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Abstract

Objectives. Advances in immunotherapy by blocking TNF have remarkably improved treatment outcomes for

Rheumatoid arthritis (RA) patients. Although treatment specifically targets TNF, the downstream mechanisms of im-

mune suppression are not completely understood. The aim of this study was to detect biomarkers and expression

signatures of treatment response to TNF inhibition.

Methods. Peripheral blood mononuclear cells (PBMCs) from 39 female patients were collected before anti-TNF

treatment initiation (day 0) and after 3 months. The study cohort included patients previously treated with MTX who

failed to respond adequately. Response to treatment was defined based on the EULAR criteria and classified 23

patients as responders and 16 as non-responders. We investigated differences in gene expression in PBMCs, the

proportion of cell types and cell phenotypes in peripheral blood using flow cytometry and the level of proteins in

plasma. Finally, we used machine learning models to predict non-response to anti-TNF treatment.

Results. The gene expression analysis in baseline samples revealed notably higher expression of the gene EPPK1

in future responders. We detected the suppression of genes and proteins following treatment, including suppressed

expression of the T cell inhibitor gene CHI3L1 and its protein YKL-40. The gene expression results were replicated

in an independent cohort. Finally, machine learning models mainly based on transcriptomic data showed high pre-

dictive utility in classifying non-response to anti-TNF treatment in RA.

Conclusions. Our integrative multi-omics analyses identified new biomarkers for the prediction of response, found

pathways influenced by treatment and suggested new predictive models of anti-TNF treatment in RA patients.

Key words: rheumatoid arthritis, anti-TNF, methotrexate, treatment response, inflammation, peripheral blood
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Rheumatology key messages

. Expression of the CHI3L1 gene and its protein YKL-40, which regulates T cell activation, was suppressed in
rheumatoid arthritis responders following anti-TNF treatment.

. Machine learning models using transcriptomic data at baseline showed high predictive utility in classifying
rheumatoid arthritis response to future anti-TNF treatment.
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Introduction

Rheumatoid arthritis is a systemic autoimmune disease

characterized by chronic inflammation in symmetric

joints that leads to pain and eventually bone destruction.

RA is one of the most common autoimmune diseases,

affecting �0.5–1% of the world’s population [1].

Currently there is no cure for RA, but several DMARDs

are used to treat patients with the disease. During a

successful treatment course, inflammation in the joints

decreases, resulting in disease remission or low disease

activity [2, 3]. Methotrexate (MTX) is recommended as

the first-line treatment of early RA. However, at least

30% of patients do not respond to the treatment and

significant disease activity remains [4, 5]. The patients

who do not respond to first-line treatment are recom-

mended for additional treatment, in most cases with

TNF inhibitors. TNF is a pro-inflammatory cytokine

secreted mainly by monocytes and macrophages, but

also by other immune and non-immune cells, including

fibroblasts and endothelial cells, involved in systemic

inflammation.

Anti-TNF therapy has been used to treat RA for

2 decades, but one-third of treated patients do not re-

spond or have a poor response [6]. Hence prediction of

treatment efficacy before initiating treatment would help

patients to start effective treatment and decrease the

number of adverse effects.

In the present study, we selected a well-characterized

cohort that allowed us to investigate gene expression

differences in peripheral blood mononuclear cells

(PBMCs), the proportion of different cell types and cell

phenotypes in peripheral blood measured using flow

cytometry and the level of several proteins in serum. In

addition, we developed models using machine learning

techniques to predict non-response for the anti-TNF

treatment.

Materials and methods

Patient cohort

In this study, patient samples were obtained from the

COMBINE cohort, which includes individuals treated

with MTX (89 patients), anti-TNF drugs (59 patients) or a

second biologic agent (31 patients) and healthy controls

(60 individuals) [7]. Healthy controls were recruited from

the Swedish Blood Centre in Uppsala and were closely

matched for age and sex with the patient groups. The

patients who did not respond adequately to MTX treat-

ment (based on the judgment of a local rheumatologist)

were prescribed anti-TNF treatment in combination with

MTX. Patients included in this study donated blood at

the clinic before starting anti-TNF therapy and at the

follow-up visit after approximately 3 months. Clinical

assessments and routine blood sampling were per-

formed at both visits and were used to calculate the 28-

joint DAS with CRP (DAS28-CRP) [8]. Of the 59 patients

who started anti-TNF therapy, 3 dropped out before the

scheduled 3 month visit and therefore lacked clinical as-

sessment. For RNA-seq analysis, we did not include pa-

tient samples with low-quality or low-quantity RNA

samples. Due to the small number of male non-

responders in our study cohort, we included only female

patients (n¼ 39) in our study (Fig. 1A). The clinical and

demographic variables at baseline are shown in Table 1.

