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Abstract

Amines such as 1,2,3,4-tetrahydroisoquinoline undergo redox-neutral annulations with ortho-

(nitromethyl)benzaldehyde. Benzoic acid acts as a promoter in these reactions, which involve 

concurrent amine α-C–H bond and N–H bond functionalization. Subsequent removal of the nitro 

group provides access to tetrahydroprotoberberines not accessible via typical redox-annulations. 

Also reported are decarboxylative annulations of ortho-(nitromethyl)benzaldehyde with proline 

and pipecolic acid.
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New methods for the C–H bond functionalization of amines and their derivatives continue to 

be developed at a rapid pace.1,2 However, few approaches have emerged that are compatible 

with unprotected secondary amines while at the same time enabling α-C–H bond 

functionalization with concurrent C−N bond formation.1m,o Particularly attractive in this 

regard are redox-annulations of cyclic amines, which allow for the rapid formation of 
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polycyclic amines from simple starting materials (Scheme 1). Water is the only byproduct in 

these reactions. Examples of this type of transformation include condensations of amines 

with ortho-aminobenzaldehydes to provide aminals (Scheme 1a, X = NR),3 and related, 

carboxylic-acid-catalyzed transformations involving α-C–O and α-C–S bond formation.4 

Redox-annulations that achieve α-C–C bond formation with orthotolualdehyde derivatives 

require the presence of at least one electron-withdrawing group on the ortho-methyl group.5 

In addition, activation of an ortho-methyl group has been achieved with heteroaryl substrates 

(Scheme 1b)6 and highly electron-deficient o-tolualdehydes (Scheme 1c).7–10 Here, we 

report the first redox-annulations of amines with ortho-(nitromethyl)benzaldehydes (Scheme 

1d). In these reactions, the nitro group acts as a traceless activator as it can be removed in a 

subsequent step. The overall strategy represents an attractive new pathway to members and 

analogues of the tetrahydroprotoberberine family of natural products.11

ortho-(Nitromethyl)benzaldehyde (1a)12 and 1,2,3,4-tetrahydroisoquinoline (THIQ) were 

selected as the model substrates in the initial evaluation of the proposed redox-annulation. 

Key optimization experiments are summarized in Table 1. While conditions used in other 

redox-annulations (reflux in toluene with benzoic acid as a promoter) provided the target 

product 2a in substantial amounts, improved results were obtained under microwave 

conditions. The maximum yield of 76% was achieved in a reaction that was performed in 

dichloroethane solvent at 150 °C for 5 min (entry 4). The reactions exhibited low but 

variable diastereoselectivities. We suspected that the two diastereomers of 2a may 

interconvert under the reaction conditions by means of a retro-nitro-Mannich/nitro-Mannich 

sequence with little thermodynamic preference for either diastereomer. Indeed, while 

accompanied by some decomposition, exposure of diastereomerically pure 2a to the reaction 

conditions led to the recovery of 2a as a nearly 1:1 mixture of diastereomers (Scheme 2).

We then turned our attention to the denitration step (Table 2). Following some optimization, 

conditions similar to those developed by Carreira and co-workers were found to be efficient 

in removing the nitro group,13 providing product 3a in up to 70% yield (entry 6).

The annulation/denitration sequence was applied to a number of substituted 

tetrahydroisoquinolines (Scheme 3). Moderate to good yields were achieved in the 

individual steps with acceptable overall yields. Gratifyingly, 1-aryl tetrahydroisoquinolines 

with electronically diverse substituents also readily participated in redox-annulations to 

provide the corresponding sterically congested products as essentially single diastereomers 

in reasonable yields (Scheme 4). A related tetrahydro-β-carboline also participated in the 

reaction but provided the annulation product in significantly lower yield.

Unfortunately, the products shown in Scheme 4 were not amenable to denitration under the 

reaction conditions employed above. However, removal of the nitro group was readily 

achieved with tributyltin hydride (Scheme 5).14

Despite significant experimentation, less activated amines such as pyrrolidine and piperidine 

did not participate in redox-annulations with ortho-(nitromethyl)benzaldehyde (1a). 

However, as has been shown in a number of related reactions,15,16 the corresponding 

decarboxylative reactions in which proline and pipecolic acid are used in place of 
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pyrrolidine and piperidine provided annulation products in good yields (Scheme 6). 

Denitration under Carreira conditions was also successful.

In conclusion, we have achieved the first traceless redox-annulations of amines using a 

substrate with an activating nitro group that can be subsequently removed. This strategy 

provides access to products that are not readily available by using conventional synthetic 

approaches.

Starting materials, reagents, and solvents were purchased from commercial sources and used 

as received unless stated otherwise. 1,2,3,4-Tetrahydroisoquinoline was freshly distilled 

prior to use. L-Proline, L/D-pipecolic acid, 2,2′-(diazene-1,2-diyl)bis(2-

methylpropanenitrile), and tributyltin hydride were used as received. HPLC grade 1,2-

dichloroethane (DCE) was purchased from Sigma–Aldrich and was used without further 

purification. Purification of reaction products was carried out by flash column 

chromatography using Sorbent Technologies Standard Grade silica gel (60 Å, 230–400 

mesh). Analytical thin-layer chromatography was performed on EM Reagent 0.25 mm silica 

gel 60 F254 plates. Visualization was accomplished with UV light and Dragendorff–Munier 

stains, followed by heating. 1H NMR spectra were recorded with a Bruker 400 MHz or 

Bruker 600 MHz instrument and chemical shifts are reported in ppm using the solvent as an 

internal standard (CDCl3 at 7.26 ppm). Data are reported as app = apparent, s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet, comp = complex, br = broad; coupling 

constant(s) in Hz. Proton-decoupled carbon nuclear magnetic resonance spectra (13C NMR) 

spectra were recorded with a Bruker 400 MHz or Bruker 600 MHz instrument and chemical 

shifts are reported in ppm using the solvent as an internal standard (CDCl3 at 77.16 ppm). 

