the GSE

54514 data set was used for survival analysis. GSE

64457 (GPL570 platform, Affymetrix human genome

U133 Plus 2.0 array) contains 23 samples, including

eight tissue samples without/sepsis and 15 sepsis sam-

ples. GSE 28750 (GPL570 platform, Affymetrix human

genome U133 Plus 2.0 array) contains 41 samples,

including 20 tissue samples without sepsis and 21

sepsis samples. GSE 12624 (GPL4204 platform, GE

Healthcare/Amersham Biosciences CodeLink UniSet

human I bioarray) contains 70 samples, including 36

tissue samples without sepsis and 34 sepsis samples.

GSE 54514 (GPL6947 platform, Illumina HumanHT-

12 V3.0 expression beadchip) contains 127 sepsis sam-

ples, including 31 sepsis samples from non-survivors

and 96 sepsis samples from survivors. R v3.6.2 (R

Foundation for Statistical Computing, Vienna,

Austria) was used for data extraction and sorting to

obtain the gene expression matrices. The batch effect

resulting from the heterogeneity between different stud-

ies was eliminated by the ComBat module of the SVA

package that uses the empirical Bayes methods;

background adjustments and data normalisation were

performed with the limma package.15

Differential expression analysis and survival analysis

To identify differentially expressed genes (DEGs) in

tissue samples with sepsis and without sepsis, the

limma package in R was used to identify DEGs in

the sepsis samples versus the control samples of the

GEO transcriptome data. The Mann–Whitney test

was performed to determine differential expression

levels of the genes between the sepsis samples and the

corresponding control samples; |log2-fold change (FC)|

>1 and false discovery rate (FDR) values < 0.05 were

considered statistically significant. Overall survival

curves were constructed by Kaplan–Meier estimation,

and log-rank test (P< 0.05) was used to identify DEGs

significantly associated with survival.

Protein–protein interaction network construction and

functional enrichment analysis of DEGs

A protein–protein interaction (PPI) network of DEGs

was constructed using the STRING online database

(https://stringdb.org/),16 and the confided score with

correlation degree > 0.400 was used as the cut-off

value for inclusion into the network. Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis were performed

using the clusterProfiler and enrichplot packages in R.

Bubble charts were used to visualise the biological pro-

cess (BP), cellular component (CC) and molecular

function (MF) categories of GO enrichment. Circle

plots were used to visualise the KEGG pathways.

CIBERSORT immune cell scores

CIBERSORT (https://cibersort.stanford.edu/) was

used to estimate the relative proportions of cell subpo-

pulations statistically in the complex tissue expression

profiles and to estimate the abundance of special cells

in a mixed tissue sample. In this study, CIBERSORT R

package was used to estimate the fraction of immune

cells in the samples. Absolute immune cell scores were

computed using the gene expression data sets (mod-

el¼ absolute, permutation¼ 1000, disable quantile

normalisation for RNA-seq data as recommended) by

the LM22 (22 immune cell types) gene signature of

CIBERSORT.17 The samples were screened according

to P values < 0.05, and the percentage of each type of

immune cells in the samples was calculated. Principal

component analysis (PCA) was performed to detect the

differences in immune cell infiltration between the

sepsis patients and normal controls. The differences

in the immune infiltration levels of each immune cell
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Figure 1. Identification of differentially expressed genes (DEGs) in sepsis. (a) Volcano plot of 36 DEGs in sepsis. Red plots
represent aberrantly expressed mRNAs with P< 0.05 and absolute log FC >1. Black plots represent normally expressed mRNAs.
Green plots represent aberrantly expressed mRNAs with P< 0.05 and log FC < �1. (b) Heat-map analysis of differential expression
profiles.
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type between the two groups were analysed by the vio-
plot package in R v3.6.2.

Co-expression network and module construction

Weighted network adjacency was defined by raising the
co-expression similarity to a power of b� 1. WGCNA
was also used to determine the associations between a
module gene and MetS. The correlations between the
module eigengenes and the differential infiltration
levels of immune cells were calculated to determine the
significance of the modules by Pearson’s test. An indi-
vidual module was considered significantly correlated
with differential levels of immune cells when P< 0.05.

Identification of immune-related key genes

Initially, the candidate genes were selected based on
the modular connectivity and immune cell

associations of each gene. Module connectivity is
defined as the absolute value of Pearson’s correlation
between the genes and a module. The immune cell
association is defined as the absolute value of
Pearson’s correlation between each gene and the
immune cells. Genes related to six immune cells with
a P value < 0.05 were considered candidate genes.
Then, the candidate genes were selected, and the
STRING database was used to construct a PPI net-
work to identify the top 30 genes. Construction of the
gene network based on the results of the scale-free
network was performed by the network visualisation
software Cytoscape (http://www.cytoscape.org/).18

Genes with node connectivity >10 were considered
central nodes. Venn analysis was used to compare
the candidate genes and central nodes in the scale-
free network using the online Venn tool (http://bioin
formatics. psb.ugent.be/webtools/Venn/).