Response measures

We used the EULAR response criteria to classify patient

response to treatment [9, 10]. In our analysis we consid-

ered good and moderate EULAR responders as ‘res-

ponders’ and compared these with the EULAR ‘non-

responders’.

RNA sequencing

RNA was extracted from PBMCs, freshly isolated using

CPT tubes (BD Biosciences, Franklin Lakes, NJ, USA)

and sequenced as previously described [7]. Of the 39

female RA patients, we obtained high-quality RNA-seq

data from 28 patients at baseline (responders, 10; mod-

erate responders, 9; non-responders, 9) and 32 patients

after treatment (responders, 11; moderate responders,

9; non-responders, 12), giving a total of 25 patients with

paired RNA-seq samples (both anti-TNF naı̈ve and

treated) (Fig. 1A). The sequencing reads were trimmed

using Trim Galore (http://www.bioinformatics.babraham.

ac.uk/projects/trim_galore/) and then mapped to the

GRCh38 human reference genome; subsequent gene

counts were generated using STAR version 2.5.3a [11].

The detailed method for flow cytometry, protein data,

machine learning and statistical models used for the

analyses are provided in the Supplementary Data S1,

available at Rheumatology online.

Results

Gene expression signatures of response to anti-TNF
treatment at baseline

The gene expression analysis identified 59 differentially

expressed genes between future responders and non-

responders, but most of these genes achieved signifi-

cance [false discovery rate (FDR) �0.1] due to a single

outlier sample showing a different gene expression pro-

file (Supplementary Fig. S1A and B, available at

Rheumatology online). Therefore we decided to exclude

this patient sample (both anti-TNF naı̈ve and treated)

and a subsequent analysis (without the outlier sample)

yielded 192 differentially expressed genes (FDR �0.1),

including 103 genes with higher expression and 89

genes with lower expression, in future responders. The

top differentially expressed genes are presented in Fig.

1B (also see Table 2 and Supplementary Table S1A,

available at Rheumatology online).

To assess possible heterogeneity and detect consistent

differential gene expression, we employed a leave-one-out

(LOO) approach, where one sample is removed in each
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iteration and the association analysis is repeated. The genes

were considered if they meet statistical significance (FDR

<0.1) in each iteration. The LOO approach yielded two

genes, EPPK1 and FOSB, with higher expression in res-

ponders in all 28 iterations (Table 2). An additional five

genes, EGR1, EGR2, BCL6-AS1, IGLV10-54 and IGKV1D-

39, showed significance (FDR <0.1) in 27 LOO iterations.

The genes EGR1, EGR2 and BCL6-AS1 had higher expres-

sion in future responders, whereas immunoglobulin light

chain genes IGLV10-54 and IKV1D-39 had lower expression

in future responders. The genes EPPK1, BCL6-AS1 and

CDC20 showed a clear expression difference between res-

ponders and non-responders (Fig. 1C). We also noticed that

six immunoglobulin light chain genes (IGLV10-54, IGKV1D-

39, IGKV3-20, IGLV3-1, IGKV1-17 and IGKV2-24) and one

heavy chain gene (IGHV5-10-1) had lower expression in res-

ponders compared with non-responders; however, these

genes did not pass the LOO analysis criteria (Fig. 1B).

