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To achieve minimum DNA input requirements for next-generation sequencing (NGS), pathologists visually estimate
macrodissection and slide count decisions. Unfortunately, misestimation may cause tissue waste and increased laboratory costs. We
developed an artificial intelligence (AI)-augmented smart pathology review system (SmartPath) to empower pathologists with
quantitative metrics for accurately determining tissue extraction parameters. SmartPath uses two deep learning architectures, a
U-Net based network for cell segmentation and a multi-field-of-view convolutional network for tumor area segmentation, to extract
features from digitized H&E-stained formalin-fixed paraffin-embedded slides. From the segmented tumor area, SmartPath suggests
a macrodissection area. To predict DNA yield per slide, the extracted features from within the macrodissection area are correlated
with known DNA yields to fit a regularized linear model (R= 0.85). Then, a pathologist-defined target yield divided by the predicted
DNA yield per slide gives the number of slides to scrape. Following model development, an internal validation trial was conducted
within the Tempus Labs molecular sequencing laboratory. We evaluated our system on 501 clinical colorectal cancer slides, where
half received SmartPath-augmented review and half traditional pathologist review. The SmartPath cohort had 25% more DNA
yields within a desired target range of 100–2000 ng. The number of extraction attempts was statistically unchanged between
cohorts. The SmartPath system recommended fewer slides to scrape for large tissue sections, saving tissue in these cases.
Conversely, SmartPath recommended more slides to scrape for samples with scant tissue sections, especially those with degraded
DNA, helping prevent costly re-extraction due to insufficient extraction yield. A statistical analysis was performed to measure the
impact of covariates on the results, offering insights on how to improve future applications of SmartPath. With these improvements,
AI-augmented histopathologic review has the potential to decrease tissue waste, sequencing time, and laboratory costs by
optimizing DNA yields, especially for samples with scant tissue and/or degraded DNA.
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INTRODUCTION
Next-generation sequencing (NGS) has become an integral
technique in the molecular diagnosis, prognosis, and treatment
of cancer. To properly assess tumor tissue with NGS, solid samples
must be dissected to meet minimum DNA input and tumor purity
requirements1–5. In standard practice, pathologists visually inspect
hematoxylin and eosin (H&E)-stained, formalin-fixed, paraffin-
embedded (FFPE) slides to determine how much tissue should be
dissected and whether macrodissection is necessary to enrich for
tumor cells6,7. Besides meeting minimum input requirements,
pathologists must also avoid recommending excessive dissection
as tumor tissue is valuable and may be needed for further
molecular tests. Tissue stewardship guidelines can help patholo-
gists achieve this balance between sufficient and excessive
dissection4. However, following these suggestions using manual
dissection techniques is difficult, and thus, there is an increasing
need to optimize tissue extraction procedures as NGS becomes
more relevant in clinical practice.

NGS pipelines have undergone tremendous advancements in
the past decade8–10, including the development of automated
dissection systems for tissue extraction. Laser-capture microdis-
section was introduced about two decades ago11–13, but has not
been widely adopted in clinical laboratories because precise
dissection of single tumor cells from FFPE slides is rarely necessary
for clinical testing14. Lower resolution mechanical macrodissection
systems have also been developed as more clinically pragmatic
alternatives15–18. These systems can be combined with digital slide
marking (digitally guided macrodissection), enabling integration
with computer vision models for tumor enrichment19,20. Several
computer vision systems have been recently developed with the
goal of estimating tumor-rich dissection areas from histopathol-
ogy slides to meet tumor purity input requirements for molecular
testing6,21–24. However, no recommendation systems exist for
estimating tissue quantity for minimum DNA input requirements,
and thus even automated dissection systems rely on a pathologist
to determine how many slides should be scraped. Unfortunately,

Received: 30 March 2022 Revised: 4 August 2022 Accepted: 5 August 2022

1Tempus Labs, Chicago, IL, USA. ✉email: bo.osinski@tempus.com

www.nature.com/modpathol

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41379-022-01161-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41379-022-01161-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41379-022-01161-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41379-022-01161-0&domain=pdf
http://orcid.org/0000-0003-0830-4589
http://orcid.org/0000-0003-0830-4589
http://orcid.org/0000-0003-0830-4589
http://orcid.org/0000-0003-0830-4589
http://orcid.org/0000-0003-0830-4589
http://orcid.org/0000-0003-0004-6466
http://orcid.org/0000-0003-0004-6466
http://orcid.org/0000-0003-0004-6466
http://orcid.org/0000-0003-0004-6466
http://orcid.org/0000-0003-0004-6466
https://doi.org/10.1038/s41379-022-01161-0
mailto:bo.osinski@tempus.com
www.nature.com/modpathol


consequences of visual misestimation of tissue quantity include
sequencing failure, tissue waste, and increased laboratory costs
and turnaround times.
Here, we developed SmartPath: a computer vision-based

method to empower pathologists with quantitative metrics,
allowing them to accurately determine tissue input parameters
for desired DNA yields. Echoing design principles of artificial
intelligence (AI)-augmented pathology outlined by others25–29,
SmartPath functions as a pathologist-in-the-loop system rather
than a standalone predictor. Predictions are displayed in a
browser-based user interface (UI) viewed during pathology review.
The pathologist is free to recommend the predicted tissue input
parameters as presented, or to modify them based on their
expertise. We tested SmartPath in an internal trial to assess the
impact of AI-augmented pathology review in a real-world clinical
setting. We quantified immediate impacts of the AI-assistance on
tissue usage and the extracted DNA content, as well as on two
NGS workflow costs: the total number of extractions attempted
and the DNA extraction-to-sequencing time (T-seq). A thorough
statistical investigation of the impact of clinical covariates on these
metrics was conducted, revealing factors that influence NGS
success beyond tissue input parameters alone. Finally, recom-
mendations are made how to improve the system for future
applications.

MATERIALS AND METHODS
Model development
Before evaluating the SmartPath AI-augmented pathology review system
in an internal trial (see Methods: Internal Model Evaluation Trial), we first
developed the model through extensive validation experiments. The
underlying models can be grouped into two categories: feature generation
and DNA yield estimation. Feature generation aims to extract features from
a single H&E-stained histopathology whole-slide image (WSI). These
features are used to fit a DNA yield estimation model. At inference time,
the full pipeline from feature generation to DNA yield estimation is run to
produce predictions that augment pathologist tissue quantity selections to
achieve a total extracted DNA mass within a user-defined target range. This
modeling pipeline is summarized in Fig. 1A.