Diastereomeric ratios of the products were determined by 1H NMR analysis of the purified 

products. Accurate mass data (ESI) was obtained with Agilent 1260 Infinity II LC/MSD 

using MassWorks 5.0 from CERNO bioscience.17 Reactions under microwave irradiation 

were conducted with a Biotage Initiator+, SW version: 4.1.4 build 11991.

1-Phenyl-1,2,3,4-tetrahydroisoquinoline,18a 1-(4-fluorophenyl)-1,2,3,4-

tetrahydroisoquinoline,18b 1-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline,18b 1-(4-

bromophenyl)-1,2,3,4-tetrahydroisoquinoline,18c 1-(4-(trifluoromethyl)phenyl)-1,2,3,4-

tetrahydroisoquinoline,18d 1-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline,18b 1-(p-

tolyl)-1,2,3,4-tetrahydroisoquinoline,18b 1-(m-tolyl)-1,2,3,4-tetrahydroisoquinoline,18e 1-(4-

bromophenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole,18f 6,7-dimethoxy-1,2,3,4-

tetrahydroisoquinoline,18g 5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline,18h 5-

methyl-1,2,3,4-tetrahydroisoquinoline,18i and 2-(nitromethyl)benzaldehyde18j were prepared 

according to reported procedures and their published characterization data matched our own 

in all respects.

13-Nitro-5,8,13,13a-tetrahydro-6H-isoquinolino[3,2-a]isoquinoline (2a)

2-(Nitromethyl)benzaldehyde (1a) (41.3 mg, 0.25 mmol, 1 equiv), 1,2,3,4-

tetrahydroisoquinoline (41.5 μL, 0.33 mmol, 1.3 equiv), and benzoic acid (40.3 mg, 0.33 

mmol, 1.3 equiv) were added to a microwave vial charged with a stir bar. Dichloroethane 

(2.5 mL) was added and the microwave vial was sealed. The vial was stirred until complete 
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dissolution of the solids and then placed in the microwave, followed by heating for 5 

minutes at 150 °C with the instrument set to low absorption. The reaction mixture was 

neutralized with sat. NaHCO3 (15 mL) and extracted with EtOAc (3 × 15 mL). The 

combined organic layers were dried over Na2SO4. The solvent was removed under reduced 

pressure and the crude residue was purified by silica gel chromatography using hexanes 

containing EtOAc (0–15%), yielding 2a as a mixture of diastereomers with a dr of 1:1.

Yield: 76% (53.3 mg); brown oil; Rf = 0.16 (hexanes/EtOAc 90:10 v/v).1H NMR (600 MHz, 

CDCl3): δ = 7.47 (dd, J = 7.7, 1.3 Hz, 0.5 H), 7.43–7.35 (comp, 1 H), 7.34–7.10 (comp, 6 

H), 7.04–6.96 (m, 0.5 H), 6.17 (d, J = 3.3 Hz, 0.5 H), 5.90 (d, J = 8.6 Hz, 0.5 H), 4.76 (d, J = 

8.6 Hz, 0.5 H), 4.38 (dd, J = 15.8, 1.3 Hz, 0.5 H), 4.26 (d, J = 15.3 Hz, 0.5 H), 4.20 (d, J = 

3.3 Hz, 0.5 H), 3.96 (d, J = 15.8 Hz, 0.5 H), 3.79 (d, J = 15.3 Hz, 0.5 H), 3.33–3.19 (comp, 1 

H), 3.08–2.96 (comp, 2 H), 2.92–2.85 (m, 0.5 H), 2.77–2.69 (m, 0.5 H).

13C NMR (151 MHz, CDCl3): δ = 136.4, 136.4, 134.7, 134.7, 134.1, 130.0, 129.6, 129.6, 

129.5, 129.3, 128.6, 127.8, 127.7, 127.4, 127.3, 127.2, 127.0, 127.0, 126.9, 126.6, 126.3, 

126.0, 125.7, 90.1, 87.0, 63.3, 62.1, 57.8, 56.7, 50.8, 48.0, 29.3, 29.2.

HRMS (ESI): m/z [M + H]+ calcd for C17H17N2O2: 281.1285; found: 281.1655. Spectral 

Accuracy: 98.8%.

General Procedure A

2-(Nitromethyl)benzaldehyde (1a) (82.6 mg, 0.5 mmol, 1 equiv), amine (0.65 mmol, 1.3 

equiv), and benzoic acid (79.4 mg, 0.65 mmol, 1.3 equiv) were added to a microwave vial 

charged with a stir bar. Dichloroethane (5.0 mL) was added and the microwave vial was 

sealed. The vial was stirred until complete dissolution of the solids and placed in the 

microwave, followed by heating for 5 minutes at 150 °C with the instrument set to low 

absorption. The reaction mixture was neutralized with sat. NaHCO3 (20 mL) and extracted 

with EtOAc (3 × 20 mL). The combined organic layers were dried over Na2SO4. The solvent 

was removed under reduced pressure and the crude residue was purified by silica gel 

chromatography. The product was used directly in the next step.