The gene set enrichment analysis based on ranking of

differentially expressed genes (log2 fold change) identi-

fied a total of 127 regulated pathways (Supplementary

Table S1B, available at Rheumatology online) between

FIG. 1 (A) The design of the current study showing the number of patient samples used for the cross-sectional and

longitudinal analysis of RNA-Seq, flow cytometry and protein data analysis. (B) Volcano plot representation of differ-

entially expressed genes in PBMCs between future responders and non-responders before anti-TNF treatment. The

top regulated genes are marked in blue (upregulated genes) and red (downregulated genes). The vertical lines corres-

pond to a log2 fold change of 1 (genes are represented in black) and the horizontal line represents a P-value of

0.001. (C) The box plot shows normalized log2 expression values for the differentially expressed genes EPPK1,

BCL6-AS1 and CDC20 in PBMCs before treatment

TABLE 1 Baseline demographic characteristics of female RA patients treated with anti-TNF

Characteristics Values

Age, years, median (range) 57 (19–76)

Swedish, n (%) 34 (82.9)

Current smoker, n (%) 11 (28.2)
HLA-DR shared epitope positive, n (%) 26 (66.6)

ACPA positive, n (%) 29 (74.3)
Bone erosions, n (%) 18 (46.1)
DAS28, median (range) 4.79 (2.49–7.48)

28-joint swollen joint count, median (range) 6 (1–25)
28-joint tender joint count, median (range) 8 (1–28)
Prednisolone treatment, n (%) 23 (58.9)

Anti-TNF drugs, n
Infliximab 16

Etanercept 8
Adalimumab 11
Golimumab 2

Certolizumab 2
CRP, mg/L, median (range) 2 (0.5–59)

Patient global health assessment, median (range) 50 (5–100)
HAQ physical function, median (range) 0.75 (0–2.6)
Health professional global health assessment, median (range) 45 (11–82)
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response groups. The pathway analyses reveal that res-

ponders were preferentially characterized by higher ex-

pression of genes involved in graft-versus-host disease,

antigen processing and presentation and the AP-1 tran-

scription factor network, whereas non-responders were

characterized by higher expression of genes involved in

cell cycle pathways—mainly cell cycle mitotic activity

and cell cycle checkpoints. The top 15 most upregu-

lated and downregulated pathways are presented in

Supplementary Fig. S2A and Supplementary Table S1B,

available at Rheumatology online.

Effect on gene expression in PBMCs during anti-
TNF treatment

Since biological and technical confounders between indi-

viduals may significantly affect downstream analyses, using

paired samples before and after treatment is the preferable

approach to address changes related to the treatment. We

analysed treatment effects on gene expression using 25

paired RA patients without considering the response. The

analysis identified 25 differentially expressed genes, of

which 14 genes were suppressed and 11 showed a slight

increase in expression (Supplementary Table S1C, avail-

able at Rheumatology online). The genes BHLHE40, which

controls cytokine production by T cells, and CHI3L1,

chitinase-3-like protein, were suppressed during treatment,

whereas the B cell novel protein 1 (alias FAM129C) and

TTC21A were induced by treatment (Fig. 2A). The pathway

analysis of differentially expressed genes did not show any

enrichment of gene sets, but when using a less conserva-

tive threshold of FDR <0.1, we detected 114 gene sets

regulated during the treatment (Supplementary Table S1D,

available at Rheumatology online). Induced genes are sig-

nificantly enriched for genes involved in RNA and protein

metabolism and interferon signalling, whereas suppressed

genes are predominantly enriched for genes involved in

haemostasis and signalling by G protein-coupled receptor

(GPCR; Fig. 2B).

Distinct gene expression signatures for response
during anti-TNF treatment

The trajectory of gene expression changes may correl-

ate with measured clinical outcomes. Therefore we sep-

arately investigated the transcriptional changes in paired

samples of responders (n¼ 17) and non-responders

(n¼8) to anti-TNF treatment. Our analysis identified five

genes regulated in responders, whereas no significant

regulation was identified in non-responders. Of the five

regulated genes in responders, CXCR2, MPO, MYADM

and TNFAIP6 were suppressed by treatment, whereas

TABLE 2 Differentially expressed genes in future responders and non-responders before anti-TNF treatment

Genes Description Log2 fold change P-value Iteration count

FOSB FosB proto-oncogene, AP-1 tran-
scription factor subunit

3.88 6.25E-09 28

EPPK1 Epiplakin 1 1.89 6.06E-07 28

EGR2 Early growth response 2 3.98 1.63E-07 27
BCL6-AS1 BCL6 antisense 1 2.14 2.95E-07 27

EGR1 Early growth response 1 3.68 5.91E-06 27
IGLV10-54 Immunoglobulin lambda variable 10-