Figure 2. Functional enrichment analysis of DEGs. (a) Top 10 terms in GO analysis with P< 0.05. (b) Enriched terms in KEGG
pathway analysis P< 0.05. (c) PPI networks were constructed using the STRING tool at a median confidence interval of 0.400. (d) Bar
plot showing the top 10 genes in the PPI networks. DEGs: differentially expressed genes; GO: Gene Ontology; KEGG: Kyoto
Encyclopedia of Genes and Genomes; PPI: protein–protein interaction.
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Gene set enrichment analysis

Gene set enrichment analysis (GSEA) is the computa-

tional method used to determine whether basically

defined gene sets have statistically significant differences

between two biological states.19 According to the

median value of gene expression, the samples were divid-

ed into two groups – c2.cp.kegg.v5.0.symbol.gmt and c5.

bp.v5.0.entrez.gmt – for GSEA. P values < 0.05 and

FDR < 0.25 were indicative of statistical significance.

Results

Identification of DEGs in sepsis

The RNA expression profiling data were downloaded

from the GEO database. Implementation of a series

of stringent filters provided the expression levels of all

genes from 64 sepsis samples and 70 samples without

sepsis. Heat-map analysis showed that these genes
have differential expression profiles between tissues
with and without sepsis (Figure 1a). A total of 36
DEGs, including three down-regulated genes and 33
up-regulated genes, were validated using a volcano
plot (Figure 1b).

Enrichment analysis and identification of the
hub genes

To explore the biological functions of 36 DEGs, they
were categorised into BP, CC and MF. A total of 69
specific BP, 17 CC and 4 MF GO terms were enriched in
these genes with P< 0.05. All 20 of the highest enrich-
ment terms were immune related (Figure 2a), and the
most highly enriched term was neutrophil activation.
Additionally, analysis using clusterProfiler indicated
that these genes were significantly enriched in immune-
related pathways, such as the TNF-a, NF-jB and

Figure 2. Continued.
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neutrophin signalling pathways. The results are shown
in Figure 2b. The PPI network of DEGs was analysed
by using STRING (Figure 2c). Bar plot identified the
top 10 genes in the PPI networks (Figure 2d), and these

top 10 hub genes were selected for survival analysis in R.
The results indicate that the expression levels of MMP9
and C3AR1 are significantly related to the prognosis of
sepsis patients (Figure 3a and b).

Figure 2. Continued.
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Immune cell infiltration

The differences in immune infiltration between the

sepsis and control tissue samples in 22 subpopulations

of immune cells were analysed by the CIBERSORT

algorithm, and the results are shown in a bar plot

(Figure 4a) and heat map (Figure 4b). The violin plot

of the immune cell infiltration differences shows that

naive B cells, follicular Th cells, activated NK cells,

eosinophils and neutrophils had higher infiltration

than that in the normal control samples, and mono-

cytes had lower infiltration (Figure 4c). A correlation

heat map of the 22 types of immune cells revealed that

naive and memory B cells had the highest negative cor-

relation. Gamma delta T cells and eosinophils had the

highest positive correlation (Figure 4d). PCA cluster

analysis was used to test the consistency of biological

repetition and differences between various groups. The

results of the PCA cluster analysis of immune cell infil-

tration showed that there were small differences in

immune cell infiltration between the sepsis and control

samples (Figure 4e).

Construction of the gene co-expression network and

identification of the key genes

The expression levels of 3365 genes were used to con-

struct a co-expression network using the WGCNA

package. The soft threshold power was set to 9, with

a R2 of 0.858 to ensure a scale-free network (Figure 5a).

A hierarchical clustering tree was constructed using

dynamic hybrid cutting. Each leaf on the tree repre-

sents a single gene, and genes with similar expression

levels are adjacent and form a branch of the tree

representing a gene module. Six modules were generat-
ed (Figure 5b). Correlations between immune cell infil-
tration and the key genes of the module were analysed
and used to create a heat map (Figure 5c). The tur-
quoise module was highly correlated with monocytes
(r¼ –0.81, P< 0.05), naive B cells (r¼ 0.52, P< 0.05)
and follicular Th cells (r¼ 0.48, P< 0.05). The brown
module had a higher correlation with monocytes
(r¼ 0.48, P< 0.05) and naive B cells (r¼ –0.61,
P< 0.05), and the blue module showed a higher corre-
lation with monocytes (r¼ 0.64, P< 0.05; Figure 4c).
Correlation coefficients between other modules and
immune cells were < 0.5. The highly connected genes
were investigated as potential key factors related to six
immune cell infiltration levels. Common genes associ-
ated with six types of immune cells were analysed using
380 genes obtained as result of the Venn analysis
(Figure 5d). According to the cut-off values
(P< 0.05) and the PPI network analysis (Figure 5e),

the top 30 genes were selected as the candidate hub
genes (Figure 5f). Genes with node connectivity >10
were considered central nodes of the scale-free network;
these results were visualised using Cytoscape (Figure 5g).
CEBPB was selected according to the results of both
analyses, and was selected as a key gene (Figure 6a).