General Procedure B

The annulation product obtained according to General Procedure A was added to a reaction 

vial charged with acetic acid (1.0 equiv) and a stir bar. Toluene (5.0 mL) was added followed 

by 20% wt. Pd(OH)2/C (66.7 mg). The reaction vial was placed in a bomb and back filled 

with H2 (5×). H2 was added to the bomb until the internal pressure reached 150 PSI. The 

reaction mixture was heated at 85 °C for 4.5 hours. The reaction mixture was then allowed 

to cool to r.t., followed by removal of the solvent under reduced pressure. The crude mixture 

was purified by silica gel chromatography followed by treatment with sat. NaHCO3 (15 mL) 

and extraction with EtOAc (3 × 15 mL). The combined organic layers were dried over 

Na2SO4. The solvent was removed under reduced pressure yielding the final product.
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General Procedure C

2-(Nitromethyl)benzaldehyde (1a) (41.3 mg, 0.25 mmol, 1 equiv), amine (0.50 mmol, 2.0 

equiv), and benzoic acid (40.3 mg, 0.33 mmol, 1.3 equiv) were added to a microwave vial 

charged with a stir bar. Dichloroethane (2.5 mL) was added and the microwave vial was 

sealed. The vial was stirred until complete dissolution of the solids and placed in the 

microwave, followed by heating for 15 minutes at 115 °C with the microwave set to low 

absorption. The reaction mixture was neutralized with sat. NaHCO3 (15 mL) and extracted 

with EtOAc (3 × 15 mL). The combined organic layers were dried over Na2SO4. The solvent 

was removed under reduced pressure and the crude residue was purified by silica gel 

chromatography.

13-Nitro-13a-phenyl-5,8,13,13a-tetrahydro-6H-isoquinolino-[3,2-

a]isoquinoline (2e)

By following General Procedure C, compound (±)-2e was obtained from aldehyde 1a (41.3 

mg, 0.25 mmol, 1equiv) and 1-phenyl-1,2,3,4-tetrahydroisoquinoline (104.g mg, 0.5 mmol, 

2.0 equiv). Hexanes containing EtOAc (0–10%) was used as the eluent for silica gel 

chromatography.

Yield: 70% (62.4 mg) and a > 20:1 diastereomeric ratio; white solid; Rf = 0.13 (hexanes/

EtOAc 95:5 v/v).

1H NMR (600 MHz, CDCl3): δ = 7.58 (dd, J = 7.6, 1.5 Hz, 1 H), 7.39–7.34 (comp, 2 H), 

7.25–7.16 (comp, 3 H), 7.15–7.09 (comp, 4 H), 7.03 (dd, J = 8.0, 1.2 Hz, 1 H), 6.83–6.78 

(comp, 2 H), 6.59 (s, 1 H), 3.93 (d, J = 16.3 Hz, 1 H), 3.39–3.26 (comp, 3 H), 3.07–3.00 (m, 

1 H), 2.91–2.84 (m, 1 H).

13C NMR (151 MHz, CDCl3): δ = 139.6, 136.9, 136.8, 136.0, 129.6, 129.2, 128.9, 128.5, 

128.4, 128.3, 127.8, 127.6, 127.5, 127.3, 126.8, 126.2, 91.5, 65.8, 52.3, 45.6, 29.5.

HRMS (ESI): m/z [M + H]+ calcd for C23H21N2O2: 357.1598; found: 357.1589. Spectral 

Accuracy: 97.3%.

13a-(4-Fluorophenyl)-13-nitro-5,8,13,13a-tetrahydro-6H-isoquinolino[3,2-

a]isoquinoline (2f)

By following General Procedure C, compound (±)-2f was obtained from aldehyde 1a (41.3 

mg, 0.25 mmol, 1 equiv) and 1-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinoline (113.g mg, 

0.5 mmol, 2.0 equiv). Hexanes containing EtOAc (0–10%) was used as the eluent for silica 

gel chromatography.

Yield: 64% (59.9 mg) and a > 20:1 diastereomeric ratio; off-white solid; Rf = 0.30 (hexanes/

EtOAc 90:10 v/v).

1H NMR (600 MHz, CDCl3): δ = 7.56 (dd, J = 7.7, 1.4 Hz, 1 H), 7.38 (app td, J = 7.5, 1.5 

Hz, 1 H), 7.34 (app td, J = 7.5, 1.4 Hz, 1 H), 7.23–7.11 (comp, 4 H), 7.00 (dd, J = 7.9, 1.3 
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Hz, 1 H), 6.82 (app t, J = 8.7 Hz, 2 H), 6.79–6.74 (comp, 2 H), 6.53 (s, 1 H), 3.94 (d, J = 

16.3 Hz, 1 H), 3.37–3.27 (comp, 2 H), 3.21 (app td, J = 11.6, 3.3 Hz, 1 H), 3.03 (ddd, J = 

11.8, 6.0, 1.9 Hz, 1 H), 2.85 (app dt, J = 15.6, 2.7 Hz, 1 H).

13C NMR (151 MHz, CDCl3): δ = 161.8 (d, JC–F = 247.8 Hz), 136.7, 136.0, 135.4 (d, JC–F = 

3.2 Hz), 130.2 (d, JC–F = 7.8 Hz), 129.8, 129.0, 128.9, 128.4, 128.2, 127.6, 127.5, 126.9, 

126.3, 114.7 (d, JC–F = 21.0 Hz), 91.5, 65.4, 52.2, 45.5, 29.5.

HRMS (ESI): m/z [M + H]+ calcd for C23H20FN2O2: 375.1503; found: 375.1379. Spectral 

Accuracy: 97.4%.

13a-(4-Chlorophenyl)-13-nitro-5,8,13,13a-tetrahydro-6H-isoquinolino[3,2-

a]isoquinoline (2g)

By following General Procedure C, compound (±)-2g was obtained from aldehyde 1a (41.3 

mg, 0.25 mmol, 1 equiv) and 1-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline (121.9 mg, 

0.5 mmol, 2.0 equiv). Hexanes containing EtOAc (0–15%) was used as the eluent for silica 

gel chromatography.