54
�2.73 5.46E-06 27

IGKV1D-39 Immunoglobulin kappa variable 1D-
39

�2.68 2.13E-05 27

PDIA4 Protein disulfide isomerase family A
member 4

�0.45 5.59E-06 26

HSP90B1 Heat shock protein 90 kDa beta
member 1

�0.60 1.17E-05 26

FAM46C Family with sequence similarity 46,
member C

�1.03 1.42E-05 26

KDM6B Lysine demethylase 6B 0.61 1.92E-05 26
FBXO7 F-box protein 7 �0.37 2.57E-05 26
PSAT1 Phosphoserine aminotransferase 1 �0.78 2.49E-05 26

CDC20 Cell division cycle 20 �1.95 8.70E-06 25
NDC80 NDC80 kinetochore complex

component
�0.80 1.46E-05 25

CHEK1 Checkpoint kinase 1 �0.80 1.91E-05 25

ITM2C Integral membrane protein 2C �0.89 4.86E-05 25
SOGA1 Suppressor of glucose, autophagy

associated 1
0.66 5.61E-05 25

TXNDC15 Thioredoxin domain containing 15 �0.42 6.42E-05 25

IGLV3-1 Immunoglobulin lambda variable 3-1 �1.80 8.19E-05 25
MTCO2P12 MT-CO2 pseudogene 12 2.76 7.17E-04 25

The iteration count is the number of LOO iterations where the gene remained significant.
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gene FCGR2B was induced during anti-TNF treatment.

The gene expression plots for all five genes using nor-

malized counts show a clear difference in responders

before and after anti-TNF treatment (Fig. 3A).

Interestingly, for these genes we observed a similar

trend of regulation in non-responders (same directional-

ity), but it did not reach statistical significance

(Supplementary Fig. S3, available at Rheumatology on-

line). The gene set enrichment analysis of differentially

expressed genes, ranked based on the fold change,

identified 78 regulated pathways in responders

(Supplementary Table S1E, available at Rheumatology

online). We noticed induction of pathways involved in

the regulation of cell cycle mitotic and protein metabol-

ism, whereas genes involved in the extracellular matrix

organization, signalling by GPCR and Toll-like receptor

cascades were downregulated in responders (Fig. 3B;

Supplementary Table S1E, available at Rheumatology

online).

Replication of gene expression associations at
baseline

To validate our study, we sought to replicate our findings

in an independent cohort (BiOCURA) of gene expression

on PBMCs with 80 RA patients before they began adali-

mumab or etanercept anti-TNF treatment [12]. From the

replication cohort we selected gene expression data from

only female patients for the analysis. At baseline, we

noticed the gene CDC20 showed lower expression in

FIG. 2 (A) Box plots showing the expression levels of differentially expressed genes (all RA patients) in PBMCs for

baseline vs treated patient samples. The expression levels of responders for selected genes are plotted. (B) The en-

richment plot from gene set enrichment analysis represents functional gene sets enriched between baseline and

treated RA patients. BHLHE40: basic helix-loop-helix family member E40; CHI3L1: chitinase-3 like-protein-1;

FAM129C: family with sequence similarity 129 member C; TTC21A: tetratricopeptide repeat domain 21A
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responders compared with non-responders in both the

study cohort and the replication cohort (P<0.087). None

of the remaining 20 genes (Table 2) achieved statistical

significance (P< 0.1). In the study cohort we reported

suppression of the gene CHI3L1 upon anti-TNF treatment

in responders; we observed a similar regulation in the

replication cohort, with lower expression in responders

compared with non-responders (P< 0.096) at baseline.

Changes in cell phenotypes and protein blood

plasma during anti-TNF treatment

We studied the changes in 422 immune phenotypes

measured by flow cytometry during anti-TNF treatment

using paired samples. Analysis of the effect of treatment

in responders and non-responders revealed differences

in seven cell phenotypes in responders and no signifi-

cant differences in non-responders (Supplementary

Table S1F, available at Rheumatology online). With treat-

ment, responders showed strong suppression of the

proportion of granulocytes among leucocytes (defined

as CD45þ cells) and of the overall concentration of neu-

trophils in whole blood. The proportion of T cells

(defined as CD3þ cells) and B cells (CD3–CD19þ) among

leucocytes and the proportion of NKG2AþNKp44þ NK

cells out of all NKp44þ NK cells were, in contrast, upre-

gulated (Fig. 3C).