Feature generation pipeline. Feature extraction relies on pretrained tissue
and cell segmentation models. The tissue segmentation, based on a multi-
field-of-view network with a fully convolutional ResNet-18 backbone30,
produces segmentation maps of tumor-rich areas (AUC 0.947 for tumor
classification, Section S1.1). The cell segmentation model, based on the
U-Net architecture31, produces segmentations of cell nuclei throughout the
whole image (Section S1.2). These models are combined to assign
identities to tumor cells and lymphocytes (Section S1). Features are then
generated from these model outputs, consisting of four feature groups:
tumor shape, cell counts, cell nucleus shape, and cell nucleus texture,
totaling 3,461 features from each slide (Section S2).

Tissue and cell segmentation model comparison to pathologist
ground truth: Besides evaluating the classification accuracy of the
tissue segmentation model on pathologist annotations (see Section S1.1),
we also selected 334 slides (colorectal tumors metastasized to various
tissues) which were previously reviewed by pathologists and assigned a
visually estimated tumor percentage as part of our clinical NGS workflow.
We computed the correlation coefficient between model predicted tumor
percent and the visual estimate (Fig. 2A, R= 0.731). This modest
correlation is close to the inter-pathologist correlation for such visual
estimates of tumor percentage6. To evaluate the cell segmentation model,
we asked three pathologists to annotate all cells as tumor cell, lymphocyte,
or other within 300 fields of view sampled from 100 colorectal WSIs (see
Section S1.2 for details). Correlation coefficients between predicted cell
counts and the consensus of the annotated cell counts were R= 0.834 for
all cells (Fig. 2B), R= 0.829 for tumor cells, and R= 0.728 for lymphocytes.

Macrodissection area masking during training and inference: In
our normal clinical workflow, approximately 30% of CRC samples are
macrodissected to ensure the extraction contains at least 20% tumor cells.

For this subset of slides, feature extraction was restricted to tissue within
the macrodissection area. Two strategies had to be developed for handling
these samples because the retrospective slides used for training already
had microdissection areas hand-drawn onto the slides by pathologists,
while the prospective slides processed during inference had not yet been
reviewed by a pathologist. To ensure that features from the training slides
were only from the hand-drawn region, we developed an ink detection
model which was post-processed to produce a macrodissection area mask
(Section S3).
During inference the macrodissection area was estimated from tissue

segmentation model predictions. The predicted tumor area was converted
to a binary mask and post-processed to produce a contour mimicking
hand-drawn macrodissection areas. Details on the implementation and
validation of this method are in Section S4.

DNA Yield Prediction
Training and Validation Sets for DNA Yield Prediction: The core
model underlying SmartPath is the prediction of DNA yield per slide using
linear regression on extracted imaging features. To acquire a training set,
the Tempus database was searched for slides scanned between January
2018 and January 2020 containing lung, breast, or colorectal cancer (CRC)
primary tumor tissue. Three different cancer types were used for training
because the average nuclear content per cell should be similar across
cancers, and therefore extracted cell-count features should follow the
same linear correlation with DNA yield regardless of cancer type. We
confirmed this assumption by estimating the yield per cell for each cancer
type (measured DNA yield per slide / predicted number of cells per slide)
and finding no statistical difference between the means. Using the three
cancer types also increased the training set size, which might help the
model better generalize to unseen data in the future.
Aspirates and cytology specimens were excluded from the training set,

as were slides with no recorded DNA mass or scraping, leaving a final
training set of 1605 slides. Approximately 28% were previously macro-
dissected, reflecting the rate at which samples are macrodissected in our
normal clinical workflow. Characteristics of the DNA yield prediction
training set are shown in Table S1.
We also acquired a separate validation set of 332 retrospective samples

from the same database, restricted to only CRC tissues, which was used for
selecting a model with the best performing parameter combination
(Table S2). The validation set was enriched for macrodissected cases (57%
were macrodissected) to ensure thorough evaluation of our macrodissec-
tion estimation algorithm. Characteristics of the validation set are shown in
Table S1.

Ground truth definition for DNA yield prediction model: The
ground truth for training the DNA yield prediction model was taken as the
extracted DNA yield from FFPE slides (see Section S5 for details on DNA
extraction procedure). Each slide in the training and validation sets was an
archival H&E slide representative of the unstained slides already extracted
and sequenced by our NGS laboratory. Although most underwent only one
DNA extraction attempt, some had multiple, in which case the imaged
slide may have been closer to the tissues used for the 2nd extraction
attempt. Therefore, the ground truth was defined as:
(DNA1 yield) / (Nslides), if only 1 extraction attempted
(DNA1 yield + DNA2 yield) / (Nslides for DNA1+Nslides for DNA2), if > 1

extractions attempted
Section S6 contains more details on the ground truth definition.

Parameter and feature exploration for final model selection: For
parameter exploration we used the full feature set (3641 features). Because
the number of features was larger than the number of samples in the
training set (1605), the linear model severely overfit and failed to
generalize without regularization. Optimal regularization parameters were
determined by parameter sweeping across L1 and L2 regularization
strengths. Each regularization was tested with natural log and Box-Cox
power transformations on features and ground truth. The parameter
combination with the best validation set performance (R= 0.818) was a log
transform and an L1 regularization with strength=0.01 (see Table S2 for full
parameter exploration). Predictions of this optimal model are plotted
against training and validation ground truths in Fig. 2C, D.
To confirm that including all 3641 features was advantageous, we

performed a 200-fold cross validation using an 80/20 train/val split of
the training set using the optimal parameter combination found from
the exploration. We measured the mean coefficient magnitude across
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folds for each parameter. The top 10 features accounted for 93.4% of the
model coefficient magnitude and were from a combination of feature
groups (cell counts, tumor shape, cell shape, texture), with the total cell
count having the highest importance (Fig. S2). Further confirmation of
the usefulness of keeping all features was done in a 200-fold cross
validation experiment where cumulatively more features were included.
Starting with just 1 feature, then progressively adding features by group,
performance on the cross-validated training set and the withheld
validation set increased as more features were included (Fig. S3). This

confirmed that the inclusion of all features gave the best performing
model.
We also explored the inclusion of categorical features, such as procedure

type, tissue site, and institution. However, the inclusion of categorical
features did not offer any significant boost in the performance of cross-
validated models, and their model coefficients were consistently pushed
towards 0 by regularization. Because the final model was to be run in a
real-world scenario, where image artifacts may cause some features to
have infinite or non-numeric values, additional steps were also taken to