Yield: 66% (64.5 mg) and > 20:1 diastereomeric ratio; off-white solid; Rf = 0.52 (hexanes/

EtOAc 80:20 v/v).

1H NMR (600 MHz, CDCl3): δ = 7.56 (dd, J = 7.6, 1.4 Hz, 1 H), 7.39–7.33 (comp, 2 H), 

7.29–7.11 (comp, 6 H), 7.06–6.96 (m, 1 H), 6.76–6.71 (comp, 2 H), 6.52 (s, 1 H), 3.95 (d, J 
= 16.3 Hz, 1 H), 3.38–3.27 (comp, 2 H), 3.22 (app td, J = 11.6, 3.2 Hz, 1 H), 3.05 (dd, J = 

12.0, 5.8 Hz, 1 H), 2.85 (d, J = 15.5 Hz, 1 H).

13C NMR (151 MHz, CDCl3): δ = 138.1, 136.6, 136.4, 136.0, 133.6, 129.8, 129.8, 129.0, 

128.8, 128.4, 128.2, 128.0, 127.6, 127.6, 126.8, 126.3, 91.3, 65.5, 52.2, 45.6, 29.4.

HRMS (ESI): m/z [M + H]+ calcd for C23H20ClN2O2: 391.1208; found: 391.1429. Spectral 

Accuracy: 97.2%.

13a-(4-Bromophenyl)-13-nitro-5,8,13,13a-tetrahydro-6H-isoquinolino[3,2-

a]isoquinoline (2h)

By following General Procedure C, compound (±)-2h was obtained from aldehyde 1a (41.3 

mg, 0.25 mmol, 1 equiv) and 1-(4-bromophenyl)-1,2,3,4-tetrahydroisoquinoline (144.1 mg, 

0.5 mmol, 2.0 equiv). Hexanes containing EtOAc (0–10%) was used as the eluent for silica 

gel chromatography.

Yield: 71% (77.3 mg) and > 20:1 diastereomeric ratio; off-white solid; Rf = 0.27 (hexanes/

EtOAc 90:10 v/v).

1H NMR (600 MHz, CDCl3): δ = 7.58 (dd, J = 7.7, 1.4 Hz, 1 H), 7.42–7.35 (comp, 2 H), 

7.33–7.25 (comp, 2 H), 7.25–7.08 (comp, 4 H), 7.08–7.00 (m, 1 H), 6.72–6.67 (comp, 2 H), 
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6.54 (s, 1 H), 3.97 (d, J = 16.3 Hz, 1 H), 3.41–3.29 (comp, 2 H), 3.25 (app td, J = 11.6, 3.2 

Hz, 1 H), 3.07 (ddd, J = 12.0, 6.0, 2.0 Hz, 1 H), 2.87 (app dt, J = 15.4, 2.6 Hz, 1 H).

13C NMR (151 MHz, CDCl3): δ = 138.6, 136.6, 136.3, 136.0, 131.0, 130.1, 129.8, 129.0, 

128.8, 128.4, 128.2, 127.6, 127.6, 126.8, 126.3, 121.8, 91.2, 65.5, 52.2, 45.5, 29.4.

HRMS (ESI): m/z [M + H]+ calcd for C23H20BrN2O2: 435.0703; found: 435.0610. Spectral 

Accuracy: 98.1%.

13-Nitro-13a-(4-(trifluoromethyl)phenyl)-5,8,13,13a-tetrahydro-6H-

isoquinolino[3,2-a]isoquinoline (2i)

By following General Procedure C, compound (±)-2i was obtained from aldehyde 1a (41.3 

mg, 0.25 mmol, 1 equiv) and 1-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroisoquinoline 

(138.6 mg, 0.5 mmol, 2.0 equiv). Hexanes containing EtOAc (0–10%) was used as the 

eluent for silica gel chromatography.

Yield: 69% (73.2 mg) and > 20:1 diastereomeric ratio; off-white solid; Rf = 0.30 (hexanes/

EtOAc 90:10 v/v).

1H NMR (600 MHz, CDCl3): δ = 7.58 (dd, J = 7.6, 1.5 Hz, 1 H), 7.43–7.32 (comp, 4 H), 

7.24–7.17 (comp, 2 H), 7.14 (app ddt, J = 6.5, 4.6, 2.1 Hz, 2 H), 6.99 (dd, J = 7.9, 1.2 Hz, 1 

H), 6.94 (d, J = 8.3 Hz, 2 H), 6.57 (s, 1 H), 3.97 (d, J = 16.4 Hz, 1 H), 3.40–3.30 (comp, 2 

H), 3.26 (app td, J = 11.5, 3.0 Hz, 1 H), 3.18–3.05 (m, 1 H), 2.89 (dd, J = 15.7, 2.9 Hz, 1 H).

13C NMR (151 MHz, CDCl3): δ = 143.7, 136.5, 136.0, 129.9, 129.7 (q, JC–F = 32.6 Hz), 

129.2, 128.8, 128.7, 128.5, 128.2, 127.7, 126.9, 126.4, 124.8 (q, JC–F = 3.8 Hz), 123.9 (q, 

JC–F = 272.4 Hz), 91.1, 65.6, 52.2, 45.6, 29.4.

HRMS (ESI): m/z [M + H]+ calcd for C24H20F3N2O2: 425.1471; found: 425.1820. Spectral 

Accuracy: 97.5%.

13a-(4-Methoxyphenyl)-13-nitro-5,8,13,13a-tetrahydro-6H-isoquinolino[3,2-

a]isoquinoline (2j)

By following General Procedure C, compound (±)-2j was obtained from aldehyde 1a (41.3 

mg, 0.25 mmol, 1 equiv) and 1-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (119.7 

mg, 0.5 mmol, 2.0 equiv). Hexanes containing EtOAc (0–10%) was used as the eluent for 

silica gel chromatography.