We studied the effect of anti-TNF treatment in 73

proteins (Supplementary Table S1G, available at

Rheumatology online) measured from serum (analytes

by Myriad (Salt Lake City, Utah) and Crescendo (San

Francisco, CA, USA)) and plasma (analytes by ELISA).

The longitudinal analysis using paired samples identified

regulation of 12 proteins in serum in responders and 1

protein in non-responders. Most of the proteins (CRP,

IL-6, MMP-1, MMP-3, SAA, TNF-RI, VEGF, YKL-40, MIG

and MIP-1b) were downregulated by anti-TNF treatment,

whereas TNFR2 was upregulated (Fig. 3D). Moreover,

we identified the downregulation of protein matrix

metalloproteinase-3 (MMP-3) measured using two differ-

ent methods (Supplementary Data S1, available at

Rheumatology online), whereas protein adiponectin is

induced during anti-TNF treatment in non-responders,

while showing a trend for induction in responders

(FDR¼ 0.11). The list of proteins that were regulated

during anti-TNF treatment is shown in Supplementary

Table S1H, available at Rheumatology online.

Further, our association analysis of immune pheno-

types and plasma protein levels to clinically defined re-

sponse to anti-TNF treatment did not show any

FIG. 3 (A) Box plots showing the expression levels of genes in responders at baseline vs treated patient samples. (B)

The enrichment plot from gene set enrichment analysis representing functional gene sets enriched in PBMCs for

baseline vs treated RA patients in responders. (C) Bar plot showing the percentage of granulocytes, B cells, T cells,

NK cells and monocytes of peripheral blood leucocytes before and after anti-TNF treatment in responders. (D) Box

plots showing the YKL-40 protein expression levels in responders before and after anti-TNF treatment. CXCR2: C-X-

C motif chemokine receptor 2; MYADM: myeloid associated differentiation marker; TNFAIP6: TNF alpha–induced pro-

tein 6; FCGR2B: Fc fragment of IgG receptor IIb
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significant association between responders and non-

responders before treatment.

Classifier performance for anti-TNF response data

We investigated the utility of machine learning methods

to predict anti-TNF response using clinical data, flow

cytometry measurements, protein measurements and

transcriptomic data. At baseline, the linear model pre-

dicted response with high accuracy for transcriptomic

data [receiver operating characteristics (ROC) area

under the curve (AUC) with the standard errors of the

mean 0.81 6 0.17] (Fig. 4), whereas the kernel-based

method predicted response with the highest accuracy

for clinical data [ROC AUC 0.73 6 0.17], for flow cytom-

etry [ROC AUC 0.72 6 0.18] and for protein data [ROC

AUC 0.72 6 0.15] (Fig. 4). We further studied the classi-

fier performance for the anti-TNF-treated data and

observed limited classifier utility for models based on

flow cytometry, protein and transcriptomic data. In con-

trast, as expected, the linear model based on clinical

data showed high classifier performance with an ROC

AUC of 0.85 6 0.15. For the FACS data, the maximum

classifier utility of an ROC AUC of 0.68 6 0.17 was

shown when using the linear model, whereas the non-

linear models based on protein and transcriptomic data

showed maximum classifier utility with an ROC AUC of

0.73 6 0.15 and 0.72 6 0.18, respectively.

Discussion

This study represents a comprehensive analysis of tran-

scriptomics, proteomics and flow cytometry data ana-

lysis of female RA patients treated with anti-TNF. Our

analysis was directed towards finding transcriptional

and translational regulations during anti-TNF treatment

and predicting response using biological measurements

collected at two time points. We identified genes that

are differentially regulated between responders and non-

responders at baseline and reported changes induced

by treatment in gene expression, protein measurements

and cell phenotypes. Finally, using biological measure-

ments, we employed machine learning models to predict

non-response to anti-TNF treatment. Our integration of

multi-omics data revealed that the expression of CHI3L1

and its subsequent protein product YKL-40 were sup-

pressed upon anti-TNF treatment. We also observed an

increase in the proportion of B cells, T cells and NK

cells in responders during treatment, whereas the pro-

portion of granulocytes was strongly suppressed.