Fig. 1 SmartPath model pipeline and internal evaluation trial design. A SmartPath consists of several models which extract information
from H&E-stained whole-slide images and make predictions used to augment pathologist decisions prior to DNA extraction. These models can
be grouped into “Feature Generation” (blue boxes) and “DNA Yield Estimation” (green boxes). Arrows point in the direction of data flow
between models. The feature generation pipeline receives inputs from pre-trained cell segmentation (U-Net) and tumor segmentation (multi-
field-of view ResNet-18) models to generate features used for a DNA Yield Estimator. For samples that are macrodissected, these features are
only computed from the macrodissection area by masking the slides, either by a U-Net-based ink detection (when run on archival slides for
training) or by post-processing the tumor segmentation model output (when running on new slides during inference). The output of the
feature generation pipeline is fed to a regularized linear model to predict the expected DNA yield per slide. During the trial, the predicted
DNA yield per slide is used to estimate the total number of slides needed to achieve the following target yields: 100, 400, 1000 ng. These
predictions, along with the predicted microdissection area, are output to a UI presented to the pathologist during review. B Samples either
receives Traditional (“Trad”) or AI-augmented pathology review (“SmartPath”). In Trad review a pathologist reviewed a slide under a
microscope and estimated the number of slides needed for DNA extraction. Slide scanning was not incorporated into the Trad workflow. In
SmartPath review, slide scanning was incorporated into the workflow immediately after tissue was sliced. Slide scanning triggered an upload
of the image to the cloud, where it was automatically processed by the SmartPath pipeline described in A. At the end of the Trad or Smart
review process the pathologist made a review decision to recommend the number of slides scraped as well as the macrodissection area (if
needed) for DNA mass extraction. Routine NGS proceeded after extraction, including library prep and DNA hybridization steps. If NGS failed at
any step along the way the sample was re-extracted. Four metrics, marked by circled numbers in the diagram, were tracked to measure the
impact of AI-assistance: 1) the number of slides scraped for extraction, 2) the extracted DNA mass, 3) the number of extraction attempts
(referred to as “extraction count”), 4) the time elapsed from 1st extraction to 1st successful DNA sequencing (referred to as T-seq). All re-
extracted samples were reassessed with traditional path review in order to minimize disruption of our existing clinical workflow.
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ensure that such situations were handled smoothly in the inference
pipeline (Section S7).

Target yields for number of slides prediction. The goal of SmartPath is to
recommend the number of scraped slides needed to achieve a DNA yield
between 100–2000 ng. To convert the predicted DNA yield per slide into a
recommendation of how many slides to scrape, we divided a target yield
by the predicted yield per slide and rounded down to the nearest integer.
This target yield is a tunable operating point of the algorithm. During the
trial, the SmartPath system presented the number of slides needed to
achieve a target yield of at least 100, 400, or 1000ng. For details on how
these target yields were selected, see Section S8.
We chose three target yields instead of one to give pathologists more

flexibility. Because the relationship between number of slides scraped and
DNA yield is linear, pathologists can also use the target yields to
interpolate the recommended number of slides if they choose. This design

choice emphasizes the principle of AI-augmented decision making, rather
than AI automation.

Internal model evaluation trial
Trial design. To test the viability of our system in practice, we undertook
an internal trial using clinical CRC samples to evaluate SmartPath
compared to traditional (Trad) pathologist review. Trad and SmartPath
workflows are summarized in Fig. 1B. Sample sizes of 250 SmartPath and
250 Trad samples were determined by power analysis at significance
Level=0.01 and power= 0.8 (Section S9). The internal trial was designed to
be run in tandem with standard clinical workflow, mirroring every step
until pathologist review. Before pathologist review, each FFPE block was
cut into 20 sections and affixed to glass slides. One slide midway through
the levels was stained for H&E and designated for pathologist review, while
the others were designated for scraping. If the tumor was CRC primary and

Fig. 2 Performance of tissue segmentation, cell segmentation, and DNA yield prediction models. A The tumor percent predicted by tissue
segmentation is plotted against the tumor percent visually estimated by pathologists from 334 WSIs. Four pathologists overall reviewed the
samples, though each individual sample was reviewed by only one pathologist. Pearson R is computed, showing modest correlation. High
correlation is not expected as visual estimates of tumor percent are not highly accurate, especially from a single rater. B Predicted total cell
count is plotted against the pathologist-annotated cell count in 320 fields of view sampled from 108 WSIs. Each FOV was annotated by three
pathologists and cell labels were assigned via a consensus voting scheme (Section S1.2). Pearson R is computed, showing relatively strong
correlation. In this case the ground truth is highly accurate, as each cell was annotated by 3 pathologists, and thus strong correlation is
expected. Predictions from the best performing DNA yield prediction linear model (log transform, L1, α= 0.01) strongly correlated to both the
training set (C) and withheld validation set (D). Both axes are log-transformed. Each point represents an extraction attempt and is colored by
macrodissection status (Light gray – macrodissected, dark gray – whole-slide dissected). Note that macrodissected slides tend to have higher
mass per slide, because they tend to have larger surface area.
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met additional inclusion criteria (Table S3), the slides were flagged for trial
enrollment and aggregated separately to avoid mixing with the rest of the
clinical workflow. Enrolled samples were assigned in alternating order to
Trad or SmartPath cohorts and assignments were recorded in a log, aiming
to collect roughly equal numbers per day.
The Trad cohort H&E slides were a control group of samples which

passed through our established pre-extraction workflow whereby a
pathologist estimates tumor percentage by eye, marks a dissection area
on the glass slide if needed, and recommends the number of slides to be
scraped by an extraction technologist. All samples were still reviewed by a
pathologist in a timely manner to not disturb the existing clinical
sequencing workflow. Samples assigned to the Trad cohort were re-
entered into the clinical workflow and path reviewed that same day.
The SmartPath cohort H&E slides were scanned on the Philips Ultra Fast

Scanner (Philips, Eindhoven, The Netherlands) to produce a digitized WSI
at ×40 base magnification level (0.25 µm/pixel). Slide scanning automati-
cally triggered feature generation and DNA yield prediction on the WSI
(Section S10). To minimize interference with existing clinical workflow,
SmartPath-assisted review was conducted the morning after scanning,
although in principle same day review is quite feasible because scanning
and model deployment take only minutes to complete. After pathology
review, the recommended number of slides were scraped, DNA was
extracted (Section S5), and NGS was conducted using the Tempus xT
platform8. This process was repeated daily over the span of several months
until 249 SmartPath and 252 Trad cohort samples were accumulated.
During SmartPath-assisted review, the pathologist viewed a custom-

built UI (Fig. S5) displaying recommendations for macrodissection area and
number of slides needed to achieve at least three possible target DNA
yields of 100, 400, or 1000 ng. The pathologist had the option to accept or
reject model recommendations. If they chose to accept, the desired target
yield was selected in the UI. If they disagreed, they recorded in the trial log
if the rejection was driven by clinical reasoning or model performance. In
cases where the pathologist disagreed with the predicted macrodissection
area, the pathologist drew their own microdissection area. A summary of
the pathologist decisions made during the trial is shown in Table S4.