Yield: 40% (38.6 mg) and > 20:1 diastereomeric ratio; off-white solid; Rf = 0.19 (hexanes/

EtOAc 90:10 v/v).

1H NMR (600 MHz, CDCl3): δ = 7.60–7.54 (m, 1 H), 7.39–7.32 (comp, 2 H), 7.21–7.09 

(comp, 4 H), 7.07–6.97 (m, 1 H), 6.73–6.68 (comp, 2 H), 6.68–6.62 (comp, 2 H), 6.54 (s, 1 

H), 3.91 (d, J = 16.1 Hz, 1 H), 3.71 (s, 3 H), 3.39–3.27 (comp, 2 H), 3.23 (app td, J = 11.6, 

3.2 Hz, 1 H), 3.00 (ddd, J = 11.7, 5.9, 1.9 Hz, 1 H), 2.84 (app dt, J = 15.4, 2.6 Hz, 1 H).
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13C NMR (151 MHz, CDCl3): δ = 158.7, 137.2, 136.9, 136.0, 131.6, 129.8, 129.6, 129.2, 

128.9, 128.4, 128.3, 127.5, 127.3, 126.8, 126.1, 113.0, 91.7, 65.5, 55.2, 52.3, 45.5, 29.6.

HRMS (ESI): m/z [M + H]+ calcd for C24H23N2O3: 387.1703; found: 387.1899. Spectral 

Accuracy: 98.8%.

13-Nitro-13a-(p-tolyl)-5,8,13,13a-tetrahydro-6H-isoquinolino-[3,2-

a]isoquinoline (2k)

By following General Procedure C, compound (±)-2k was obtained from aldehyde 1a (41.3 

mg, 0.25 mmol, 1 equiv) and 1-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (111.7 mg, 0.5 

mmol, 2.0 equiv). Hexanes containing EtOAc (0–10%) was used as the eluent for silica gel 

chromatography.

Yield: 61% (56.5 mg) and > 20:1 diastereomeric ratio; off-white solid; Rf = 0.32 (hexanes/

EtOAc 90:10 v/v).

1H NMR (600 MHz, CDCl3): δ = 7.57 (d, J = 7.9, 1.2 Hz, 1 H), 7.40–7.31 (comp, 2 H), 

7.24–7.15 (comp, 2 H), 7.12 (ddd, J = 9.5, 7.1, 1.9 Hz, 2 H), 7.03 (d, J = 7.9, 1.2 Hz, 1 H), 

6.94 (d, J = 8.2 Hz, 2 H), 6.70–6.65 (comp, 2 H), 6.57 (s, 1 H), 3.91 (d, J = 16.2 Hz, 1 H), 

3.39–3.24 (comp, 3 H), 3.05–2.99 (m, 1 H), 2.85 (dd, J = 15.3, 3.0 Hz, 1 H), 2.24 (s, 3 H).

13C NMR (151 MHz, CDCl3): δ = 137.3, 137.1, 136.9, 136.5, 136.0, 129.5, 129.3, 128.9, 

128.5, 128.5, 128.4, 128.3, 127.4, 127.2, 126.8, 126.1, 91.62, 65.7, 52.3, 45.56, 29.6, 21.0.

HRMS (ESI): m/z [M + H]+ calcd for C24H23N2O2: 371.1759; found: 371.1935. Spectral 

Accuracy: 97.5%.

13-Nitro-13a-(m-tolyl)-5,8,13,13a-tetrahydro-6H-isoquinolino-[3,2-

a]isoquinoline (2l)

By following General Procedure C, compound (±)-2l was obtained from aldehyde 1a (41.3 

mg, 0.25 mmol, 1 equiv) and 1-(m-tolyl)-1,2,3,4-tetrahydroisoquinoline (111.7 mg, 0.5 

mmol, 2.0 equiv). Hexanes containing EtOAc (0–10%) was used as the eluent for silica gel 

chromatography.

Yield: 60% (55.6 mg) and > 20:1 diastereomeric ratio; off-white solid; Rf = 0.28 (hexanes/

EtOAc 90:10 v/v).

1H NMR (600 MHz, CDCl3): δ = 7.57 (dd, J = 7.6, 1.5 Hz, 1 H), 7.38–7.32 (comp, 2 H), 

7.23–7.16 (comp, 2 H), 7.12 (app ddt, J = 6.4, 4.5, 2.2 Hz, 2 H), 7.07–6.96 (comp, 3 H), 

6.66–6.54 (comp, 3 H), 3.92 (d, J = 16.2 Hz, 1 H), 3.39 (d, J = 16.2 Hz, 1 H), 3.35–3.27 

(comp, 2 H), 3.09–3.01 (m, 1 H), 2.92–2.83 (m, 1 H), 2.15 (s, 3 H).

13C NMR (151 MHz, CDCl3): δ = 139.6, 137.3, 136.9, 136.8, 135.9, 129.4, 129.4, 129.2, 

128.8, 128.5, 128.3, 128.3, 127.5, 127.3, 127.2, 126.7, 126.0, 125.3, 91.5, 65.7, 52.3, 45.5, 

29.5, 21.8.
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HRMS (ESI): m/z [M + H]+ calcd for C24H23N2O2: 371.1754; found: 371.2009. Spectral 

Accuracy: 98.2%.