Correlation of functional annotation with

immune cell infiltration and CEBPB

GSEA is extensively used to predict the biological func-
tions of the hub genes. Differential analysis was used to
investigate the biological role of CEBPB based on the
high and low expression levels of CEBPB. Six repre-
sentative BPs were associated with immune cell

Figure 3. Prognostic value of hub genes in GSE 54514. (a) Kaplan–Meier overall survival curve for sepsis patients with high and low
expression levels of MMP9. (b) Kaplan–Meier overall survival curve for sepsis patients with high and low C3AR1 expression levels.
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Figure 4. Landscape of immune cell infiltration in sepsis versus normal controls. (a) Relative percentage of 22 subpopulations of
immune cells in the samples. (b) Immune infiltration of 22 subpopulations of immune cells in sepsis versus control tissue samples is
shown in the heat map. (c) Difference in immune infiltration between the sepsis and normal control samples. (Normal control group
marked in green; sepsis group marked in red). P Values < 0.05 were considered statistically significant. (d) Correlation heat map of 22
types of immune cells. The size of the coloured squares represents the strength of the correlation: blue represents a negative
correlation; red represents a positive correlation. (f) Principal component analysis cluster plot of immune cell infiltration in sepsis
versus control samples.
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Figure 4. Continued.
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infiltration and CEBPB levels at an FDR of <25%,
including T cell selection, alpha-beta T cell activation,
positive T cell selection, B cell–mediated immunity, NK
cell activation and cell–cell signalling (Figure 6b). The
results indicated that several pathways were enriched in
CEBPB with a FDR < 25%, including the T cell and B
cell receptor signalling pathways and NK cell-mediated
cytotoxicity, which were validated in the analysis
(Figure 6c).

Discussion

Sepsis is a severe condition characterised by an abnor-
mal host response to pathogenic micro-organisms con-
sisting of an excessive inflammatory response and
subsequent multiple organ failure.20 Although epidemi-
ological data indicate that sepsis-associated mortality
rates appear to have declined, the incidence is still on
the rise, and sepsis is currently regarded as a major
health-care burden.21 Sepsis-induced immunosuppres-
sion fosters bacterial growth and increases the produc-
tion of immunosuppressive soluble mediators and
depletion of T cells and dendritic cells by increased
apoptosis and immune exhaustion with paralysis of
CD8þ T cell effector properties.22,23 Sepsis immuno-
suppression prolongs the primary microbial infection
and increases the risk of opportunistic infections and

organ dysfunctions with poor predicted outcomes.24

Numerous protein biomarkers have been evaluated to

discriminate between sepsis and normal conditions,

and immune cell infiltration has been shown to play

an important role in the development of sepsis.

Therefore, identification of specific prognostic markers

and analysis of the patterns of immune cell infiltration

are very important for the improvement of prognosis of

sepsis patients. In this study, a comprehensive and

detailed assessment of immune cell infiltration in

sepsis was performed based on the deconvolution of

the bulk gene expression data from a large set of sam-

ples to identify novel prognostic markers of sepsis.
A total of 36 DEGs in the sepsis versus control

samples were identified in our study, and the top 10

genes in the PPI network were determined to be hub

genes. Kaplan–Meier analysis of the 10 hub genes was

performed. The results of MMP9 and C3AR1 were sta-

tistically significant, and the prognosis was poor when

these genes were expressed at low levels. According to

the data in the literature, the levels of MMP9 expres-

sion in patients with sepsis are significantly higher than

those in healthy individuals, and MMP9 expression

levels have been investigated as prognostic biomarkers

of sepsis.25–27 Bojic et al.28 found that low MMP-9

levels in sepsis are associated with more severe kidney

Figure 4. Continued.
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Figure 5. Gene co-expression network construction and hub gene identification. (a) Analysis of the network topology for various
soft threshold powers. (b) Genes are grouped into various modules by hierarchical clustering, and different colours represent
different modules. (c) Heat map shows correlations of modules with differential immune cell infiltration. (d) Venn diagram shows the
intersection of the markers in the six differentially infiltrating immune cells. (e) PPI network of 380 common genes in six differentially
infiltrating immune cells. (f) Bar plot showing the top 10 genes in the PPI networks. (g) Scale-free network of genes based on the soft
threshold power results. Yellow nodes represent a central node with more than 10 connections.
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and liver injury, and this result was supported by
Renckens et al., who demonstrated that MMP-9-
knockout mice with abdominal sepsis developed more
severe distant organ damage.29 Furthermore, MMP9
was a better prognostic biomarker of sepsis in agree-
ment with our results. C3AR1 was suggested to be
restricted to the innate immune response and a role
in the complement cascade. However, the roles of
C3AR1 have been extended to participation in cancer,
neurogenesis and hormone release from the pituitary.30