Internal trial performance evaluation metrics. The impact of AI-assistance
in the trial was evaluated by several metrics from two main categories:
extraction metrics and NGS workflow costs.
Extraction metrics

Percent DNA yield within range: We defined the DNA yield target range
as 100–2000 ng. The minimum of 100 ng was chosen to reflect the
minimum input quantity of DNA requested by most NGS laboratories,
which is between 50–200ng2,3. The maximum of 2000ng was chosen by
collaborating pathologists as a reasonable cutoff indicating surplus of
extracted DNA. The percent of samples below this range (<100 ng) is
referred to as undershoot, and above this range (>2000ng) is referred to
as overshoot.
Number of slides scraped (N slides): This measures the number of slides
scraped for 1st DNA extraction attempt. We did not count slides
scraped for later extraction attempts because additional attempts did
not receive AI-assistance. This metric also excludes any slides scraped
for RNA extractions or scraped after first successful DNA sequencing.
NGS workflow costs
Extraction count: This metric counts the number of extraction attempts
made towards the first DNA sequencing attempt. It excludes extractions
for RNA and extractions made after the first DNA sequencing attempt.

T-seq: DNA extraction-to-sequencing time, defined as the time elapsed
from the first extraction attempt to the first successful DNA sequencing
attempt (Fig. S6). This includes only the time period that can be
influenced by AI-assistance, excluding RNA-sequencing and any
subsequent DNA sequencing. This definition is restricted to the context
of this study and is not reflective of Tempus’ operational
turnaround time.

For each of these metrics, we also present the effect of two effect
modifiers, the tissue area and extraction quality.
Effect Modifiers

Tissue area: Pathologists partially rely on tissue area to estimate how
many slides should be scraped for extraction, where small tissues tend
to have more slides scraped than large tissues. We split the tissue area
at the 50th percentile of the distribution (85.46 mm2) for samples

enrolled into the trial to obtain two groups: large (mean area
285.29 mm2) and small (mean area 18.53 mm2) (Fig. S7A).
Extraction quality: An in-house measure similar to other established
methods32 for evaluating extracted DNA quality. Briefly, extracted
nucleic acid is assessed with a Fragment Analyzer (Advanced Analytical
Technologies, Ames, IA), which produces a distribution of nucleic acid
fragment lengths, measured in base pairs. The fragment length
distribution is split into custom-defined ranges corresponding to short,
intermediate, and long fragments and the amount of the distribution in
each of these ranges is quantified. To produce the extraction quality,
the fragment data is combined with extracted DNA mass and binned
into three quality levels: low, intermediate, or high. Low-quality samples
generally have short fragments and low DNA yield (usually < 90 ng),
while high-quality samples generally have long fragments and high
DNA yield (usually > 400 ng).

Although small tissue samples can have high-quality DNA fragmenta-
tion, for most samples small tissue area correlates with low extraction
quality Fig. S7B).

Internal trial data quality control. Of the 501 samples enrolled into the
trial, 18 were rejected at pathology review due to insufficient tissue, 4 were
erroneously enrolled either with incorrect cancer type or procedure type, 1
had an incorrect indication of number of slides scraped, and 2 were
removed because their sequencing was delayed due to human error
(Table S4). This left 476 samples for the overall analysis (233 Trad, 243
SmartPath). For analysis of T-seq, an additional 18 samples were dropped
(7 Trad, 3.00% of population; 11 SmartPath, 4.53% of population) because
they did not reach DNA sequencing due to failure downstream of
extraction (either at library prep or hybridization steps, see Fig. 1B), and
therefore did not have a defined sequencing time interval, leaving
458 samples (226 Trad, 232 SmartPath).

Statistical analysis of covariates
The FDA guidance for adjustment for clinical covariates in clinical trials
(Docket number FDA-2019-D-0934) advises experimenters to identify the
covariates expected to have an important influence on the primary outcome.
The primary outcomes for the present work are the DNA yield and workflow
costs. DNA yield may depend on sample age, as older samples may suffer
from nucleotide degradation33. It may also depend on the individuals
involved in the extraction (i.e., the pathologist and technicians). The day on
which the sample is extracted could have an impact on workflow turnaround
time due to weekly lab scheduling cycles. We included these sample-level
measures as covariates (Table 1) and also recorded several patient-level
characteristics commonly reported in cancer studies (Table S5). Covariate
imbalance was measured by the chi-squared test computed from
contingency tables. Contingency tables were computed by cross-
tabulating counts for each characteristic and chi-squared tests were
performed in Python 3.7 using scipy.chi2_contingency34.

Analysis of covariance using generalized linear models. An analysis of
covariance (ANCOVA) allows researchers to dissociate contributions of
additional covariates from the treatment to the total variance. For the
present application the treatment variable is the trial cohort (Trad or
SmartPath) and the dependent variables are the following: DNA mass
undershoot boolean (1 if <100 ng, 0 otherwise), number of slides scraped
(N slides), extraction count, and T-seq. Traditional ANCOVA is designed to
run on normally distributed samples assuming linearity and homoscedas-
ticity (constant variance across residuals). However, most of these metrics
are not normally distributed, and thus appropriate distributions were
chosen to model these dependent variables with generalized linear
models (GLMs)35. All ANOVA analyses were performed in R version 0.4.436.
For details on GLM selection see Section S11.

Scaling and encoding of covariates for GLMs: Covariates had to be
appropriately encoded for the analysis. Trial cohort was dummy encoded
as a binary indicator (0 - SmartPath, 1 - Trad). Extraction quality was
numerically encoded as ordinal variables (0, 1, 2). Extraction day-of-week
was encoded numerically from Monday to Sunday as 0–6. Sample age was
log-transformed. Procedure type, pathologist, and extraction tech were
dummy encoded, dropping one category from each to eliminate
correlations. For more justification of these encoding choices see
Section S12.
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Univariate and multivariate GLMs: GLMs were fit only for the subset
of the samples most in need of AI-assistance, namely small tissues with low
extraction quality. Univariate GLMs were initially fit using the sample-level
(Table 1) and patient-level characteristics (Table S5) as independent
variables, but significant effects were not found for any of the patient-level
characteristics. Multivariate models for each metric are built using only
those variables with significant association in univariate tables
(Tables S6–S9). For details on construction of univariate and multivariate
models, see Section S13.