13b-(4-Bromophenyl)-14-nitro-5,7,8,13,13b,14-

hexahydroindolo-[2′,3′:3,4]pyrido[1,2-b]isoquinoline (2m)

2-(Nitromethyl)benzaldehyde (82.6 mg, 0.5 mmol, 1 equiv), 1-(4-bro-mophenyl)-2,3,4,9-

tetrahydro-1H-pyrido[3,4-b]indole (327.2 mg, 1.0 mmol, 2.0 equiv), and benzoic acid (79.4 

mg, 0.65 mmol, 1.3 equiv) were added to a microwave vial charged with a stir bar. 

Dichloroethane (5.0 mL) was added and the microwave vial was sealed. The vial was stirred 

and placed in the microwave, followed by heating for 15 minutes at 115 °C with the 

microwave set to low absorption. The reaction mixture was neutralized with sat. NaHCO3 

(20 mL) and extracted with EtOAc (3 × 20 mL). The combined organic layers were dried 

over Na2SO4. The solvent was removed under reduced pressure and the crude residue 

purified by silica gel chromatography using hexanes containing EtOAc (0–15%) as the 

eluent, yielding 2m.

Yield: 24% (56.9 mg) and > 20:1 diastereomeric ratio; pale-green solid; Rf = 0.40 (hexanes/

EtOAc 80:20 v/v).

1H NMR (600 MHz, CDCl3): δ = 7.83 (s, 1 H), 7.59 (d, J = 7.7 Hz, 1 H), 7.49–7.41 (comp, 

2 H), 7.38 (app td, J = 7.5, 1.3 Hz, 1 H), 7.32–7.26 (comp, 4 H), 7.24–7.19 (comp, 2 H), 

6.73 (d, J = 8.3 Hz, 2 H), 6.51 (s, 1 H), 4.08 (d, J = 16.3 Hz, 1 H), 3.48 (d, J = 16.3 Hz, 1 H), 

3.22 (app td, J = 12.7, 11.9, 3.9 Hz, 1 H), 3.13 (app ddt, J = 16.4, 10.7, 4.4 Hz, 2 H), 2.98–

2.91 (m, 1 H).

13C NMR (151 MHz, CDCl3): δ = 137.0, 131.5, 130.9, 130.0, 129.9, 128.6, 128.1, 127.8, 

127.0, 126.4, 122.9, 119.9, 118.9, 113.4, 111.5, 90.0, 63.8, 51.5, 46.7, 21.3.

HRMS (ESI): m/z [M + H]+ calcd for C25H21BrN3O2: 474.0812; found: 474.0616. Spectral 

Accuracy: 97.7%.

5,8,13,13a-Tetrahydro-6H-isoquinolino[3,2-a]isoquinoline (3a)

By following General Procedures A and B, compound (±)-3a was obtained from aldehyde 

1a (82.6 mg, 0.5 mmol, 1 equiv) and 1,2,3,4-tetrahydroisoquinoline (81.7 μL, 0.65 mmol, 

1.3 equiv). Hexanes containing EtOAc (0–20%) was used as the eluent for silica gel 

chromatography. Characterization data for 3a match literature reports in all respects.19a,19b

Yield: 53% (62.4 mg) over two steps; yellow solid; Rf = 0.39 (hexanes/EtOAc 70:30 v/v).

1H NMR (400 MHz, CDCl3): δ = 7.30 (d, J = 7.0 Hz, 1 H), 7.26–7.14 (comp, 6 H), 7.10 (dd, 

J = 6.5, 2.7 Hz, 1 H), 4.06 (d, J = 14.9 Hz, 1 H), 3.85–3.67 (comp, 2 H), 3.48–3.36 (m, 1 H), 

3.32–3.15 (comp, 2 H), 2.96 (ddd, J = 16.3, 11.3, 1.8 Hz, 1 H), 2.85–2.75 (m, 1 H), 2.72–

2.62 (m, 1 H).
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13C NMR (101 MHz, CDCl3): δ = 136.0, 134.6, 134.6, 134.5, 129.0, 128.9, 126.4, 126.3, 

126.3, 126.2, 126.0, 125.6, 60.0, 58.7, 51.3, 36.8, 29.6.

HRMS (ESI): m/z [M + H]+ calcd for C17H18N: 236.1434; found: 236.1526. Spectral 

Accuracy: 98.6%.

4-Methyl-5,8,13,13a-tetrahydro-6H-isoquinolino[3,2-a]isoquinoline (3b)

By following General Procedures A and B, compound (±)-3b was obtained from aldehyde 

1a (82.6 mg, 0.5 mmol, 1 equiv) and 5-methyl1,2,3,4-tetrahydroisoquinoline (95.7 mg, 0.65 

mmol, 1.3 equiv). Hexanes containing EtOAc (0–10%) was used as the eluent for silica gel 

chromatography.

Yield: 47% (58.6 mg) over two steps; white solid; Rf = 0.25 (hexanes/EtOAc 90:10 v/v).

1H NMR (600 MHz, CDCl3): δ = 7.28–7.17 (comp, 5 H), 7.13–7.10 (comp, 2 H), 4.09 (d, J 
= 14.9 Hz, 1 H), 3.87–3.69 (comp, 2 H), 3.42 (dd, J = 16.3, 4.1 Hz, 1 H), 3.27 (ddd, J = 11.5, 

5.8, 2.2 Hz, 1 H), 3.10–2.88 (comp, 2 H), 2.77 (app dt, J = 16.5, 2.9 Hz, 1 H), 2.67 (app td, J 
= 11.4, 3.8 Hz, 1 H), 2.31 (s, 3 H).

13C NMR (151 MHz, CDCl3): δ = 138.0, 136.3, 134.6, 134.4, 133.2, 128.8, 127.6, 126.4, 

126.2, 125.9, 125.9, 123.3, 60.1, 58.8, 51.2, 36.9, 27.1, 19.4.