The identification of potential biomarkers for RA with

prognostic value for response to a given therapy is chal-

lenging because RA is a heterogeneous disease by its

clinical characteristics and pathological processes. This

challenge may also be increased by clinical heterogen-

eity in RA patient samples and strong confounding

(covariates) effects; for example, variation in cell subsets

is one of the strong covariates of gene expression [13].

Also, RNA sequencing experiments can often generate

outlier read counts in one or several RNA samples and

this considerably limits the power of differential testing.

Therefore we performed extensive transcriptomic ana-

lysis using the LOO approach to find genes with a stable

association to response.

The gene expression results at baseline highlighted

that cell adhesion gene EPPK1 showed a strong

association with response and was expressed more in

future responders compared with non-responders.

Importantly, the difference we observed in the gene

EPPK1 (log2 fold change 1.95, FDR¼ 5.5E-03) showed

similar regulation following the adjustment to CRP

measurements in the gene expression model, suggest-

ing that EPPK1 is not a surrogate marker for inflamma-

tion in patients. Previous studies have reported the

mechanism of infiltration of inflammatory cells into the

synovial lining due to deregulation of several adhesion

FIG. 4 Statistical machine learning models to predict response (evaluated after 3 months) at baseline and anti-TNF-

treated using clinical variables, flow cytometry measurements, protein measurements and gene expression data. The

y-axis represents the ROC AUCs calculated for estimating the predicted performance
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receptors, thus association of response to correspond-

ing genes suggests its role in the pathogenesis of RA

and haemophilic arthropathy [14, 15]. When findings

from the study cohort were investigated in an

independent cohort, we replicated the lower expression

of Cell Division Cycle 20 (CDC20) gene in future res-

ponders compared with non-responders (P¼0.087).

Interestingly, non-responders at baseline showed an in-

crease in cell cycle pathways mainly related to mitotic

activity and cell cycle checkpoints. This may partly cor-

respond to the hyperproliferation of cells that leads to

the accumulation of pro-inflammatory cytokines in the

RA-inflamed joints [16, 17].

Next we extended our transcriptomic analysis using

samples from paired patients to study the changes

induced by treatment with two different approaches:

changes in gene expression patterns in samples from all

RA patients not considering response status and treatment

effects in responders and non-responders separately to

understand differences in gene expression regulation. Our

first approach identified 25 genes differentially expressed

in RA after treatment, whereas the second approach

yielded 5 genes differentially expressed in responders and

no significant changes in non-responders. Interestingly,

both approaches found four common genes: CXCR2,

MPO and MYADM that were downregulated and FCGR2B

that was upregulated upon treatment. Also, we observed

that TNFAIP6 [also called TNF-stimulated gene 6 (TSG-6)]

was suppressed in responders upon treatment. Previous

studies have shown that the expression of TSG-6 has a

strong correlation with disease severity and is a potential

biomarker of inflammation [18–20]. TSG-6 plays a key role

in the remodelling of the extracellular matrix, regulation of

leucocyte migration and stimulation of cell proliferation dur-

ing inflammation [21, 22]. These findings correspond well

with the pathway analysis that showed downregulation of

genes involved in extracellular matrix organization and sig-

nalling by interleukins and an upregulation of genes associ-

ated with mitotic cell cycle regulation. These results

substantially extend our understanding of the transcrip-

tomic profile of responders to anti-TNF treatment.

Our longitudinal studies on cell phenotypes revealed

significant changes in seven cell populations in respond-

ers, indicating a marked change in the proportions of

major cell types during treatment (Fig. 3C). The propor-

tions of B cells and T cells among leucocytes were

increased and the proportions of granulocytes were sup-

pressed upon treatment in responders. There was also a

decrease in the overall concentration of neutrophils in

whole blood in responders as well as in non-responders.

The reduction of neutrophils seen by flow cytometry was

also associated with a significant reduction in peripheral

blood neutrophil count seen by routine blood analysis,

leading to 19% of patients becoming neutropenic by clin-

ical judgement. This finding corroborates a recent study

that showed patients treated with anti-TNF in combin-

ation with MTX had decreased blood neutrophil counts,

regardless of their clinical response to therapy [23, 24].