RESULTS
Impact on extraction metrics
AI-assistance improved DNA yield within a target range of
100–2000 ng. The fraction of samples within the target range
was significantly improved for the SmartPath cohort (Trad=
0.56+/− 0.064 vs SmartPath= 0.70+/− 0.058, P= 0.005, a 25%
increase, Fig. 3A). This was primarily due to limiting over-
extraction, as the fraction of samples with mass that overshot
the desired range was also significantly improved (Trad= 0.32+/−
0.06 vs SmartPath= 0.18+/− 0.049, P= 0.001, a 14% decrease,
Fig. 3A). The fraction of samples that undershot the desired range
was not improved overall.
Tissue characteristics, such as tissue area and DNA fragment

quality, are known to impact tissue extraction19,37. We confirm
that these effects exist in our data as well. In Fig. 3B, we subset the
data into large and small tissue area groups (defined in Methods),
revealing that reduction in overshoot was restricted to large
tissues. When further subset by extraction quality (defined in
Methods), the reduced overshoot effect was primarily seen in
large tissues with high extraction quality (Fig. 3C, top). Therefore,
AI-assistance helped pathologists preserve tissue use for samples
that were already likely to succeed NGS. Subsetting also revealed a
trend in reduction of the undershoot fraction for small tissues with
low extraction quality (Fig. 3C, bottom). Although the difference
was not significant (chi-squared P= 0.088), there were only
50 samples in this subset and the sample size may be
underpowered to measure the effect. As discussed in subsequent
sections, however, subsetting by small tissue area and low
extraction quality showed significant improvements in other
metrics.

AI-assistance fosters more efficient use of tissue slides. Across all
CRC samples from the trial (n= 476), DNA yields <100 ng almost
always resulted in multiple extraction attempts (Fig. S10). These
results demonstrate the importance of better metrics for scraping
parameters, as more slides should be scraped initially when lower
DNA yields are expected in order to avoid repeating extraction.
While NGS laboratories typically scrape 5–10 FFPE slides per
extraction38, our AI model recommended a broader distribution of
slides for scraping compared with the Trad cohort (Fig. 4A). Large
tissues in the SmartPath cohort usually had only one or two slides
scraped, thus conserving tissue in this subset. On the other hand,
small tissues in the SmartPath cohort usually had >10 slides
scraped (Fig. 4A, B). Therefore, while the mean number of slides
was not significantly different between SmartPath and Trad
cohorts across all tissue sizes (Fig. 4B), slides in the SmartPath
cohort were used more efficiently. However, because the
distribution of N slides was not normal, the median should also
be considered. While the overall mean number of slides scraped
per sample in the SmartPath cohort was slightly higher than in the
Trad cohort (7.7 ± 5.91 SmartPath vs 7.62 ± 3.0 Trad), the median
in the SmartPath cohort was lower than in the Trad cohort (6
SmartPath vs 10 Trad).
Further subsetting the data by extraction quality also shows

that SmartPath recommended fewer slides for large tissues
regardless of extraction quality (Fig. 4C, low quality P= 0.07,
intermediate quality P«0.01, and high quality P«0.01). An opposite
trend was observed for small tissues with low and intermediate
extraction quality, where more slides were recommended in the
SmartPath cohort, although there was no significant difference
(Fig. 4C bottom). For the subset of small samples with high
extraction quality, the SmartPath and Trad cohort means were
very similar. This could be desirable as high-quality samples are
already likely to succeed NGS.

Impact of AI-assistance on NGS workflow costs
Number of extraction attempts is similar between cohorts. The
number of extraction attempts is an important metric for workflow

Table 1. Sample-level characteristics of evaluation trial dataset.

Trad (N= 233) SmartPath
(N= 243)

Chi-sq.
or t-
test p-
value

Sample age at
extraction (days)a

0.06

Median 37.57 47.58

Range 5.05–2443.01 5.58–3205.58

Procedure Type 0.19

Biopsy
(unspecified)

68 93

Needle Biopsy 53 42

Resection 112 108

Dissection 0.73

Macrodissected 119 130

Whole slide 114 115

Pathologist < 1e-
60

A 100 1

B 47 205

C 36 0

D 24 4

E 23 1

F 3 34

Extraction day of
week

0.0008

Monday 23 26

Tuesday 42 17

Wednesday 50 60

Thursday 36 37

Friday 30 58

Saturday 45 45

Sunday 7 2

Sample characteristics with high cardinality (only showing N unique
values)

Tissue site 38 (unique) 41 (unique) 0.38

Extraction tech 18 (unique) 24 (unique) 0.0001
aSample age is defined as the delta between time of first extraction
attempt and time of sample collection. Because sample age is a continuous
variable, a chi-squared test could not be performed. Instead, a t-test was
performed on the log-transformed data.
Counts per category are shown for each characteristic grouped by Trad
and Smart cohorts, except for characteristics with high cardinality which
only show the number of unique categories. These counts define a
contingency table for each covariate. A chi-squared test was run on each
contingency table to obtain p-values assessing a significant difference
between Trad and Smart cohorts. Sample-level data had no data
missingness, and in some cases showed significant imbalance, as
evidenced by the small chi-squared test p-values.
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improvement because re-extractions are financially and tempo-
rally costly. The distributions of N extractions for SmartPath and
Trad cohorts are shown in Fig. 5A. As these distributions were not
normal, they are represented with Poisson distributions for
calculation of statistics (see Methods). The distributions are
dominated by cases with only one extraction, which is already
the optimum. Overall, no significant difference in mean number of
extractions per sample was observed between the SmartPath and
Trad cohorts Fig. 5B. Grouping by extraction quality reveals that all
high-quality samples were already performing at optimum for this
metric, with only one extraction per sample, and intermediate-
quality samples were performing near optimum. On the other
hand, the SmartPath cohort had a decreased mean extraction
count for low-quality samples, albeit not significant (Poisson rate
ratio P= 0.212).
Further subsetting by tissue area reveals that the decrease in

mean extraction count per sample approaches significance
(Poisson rate ratio P= 0.052) for low-quality samples with small
tissue area (Fig. 5C, bottom). This result suggests that AI-assistance
may be useful in preventing re-extractions for low-quality samples
with small tissue area, which are the samples most in need of
improvement. However, there was a significant increase in mean
extraction count for large intermediate-quality samples in the
SmartPath cohort (Poisson rate ratio P= 0.017), caused by four

samples which had >1 extraction count. The higher extraction
count may be partly due to the age of these samples. SmartPath
cohort samples were on average older than the Trad cohort
(Fig. S12A), and for large samples in the SmartPath cohort, those
with intermediate quality were also the oldest (Fig. S12B). Older
samples correlate with higher extraction count (Fig. S12D), likely
because they tend to be more degraded.