HRMS (ESI): m/z [M + H]+ calcd for C18H20N: 250.1590; found: 250.1705. Spectral 

Accuracy: 99.0%.

2,3-Dimethoxy-5,8,13,13a-tetrahydro-6H-isoquinolino[3,2-a]isoquinoline (3c)

By following General Procedures A and B, compound (±)-3c was obtained from aldehyde 

1a (82.6 mg, 0.5 mmol, 1 equiv) and 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (125.6 

mg, 0.65 mmol, 1.3 equiv). Hexanes containing EtOAc (0–40%) was used as the eluent for 

silica gel chromatography. Characterization data for 3c match a literature report in all 

respects.19c

Yield: 34% (50.2 mg) over two steps; white solid; Rf = 0.14 (hexanes/EtOAc 75:25 v/v).

1H NMR (600 MHz, CDCl3): δ = 7.20–7.12 (comp, 3 H), 7.11–7.06 (m, 1 H), 6.75 (s, 1 H), 

6.62 (s, 1 H), 4.04 (d, J = 14.9 Hz, 1 H), 3.90 (s, 3 H), 3.87 (s, 3 H), 3.78–3.73 (m, 1 H), 

3.70–3.62 (m, 1 H), 3.34 (dd, J = 16.2, 3.9 Hz, 1 H), 3.20–3.12 (comp, 2 H), 2.98–2.87 (m, 1 

H), 2.73–2.60 (comp, 2 H).

13C NMR (151 MHz, CDCl3): δ = 147.6, 147.6, 134.4, 129.7, 128.8, 126.7, 126.4, 126.2, 

126.0, 111.4, 108.6, 59.6, 58.6, 56.2, 55.9, 51.4, 36.8, 29.0.

HRMS (ESI): m/z [M + H]+ calcd for C19H22NO2: 296.1645; found: 296.1739. Spectral 

Accuracy: 98.6%.
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5,8,13,13a-Tetrahydro-6H-[1,3]dioxolo[4,5-g]isoquinolino[3,2-a]isoquinoline 

(3d)

By following General Procedures A and B, compound (±)-3d was obtained from aldehyde 

1a (82.6 mg, 0.5 mmol, 1 equiv) and 5,6,7,8-tetrahydro[1,3]dioxolo[4,5-g]isoquinoline 

(115.2 mg, 0.65 mmol, 1.3 equiv). Hexanes containing EtOAc (0–20%) was used as the 

eluent for silica gel chromatography. Characterization data for 3d match a literature report in 

all respects.19b

Yield: 38% (53.1 mg) over two steps; white solid; Rf = 0.28 (hexanes/EtOAc 75:25 v/v).

1H NMR (600 MHz, CDCl3): δ = 7.21–7.13 (comp, 3 H), 7.11–7.05 (m, 1 H), 6.76 (s, 1 H), 

6.60 (s, 1 H), 5.92–5.91 (comp, 2 H), 4.03 (d, J = 14.9 Hz, 1 H), 3.75 (d, J = 14.9 Hz, 1 H), 

3.62 (dd, J = 11.2, 4.0 Hz, 1 H), 3.29 (dd, J = 16.2, 4.0 Hz, 1 H), 3.18–3.09 (comp, 2 H), 

2.95–2.87 (m, 1 H), 2.71–2.58 (comp, 2 H).

13C NMR (151 MHz, CDCl3): δ = 146.3, 146.1, 134.4, 134.3, 130.8, 128.8, 127.8, 126.4, 

126.2, 126.0, 108.5, 105.6, 100.9, 60.0, 58.6, 51.4, 36.9, 29.6.

HRMS (ESI): m/z [M + H]+ calcd for C18H18NO2: 280.1332; found: 280.1565. Spectral 

Accuracy: 99.1%.

13a-Phenyl-5,8,13,13a-tetrahydro-6H-isoquinolino[3,2-a]isoquinoline (3e)

Compound (±)-2e (71.3 mg, 0.20 mmol. 1.0 equiv), and AIBN (9.9 mg, 0.06 mmol, 0.3 

equiv) was added to benzene (2.0 mL) and stirred until complete dissolution. Tributyltin 

hydride (80.9 μL, 0.3 mmol, 1.5 equiv) was then added and the reaction mixture was heated 

under reflux for 1 hour. The reaction mixture was extracted with 1 M HCl (3 × 10 mL) and 

the combined aqueous layers were basified with 1 M NaOH. The aqueous layer was back 

extracted with EtOAc (3 × 15 mL) and the combined organic layers were dried over 

Na2SO4. The solvent was removed under reduced pressure and the crude residue was 

purified by silica gel chromatography using hexanes containing EtOAc (0–5%) as the eluent 

yielding 3e.

Yield: 72% (44.8 mg); white solid; Rf = 0.33 (hexanes/EtOAc 95:5 v/v).

1H NMR (600 MHz, CDCl3): δ = 7.25–7.13 (comp, 10 H), 7.06 (app td, J = 7.4, 1.7 Hz, 1 

H), 6.98 (d, J = 7.5 Hz, 1 H), 6.78 (dd, J = 7.9, 1.3 Hz, 1 H), 3.71–3.55 (comp, 3 H), 3.44 (d, 

J = 17.5 Hz, 1 H), 3.28–3.23 (m, 1 H), 3.17 (ddd, J = 11.8, 8.3, 4.7 Hz, 1 H), 3.09 (app dt, J 
= 11.9, 5.3 Hz, 1 H), 3.02 (app dt, J = 15.8, 4.8 Hz, 1 H).

13C NMR (151 MHz, CDCl3): δ = 134.5, 134.2, 133.4, 129.8, 128.9, 128.9, 128.4, 128.2, 

127.9, 127.8, 126.9, 126.5, 126.4, 126.0, 126.0, 126.0, 62.5, 53.5, 46.5, 36.2, 29.9.