However, clinical reports on C3AR1 in sepsis-
associated studies are not available. Our study is the
first to demonstrate that down-regulation of C3AR1
expression is significantly associated with poor progno-
sis in patients with sepsis. Therefore, C3AR1 may sig-
nificantly contribute to the pathophysiology of sepsis.
The identification of the hub genes may contribute to
the development of prognostic markers or therapeutic
targets in sepsis.

The immune pathogenesis of sepsis is very complex.
During sepsis, microbial infection or necrotic tissue
releases high levels of harmful substances, resulting in
the activation of the systemic immune response and
excessive activation of immune cells. In our study,
GO enrichment analysis showed that DEGs are
mainly related to neutrophil activation, neutrophil
degranulation, neutrophil activation involved in the
immune response and other immune-related GO
terms. KEGG analysis indicates that DEGs are
involved in the TNF-a, NF-jB and neutrophin
signalling pathways. These results suggest that the
immune response plays an important role in the
development of a rationale for immunotherapy in
sepsis.

After identification of DEGs involved in numerous
immune responses, the immune cell infiltration in sepsis
was analysed by the CIBERSORT algorithm method.
Our results indicate significant differences in the
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Figure 5. Continued.
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relative cell contents of naive B cells, follicular Th cells,
activated NK cells, eosinophils, neutrophils and mono-
cytes between the sepsis and normal control samples.
Kumar31 demonstrated the importance of immune
cells, including neutrophils, macrophages and T cells,
in the pathogenesis of sepsis. Various lymphocyte pop-
ulations (B and T lymphocytes) are influenced by and

likely contribute to the immunosuppressive effects of
sepsis. TGF-b has been shown to play a role in endo-
toxin desensitisation of monocytes induced in sepsis
patients during the septic response. TGF-b inhibits T
cell function, including IL-2 production and T cell pro-
liferative responses.32 These studies confirm the reli-
ability of our results and provide evidence for our

Figure 5. Continued.
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Figure 5. Continued.
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Figure 6. Identification of the key genes and functional annotation. (a) Key genes were selected based on overlap between the PPI
and co-expression networks. (b): Six GO terms of biological process for CEBPB by GSEA. (c) Three KEGG pathways enriched in
CEBPB according to GSEA. GSEA: gene set enrichment analysis.
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subsequent studies. A gene expression matrix was used

to construct the co-expression network and calculate

the infiltration levels of differential immune cells; cor-

relation analysis was used to identify the genes highly

associated with six immune cell types. CEBPB was

determined to be a hub gene because it is the most

connected gene in the co-expression and PPI networks.
CEBPB is required for stress or inflammation and is

often induced by inflammatory mediators, including

anabolic growth factors and immunoregulatory cyto-

kines.33 A previous study showed that CEBPB expres-

sion is an essential checkpoint for generation of

immunosuppressive Gr1þCD11bþ myeloid-derived

suppressor cells during sepsis, contributes to clinical

outcome of sepsis and is a plausible target for the devel-

opment of immune checkpoint treatment.34 In our

study, GSEA indicated that CEBPB is involved in

the processes of T cell selection, B cell–mediated immu-

nity, NK cell activation and pathways of T cells, B cells

and NK cells. Therefore, in agreement with previous

studies, CEBPB may play a key role in the biological

and immunological processes of sepsis. However, this

result requires additional studies to clarify the complex

interactions between CEBPB and immune cell

infiltration.

Conclusions

In summary, a total of 36 identified DEGs are mainly

involved in numerous immune-related GO terms and

KEGG pathways. The hub genes (MMP9 and C3AR1)

are significantly associated with the prognosis of sepsis

patients. CEBPB is the key immune-related gene that

may participate in sepsis. In addition, CEBPB is signif-

icantly associated with the relevant processes in NK

cells, T cells and B cells. These immune cells may

play a key role in the development of sepsis, and addi-

tional investigations of these immune cells may deter-

mine the targets for immunotherapy of sepsis and help

to improve immunomodulatory therapies in sepsis

patients. However, further studies are needed to con-

firm the associations between the key genes and

immune infiltration, and the specific mechanisms of

action of these genes in sepsis require further

investigation.
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