AI-assistance reduced DNA sequencing time for low quality samples
with small tissue areas. Figure 6A shows the distribution of T-seq
in the SmartPath and Trad cohorts. Similar to extraction counts,
there was no significant difference in the mean T-seq between the
two cohorts (Fig. 6B; Trad 3.74 ± 1.67 days, SmartPath
3.89 ± 1.67 days). We expect T-seq to follow a similar trend as
extraction count because they are strongly correlated (Fig. S11).
High-quality samples showed almost no difference in T-seq
between cohorts, a reflection of the fact that extraction count is
already optimal for high-quality samples. Intermediate quality
samples showed a significant increase (P= 0.018) for the SmartPath
cohort, likely due to the same samples that drove up extraction
count for this group. However, when subset by tissue area the T-seq
for small low-quality samples was almost 2 days shorter in the
SmartPath cohort compared with Trad (Fig. 6C, bottom; Trad
6.90 ± 2.77 days, SmartPath 4.97 ± 2.06 days, P= 0.025).

Fig. 3 Fraction of samples with DNA mass in target range is significantly increased using AI assistance. A The fraction of samples reaching
the target (100–2000 ng), undershoot (<100 ng), or overshoot (>2000ng) DNA mass upon first extraction compared between SmartPath and
Trad cohorts. Comparisons were then stratified by B tissue size and C extraction quality, where seven samples were excluded due to lack of
extraction quality data. To compute statistics, each sample was assigned 1 or 0 whether it was inside or outside the indicated mass range.
Error bars are 95% confidence intervals. Significance was determined by a chi-squared test for binary variables performed on the contingency
table of counts split by Trad and SmartPath cohorts.
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Univariate analysis of covariates on full trial dataset
To determine if the effects observed were due entirely to the
experimental condition (SmartPath vs. Trad) alone, we considered
covariates of the study as detailed in Table 1. Despite an attempt
to randomize samples by alternating assignment to SmartPath
and Trad cohorts each day (see Methods), imbalances were
detected. Moderate imbalance was detected for sample age (chi-
squared P= 0.06), while strong imbalance was detected for
pathologist (chi-squared P < 1e-60), extraction day-of-week (chi-
squared P= 0.0008), and extraction tech (chi-squared P= 0.0001).
While dataset imbalance in covariates suggests other sources of

variability besides the experimental condition, it alone does not
prove that they impacted the dependent metrics. With univariate
GLMs (see Methods), we quantified the correlation each covariate
had with the following four trial metrics: DNA Mass undershoot
boolean (True if <100 ng), number of slides scraped, extraction

counts, and T-seq. Summary statistics of univariate GLMs for each
covariate are presented in Tables S6–S9.
For three of the trial metrics, undershoot Boolean, number of

slides scraped, and extraction count (Tables S6–S8), the extraction
quality (P < 2e-16, P= 5.96e-05, and P < 2e-16, respectively) and
tissue area (P= 4.01e-06, P < 2e-16, and P= 2.78e-06, respectively)
were more predictive than any of the covariates. These same three
metrics also were significantly correlated with procedure type.
This is expected, as procedure type is strongly correlated with
tissue area, where needle biopsies tend to have much smaller area
than resections.
However, for T-seq (Table S9) the extraction day-of-week was

the most predictive variable (P < 2e-16). This is a known effect,
where sequencing times for samples extracted later in the week
tend to be longer than samples extracted earlier in the week
(Fig. S13B, see Discussion). Despite the randomized trial design,

Fig. 4 AI assistance offers more nuanced suggestions of number of slides to scrape for extraction. A Distribution of N slides scraped
plotted for all samples (left), only large tissues (middle), and only small tissues (right). Without AI-assistance, pathologists tended to
recommend either 5 or 10 slides for scraping (Trad, orange), but with AI-assistance the distribution was much broader (SmartPath, blue).
SmartPath distribution is shifted towards fewer slides for large tissues and more slides for small tissues. B Box plots comparing numbers of
slides scraped for SmartPath and Trad cohorts grouped by large and small tissues. P-values were computed from t-tests on log-transformed
data assuming unequal variance. White dots - mean. Horizontal black line - median C Truncated violin plots comparing number of sides
scraped between SmartPath and Trad cohorts, grouped by large (top) and small (bottom) tissues and by extraction quality. Back boxes −25%
and 75% percentiles. White dots –medians. Samples that did not have recorded numbers of slides scraped were dropped. P-values for Welch’s
two-sided t-test assuming unequal variance are displayed above each group. Bimodal distributions for the Trad cohort (orange) correspond to
5 and 10 slides.

B.L. Osinski et al.

8

Modern Pathology



samples in the SmartPath cohort tended to be extracted later in
the week than samples in the Trad cohort (Fig. S13A).
For all metrics except for N slides, the extraction tech group

univariate GLMs showed significance (P < 0.05). Although this
variable has high cardinality (25 categories), the Akaike Informa-
tion Criterion (AIC) in these cases was lower than some of the
other variables (Tables S6–S8), suggesting that these were not
random correlations. Imbalance in the extraction tech group was
also meant to be eliminated by trial design but persisted despite
our efforts.
Only one of the metrics, N slides, was significantly predicted by

sample age. None of the metrics had strong correlation with
pathologist.