HRMS (ESI): m/z [M + H]+ calcd for C23H22N: 312.1747; found: 312.1787. Spectral 

Accuracy: 97.4%.
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1,2,3,5,10,10a-Hexahydropyrrolo[1,2-b]isoquinoline (4)

By following General Procedures A and B, compound (±)-4 was obtained from aldehyde 1a 
(82.6 mg, 0.5 mmol, 1 equiv) and L-proline (74.8 mg, 0.65 mmol, 1.3 equiv). 

Dichloromethane containing MeOH (0–10%) was used as the eluent for silica gel 

chromatography. Characterization data for 4 match a literature report in all respects.19e

Yield: 52% (45.0 mg) over two steps; colorless oil; Rf = 0.13 (CH2Cl2/ MeOH 96:4 v/v).

1H NMR (600 MHz, CDCl3): δ = 7.13–7.10 (comp, 3 H), 7.11–7.05 (m, 1 H), 4.16 (d, J = 

14.6 Hz, 1 H), 3.47 (d, J = 14.6 Hz, 1 H), 3.30 (app td, J = 8.7, 2.5 Hz, 1 H), 3.01 (dd, J = 

15.9, 3.9 Hz, 1 H), 2.78–2.71 (m, 1 H), 2.42–2.36 (m, 1 H), 2.31 (app q, J = 8.8 Hz, 1 H), 

2.12 (dddd, J = 12.3, 9.8, 6.8, 4.2 Hz, 1 H), 1.95 (app ddtd, J = 12.7, 11.2, 8.6, 4.2 Hz, 1 H), 

1.89–1.79 (m, 1 H), 1.58 (dddd, J = 12.3, 11.3, 9.8, 6.8 Hz, 1 H).

13C NMR (151 MHz, CDCl3): δ = 135.0, 134.9, 129.1, 126.7, 126.3, 125.8, 60.8, 55.9, 54.8, 

36.0, 31.1, 21.7.

HRMS (ESI): m/z [M + H]+ calcd for C12H16N: 174.1277; found: 174.1276. Spectral 

Accuracy: 99.4%.

1,3,4,6,11,11a-Hexahydro-2H-pyrido[1,2-b]isoquinoline (5)

By following General Procedures A and B, compound (±)-5 was obtained from aldehyde 1a 
(82.6 mg, 0.5 mmol, 1 equiv) and L/D-pipecolic acid (84.0 mg, 0.65 mmol, 1.3 equiv). 

Dichloromethane containing MeOH (0–4%) was used as the eluent for silica gel 

chromatography. Characterization data for 5 match a literature report in all respects.19d

Yield: 47% (44.0 mg) over two steps; white solid; Rf = 0.18 in EtOAc.

1H NMR (600 MHz, CDCl3): δ = 7.12–7.08 (comp, 2 H), 7.06–7.03 (m, 1 H), 7.02–6.98 (m, 

1 H), 3.86 (d, J = 15.1 Hz, 1 H), 3.39 (d, J = 15.1 Hz, 1 H), 3.12–3.05 (m, 1 H), 2.90–2.62 

(comp, 2 H), 2.25 (app tt, J = 10.2, 4.2 Hz, 1 H), 2.12 (app td, J = 11.4, 4.2 Hz, 1 H), 1.88–

1.76 (comp, 2 H), 1.76–1.67 (comp, 2 H), 1.42–1.32 (comp, 2 H).

13C NMR (151 MHz, CDCl3): δ = 134.3, 134.0, 128.1, 126.2, 126.0, 125.6, 58.4, 58.4, 56.2, 

36.8, 33.7, 25.9, 24.3.

HRMS (ESI): m/z [M + H]+ calcd for C13H18N: 188.1434; found: 188.1383. Spectral 

Accuracy: 99.2%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Examples of amine redox-annulations and present work
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Scheme 2. 
Equilibration experiment
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Scheme 3. 
Evaluation of substituted tetrahydroisoquinolines
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Scheme 4. 
Formation of sterically congested tetrahydroprotoberberine analogues
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Scheme 5. 
Denitration of a sterically congested annulation product
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Scheme 6. 
Decarboxylative annulation/denitration
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Table 1

Reaction Development
a

Entry THIQ (equiv) Solvent T (°C) Time (min) Yield (%) dr

1 1.3 PhMe reflux 60 56 1:1

2 1.3 DCE reflux 60 58 1.3:1

3
b 1.3 PhMe 150 5 61 1.1:1

4
b 1.3 DCE 150 5 76 1:1

5
b 2.0 DCE 150 5 61 1.1:1

6
b 1.3 DCE 100 5 71 1.4:1

7
b 1.3 DCE 100 15 75 1.2:1

a
Reactions were performed on a 0.25 mmol scale. All yields correspond to isolated yields. The dr was determined by 1H NMR analysis after 

purification.

b
Performed under microwave irradiation.
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Table 2

Optimization of the Denitration Step
a

Entry Solvent H2 (atm) Additive (equiv) T (°C) Time (h) Yield (%)

1 EtOH 10.2 – 85 4.5 h 57

2 EtOH 10.2 – rt 4.5 h trace

3
b EtOH 1 – 85 4.5 h trace

4
b EtOH 10.2 – 85 24 h 54

5 PhMe 10.2 – 85 4.5 h 54

6 PhMe 10.2 AcOH (1.0) 85 4.5 h 70

7 PhMe 10.2 AcOH (2.0) 85 4.5 h 26

a
Reactions were performed on a 0.25 mmol scale. All yields correspond to isolated yields.

b
Reaction was performed on a 0.15 mmol scale.
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