Additionally, our results also corroborate earlier studies

showing induction of B cells and NK cells in whole blood

following anti-TNF treatment [25].

Similarly, the longitudinal analysis of protein data

showed changes in plasma protein levels in responders.

The expression of the protein YKL-40 was suppressed

upon treatment (b¼�0.26) and the gene encoding for

YKL-40, CHI3L1, was also down-regulated (Figs 2A and

3D). The model including only responders showed simi-

lar suppression of CHI3L1 (log2 fold change ¼ �1.07)

with a P-value <1.73E-04 and FDR <0.21. Interestingly,

we also observed that the gene CHI3L1 had lower ex-

pression in responders compared with non-responders

(P<0.096) at baseline in the replication cohort. The

CHI3L1 gene may negatively regulate T cell activation

and may also inhibit Th1 differentiation via the IFN-c–

STAT1 pathway [26]. We also showed that treatment

with TNF inhibitors leads to a larger proportion of T cells

among responders (b¼ 8.16).

It is tempting to link changes in gene expression pat-

terns between responders and non-responders after

anti-TNF treatment to known inflammatory markers or

other clinical phenotypes in RA patients. However, our

data do not reveal such clear links. Also, when adjusted

for the level of CRP, the gene expression analysis did

not change the overall results. This suggests that more

complex relationships may exist and should be investi-

gated in larger cohorts of RA patients. Nevertheless,

these results substantially extend our understanding of

the transcriptomic profile of responders to anti-TNF

treatment.

Interestingly, two proteins, soluble TNFR2 and adipo-

nectin, showed increased plasma levels in responders

and non-responders during treatment. The result of our

study replicates previously shown similar induction of

adiponectin after treatment with tocilizumab, an anti-IL-

6R [27, 28]. Similarly, an increase in TNFR2 signalling

leads to the activation and proliferation of Tregs and

promotes tissue regeneration in RA patients [29–31].

Our machine learning models showed high predictive

utility in classifying non-response prior to anti-TNF

treatment. The linear model based on transcriptomic

data at baseline found good predictability using the

presently applied gene expression classifier. To our

surprise, the models with transcriptomic data predict

response with higher accuracy compared with models

with clinical data. Interestingly, we also found clinical

variables add less further utility to the transcriptomic-

based predictive models at baseline (data not shown).

Previously a similar outcome was observed in a study

where models using transcriptomic data alone pre-

dicted fibrous cap thickness response to statin treat-

ment with better accuracy than the models with clinical

data or transcriptomic plus clinical variables [32]. Our

prediction model should be used with caution and

these findings need to be validated with an independ-

ent study with a larger patient cohort before its poten-

tial use in clinical settings.

The major limitation of this study is the small sample

size. The current study addressed multi-omics profiling
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of RA patients treated with anti-TNF with relatively low

statistical power and can capture only major effects.

Second, the genes that are regulated in responders

upon treatment showed similar direction of regulation in

non-responders with low statistical significance, and this

might be partly explained due to the low number of

non-responders included in the current study. Thus, in

future studies, it will be especially important to include a

higher number of non-responders to treatment. Third,

only non-responders to MTX treatment were included in

the current study, which is a limitation for understanding

the true mechanisms of treatment. Finally, with the goal

of decreasing cohort heterogeneity, we studied only fe-

male patients, which precludes generalization of results

to broader patient populations. Extended future studies

with a larger patient cohort are warranted to confirm

results from the current investigation.

In summary, this integrative multi-omics study

expands our growing knowledge of the biology of anti-

TNF treatment in RA patients by identifying a number of

changes in gene expression, protein and cell pheno-

types during treatment in anti-TNF responders. We re-

port genes that show distinct expression in responders

and non-responders before treatment initiation. Our

analyses demonstrate that treatment causes a major

regulation of cell subsets, which are also mirrored in the

protein analysis. Also, our study highlights the machine

learning predictive utility of transcriptomic data at base-

line in stratifying patients and/or predicted response be-

fore anti-TNF treatment initiation. We envision that future

machine learning models based on multi-omics data

could predict response to anti-TNF treatment and be of

great value to rheumatologists making decisions about

personalized treatment.
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