Multivariate analysis of covariates for subset of samples with
small tissue area and low extraction quality
Here we investigate the impact these covariates had on the
main effect of the experimental variable, the trial cohort. In
Figs. 3–6 we identified that AI-assistance was most effective for
samples with small tissue areas and low extraction quality. As
this is the most interesting subset of samples, we restricted the
following multivariate analysis to this subset (N= 50). For
modeling each outcome metric, we chose only those covariates
significantly associated (P < 0.05) with the outcome metrics in
the univariate analysis (Tables S6–S9). We excluded procedure
type, as it is already strongly correlated with tissue area and no
surgical resections are present in this subset. We also excluded
the extraction tech group as this variable has very high
cardinality (25 categories) relative to the number of samples in
this subset.
To measure the influence of these covariates on the main effect

of AI-assistance, we compared a univariate GLM using trial cohort
as the independent variable, to the multivariate GLMs for each
outcome metric (see Methods). In the interest of brevity and focus,

we limited the multivariate analysis to only 4 outcome metrics,
dropping the target and overshoot fractions from the analysis.
Summary statistics of these GLMs are shown in Table 2.
For the small tissue area and low extraction quality data subset,

the trial cohort alone was significantly predictive for both
extraction count and T-seq (P= 0.049 and 0.026, respectively).
The other two metrics, undershoot and N slides, had univariate
associations with trial cohort approaching significance (P= 0.055
and 0.075, respectively). In all outcome metrics, the inclusion of
covariates in multivariate GLMs raised the trial cohort p-values,
suggesting that the main effect can be partially explained by the
covariates. However, the increase in trial cohort p-value was
moderate.
Inclusion of covariates increased the AIC for multivariate GLMs

of undershoot from 54.57 to 55.04 and N slides from 65.52 to
74.11, indicating that covariates carry little additional information
about these metrics, adding complexity without proportionally
improving the fit. For both NGS workflow metrics, though, the AIC
was reduced (extraction count: from 120.21 to 118.91, T-seq: from
51.90 to 45.73), indicating that the covariates improved the model
without adding unnecessary complexity.
The only significantly predictive covariate in the multivariate

GLMs was extraction day-of-week, which strongly associated with
T-seq (P= 0.006). The correlation of extraction day-of-week with
T-seq is a known effect in our NGS laboratory (Fig. S13). Although
the cohort imbalance in day-of-week was meant to be eliminated
by alternating assignment of samples to SmartPath and Trad
cohorts each day (see Methods), unfortunately the imbalance
persisted (Table 1). Overall, the multivariate analysis shows that
the covariates considered here have a measurable impact on the
main effect of trial cohort. The adjusted effect of trial cohort is
weaker upon inclusion of covariates; however it is difficult to
ascertain if this fully explains the main effect as the main effect is
itself underpowered (N= 50). Future trials of this tool should

Fig. 5 Number of extractions needed to reach DNA sequencing. A The numbers of extraction attempts needed to reach DNA sequencing
are counted for SmartPath and Trad cohorts. Only 4 samples in the total dataset had extraction count=4, and only one had extraction
count=5. B Mean number of extractions grouped by extraction quality. Error bars are 95% confidence intervals produced with 1000
bootstraps. High-quality samples have no error bars because they are already at optimum, with only one extraction per sample, regardless of
cohort. To compute p-values, Poisson distributions were fit to the zeroed distributions (see Section S11) of SmartPath and Trad cohorts and a
test was performed to assess if the ratio of the two Poisson rates is statistically different from 1. C Same as B but grouped by large and small
tissues.
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ensure that sufficiently high numbers of samples are available in
the small tissue and low extraction quality regimes and should
more rigorously control for covariate imbalances.

DISCUSSION
Here, we developed SmartPath, a computer vision tool to assist
pathologists in determining NGS tissue input parameters, and
tested it in a real-world clinical setting. Compared to the group
that received traditional pathology review, AI-assistance produced
significantly more DNA yields falling within a target range of
100–2000 ng. The AI-assisted model also improved tissue steward-
ship by recommending scraping of more slides for samples with
small tissue areas, likely preventing some re-extractions, but fewer
slides for samples with large tissue area.
While scraping more slides for small tissues may seem counter

to tissue stewardship, underpredicting could result in an
insufficient yield, leading to re-extraction which is a further waste
of tissue. There is a trade-off between initial tissue use and
prevention of re-extraction. Our model design intention was to
bias towards preventing re-extraction, but evidently it was not
biased enough as overall undershoot fraction was not reduced in
the SmartPath cohort. In retrospect, target yields of the model
could have been tuned even higher to improve the undershoot
fraction at the expense of the overshoot fraction. This was
explored in a simulation (Fig. S9) which suggests that, had we
scraped 1.4x more slides (scaling the target yields from 100, 400,
1000 to 140ng, 560, 1400 ng) the undershoot fraction for the
SmartPath cohort could have dropped below that of the Trad
cohort, while still maintaining a reduction in overshoot fraction.
During the trial, the reviewing pathologists also noted that higher
target yields would have been advantageous, and 82% of their

selected target yields were for the highest available yield, 1000 ng
(Table S4).
For the two NGS workflow costs, the extraction count and T-seq,

no significant difference was found between the full populations
of SmartPath and Trad cohorts, but improvements were seen in
the subset of small samples with degraded DNA quality. It is
known that NGS fails more often for smaller, poor-fragmentation-
quality samples19,37, and pathologists will attempt to reject such
samples for insufficient tissue. Notably, the SmartPath cohort had
only 2 samples rejected for insufficient tissue, while the Trad
cohort had 16, because pathologists were willing to observe
SmartPath predictions before rejecting a sample (Table S4).
Despite including samples in SmartPath review that likely would
have been rejected in Trad review, the mean extraction count for
small, low-quality samples was in fact reduced (albeit not
statistically significant, Fig. 5C). Additionally, we observed a
significant reduction in T-seq for small, low-quality samples
(Fig. 6C). Furthermore, the subset of high-quality samples had
only one extraction attempt regardless of SmartPath or Trad
treatment (Fig. 5B), which is already optimal, so the extraction
count could not be further improved for these samples. This
subset also represented most of the samples in the entire trial
(only ~13% were low quality). Therefore, lack of reduced NGS
workflow costs in the full population is largely due to over-
representation of high fragmentation quality samples in our
cohort.
Colorectal cancer was chosen for the trial for internal workflow

considerations, but we expect that the present algorithm can be
generalized to other cancer types by replacing the underlying
tissue and cell segmentation models with tissue-specific models
already in existence. Other cancer types, such as non-small cell
lung cancer and especially pancreatic cancer, have higher rates of

Fig. 6 Mean time to first DNA sequencing of SmartPath cohort relative to Trad cohort. A Distribution of time to first DNA sequencing (T-
seq) for all samples in the SmartPath and Trad cohorts. B Time from first extraction to first DNA sequencing was measured for SmartPath and
Trad cohorts. The plot shows the mean T-seq for SmartPath and Trad cohorts for all samples (left) as well grouped by extraction quality (low,
intermediate, high). Error bars are the average of the 5–95% confidence intervals of Trad and SmartPath cohorts. C Same as B but grouped by
large and small tissues. Significance between the cohort means was assessed by performing t-tests on the log-transformed T-seq.
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low-fragmentation-quality samples (Fig. S15) and therefore may
benefit even more from the AI-augmented pathology review
system, although additional research must be conducted to
determine if this is the case.
The present work does not evaluate the impact of SmartPath on

genetic variant calling because its scope is restricted to evaluation
of a workflow improvement tool. However, future applications
could conceivably improve accuracy of variant calling by
recommending tissue samples with optimized DNA yield and
tumor enrichment. To evaluate such a system, a study could be
designed where consecutive sections from the same samples are
evenly split between SmartPath and control groups, and genetic
variants between groups are compared.
Proper randomization is necessary to eliminate all biases in

trials, but for many real-world trials like ours, this is not possible
due to external constraints. Future tissue recommendation models
could improve upon the current work by taking these sources of
bias into account as variables in the model itself and/or explicitly
eliminating these effects through trial design. One bias identified
was the strong influence of extraction day-of-week on T-seq, likely
due to weekly batch effects and staffing cycles which cause
sequencing times to be longer for samples extracted later in the
week. This resembles a well-documented weekly phenomenon in
healthcare, termed the “weekend effect”39. The trial also took
place in Aug-Dec 2020 during the lockdown period of the COVID-
19 epidemic, and thus effects due to limited personnel were likely
exaggerated. This bias was meant to be eliminated by the trial
design by enrolling similar numbers of samples into SmartPath
and Trad cohorts per day, but multivariate analysis showed that
the AI-assistance effect was reduced after inclusion of extraction
day-of-week as a predictor (Table 2).
Sample age has a known effect on FFPE sample extraction

success. Evidence suggests that samples >7 years old are
unsuitable for NGS33; however, much older samples have been
successfully sequenced40. Exclusion of older samples can nega-
tively impact patients’ lives, so our laboratory does not reject
samples for sequencing due to old age. By chance, the SmartPath
cohort samples were generally older than Trad samples (Fig. S12),
and therefore a bias towards sequencing failure could have been
introduced for the SmartPath cohort.
Imbalance was also detected when treating pathologist as a

covariate. The SmartPath cohort was mostly reviewed by one
pathologist who was trained to use the UI at the start of the trial.
This was an operational constraint due to limited resources that
were split between normal lab operation and conducting this trial.

Our top priority was not to disturb our existing NGS clinical
workflow. Despite this imbalance, the pathologist identity did not
strongly associate with any of the outcome metrics (Table 2). In
fact, the mean values of the outcome metrics were similar
between the two pathologists that reviewed the largest number
of SmartPath and Trad cohort samples (Fig. S14).
Several improvements to the existing DNA yield prediction

strategy could also be made. Although feature extraction relied on
neural networks, DNA yield prediction was accomplished with a
relatively simple modeling approach using a regularized linear
model on extracted features (primarily cell counts). This was done
because the extracted features are easily interpretable to
pathologists and because the relationship between number of
slides and extracted DNA yield is inherently linear. However, future
approaches may improve results by predicting DNA yield directly
with a neural network.
While the present model relies mostly on extrinsic features such

as cell counts and tumor area for correlation with tumor yields,
more work could be done to investigate intrinsic features, such as
slide preparation quality, and possibly even fragmentation quality
with imaging means. An imaging-based predictor could poten-
tially be trained to provide a prior on sample quality. Training data
for an imaging-based quality predictor could come from a
combination of established DNA quality metrics, including
fragment analyzer data, qPCR assays to measure the amount of
amplifiable DNA in a sample, the DNA Integrity Number, and
Genomic Quality Number41.
Furthermore, the trial only incorporated AI into the initial

screening of the sample but did not incorporate pathologist
feedback for updating predictions, primarily to avoid disturbing
the existing clinical workflow of our NGS laboratory. We envision
a future pathologist-in-the-loop application, where pathologists
may edit macrodissection areas and receive updated predictions
in real time. Workflow improvements could also be made to
maximize efficiency. For example, a model combining imaging-
based measures with clinical data could flag samples up front
that may need AI-assistance, while passing samples with high
likelihood to succeed in NGS. Future models may also be trained
to predict not only DNA yield, but RNA yield and library-prep
success.
The SmartPath system was designed to support an existing NGS

pipeline, which uses traditional scraping-based macrodissection to
extract tissue within pathologist-defined tumor regions. A caveat
of scraping-based macrodissection is that it may not always enrich
the tumor percentage due to heterogeneity of cell types within

Table 2. Statistics for covariates fit to trial metrics in samples with small tissue area and low extraction quality (N= 50).

Outcome Metric Univariate GLM (trial
cohort only)

Multivariate GLM (trial cohort+covariates)

AICb p-value AICb Trial Cohort p-value Covariatec Covariate p-value

undershoot (True if <100 ng) 54.57 0.055 55.04 0.072 Day-of-week 0.22

N slides scraped 65.52 0.075 74.11 0.14 Sample age 0.84

Pathologistd 0.37

Extraction count 120.21 0.049a 118.91 0.057 Day-of-week 0.12

Sample age 0.19

T-seq 51.90 0.026a 45.73 0.062 Day-of-week 0.006a

Pathologistd 0.11
aIndicates p-value significance below 0.05.
bAIC - Akaike Information Criterion. The AIC is a fitness parameter that trades off the complexity of a model with how well the model fits the data. It can be
interpreted as a measure of model parsimony, where lower value indicates a more parsimonious model. It is a relative measure, and thus can only be
compared between models for a given metric.
cCovariates are chosen based on significant association in the univariate analysis, hence not every outcome metric is modeled with the same covariates.
dBecause Pathologist is a categorical variable and thus has p-values for each category, only the most significant p-value is shown.
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tumor areas. Future applications of SmartPath could integrate with
laser-capture microdissection systems to guide single-cell-based
microdissection20.
By addressing these limitations, future applications of

SmartPath may provide a viable alternative to manual estima-
tion by accurately predicting tissue quantities needed for
adequate DNA yield. SmartPath could be useful in circumstances
where access to pathologists is scarce, or for laboratories
processing large volumes of tissue. Coupled with a digital slide
viewer, such a system can support fully remote pathology review
of digitized WSIs, allowing NGS laboratories to widen their
access to reviewing pathologists. Integration of SmartPath with
automated microdissection systems15,16,19 could allow for tissue
extraction workflows which are almost entirely automated, with
a pathologist needed only to approve or modify input
parameters, and potentially be economically and clinically
beneficial for NGS laboratories.
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