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ABSTRACT

Exonic splicing enhancers (ESEs) are pre-mRNA cis-
acting elements required for splice-site recognition.
We previously developed aweb-based program called
ESEfinder that scores any sequence for the presence
of ESE motifs recognized by the human SR proteins
SF2/ASF, SRp40, SRp55 and SC35 (http://rulai.cshl.
edu/tools/ESE/). Using ESEfinder, we have under-
taken a large-scale analysis of ESE motif distribution
in human protein-coding genes. Significantly higher
frequencies of ESE motifs were observed in consti-
tutive internal protein-coding exons, compared with
both their flanking intronic regions and with pseudo
exons. Statistical analysis of ESE motif frequency dis-
tributions revealed a complex relationship between
splice-site strength and increased or decreased fre-
quencies of particular SR protein motifs. Comparison
of constitutively and alternatively spliced exons
demonstrated slightly weaker splice-site scores, as
well as significantly fewer ESE motifs, in the alterna-
tively spliced group. Our results underline the impor-
tance of ESE-mediated SR protein function in the
process of exon definition, in the context of both con-
stitutive splicing and regulated alternative splicing.

INTRODUCTION

Processing of pre-mRNA is a fundamental aspect of gene
regulation. Most eukaryotic genes comprise multiple rela-
tively short exons that are separated by much longer introns.
The basic mechanism of splicing involves exon recognition
via the 5" and 3’ splice sites and branch site at or near the intron
ends, and the precise removal of intronic sequences and liga-
tion of exons, generating mature mRNA (1). However, accu-
rate exon definition by the spliceosome is complicated by the
presence of numerous intronic pseudo exons flanked by

sequences that conform to the splice-site consensus motifs
at least as well as those utilized by many true exons (2).
The additional information required for exon definition is con-
tained at least partly in cis-acting regulatory enhancer and
silencer sequences (3).

Exonic splicing enhancers (ESEs) participate in both alter-
native and constitutive splicing, and many of them act as
binding sites for members of the SR protein family (4,5).
The SR proteins are a family of related proteins that share
a conserved domain structure. They have one or two copies of
an RNA-recognition motif (RRM) followed by a C-terminal
domain that is highly enriched in arginine/serine dipeptides
(RS domain) (6). The RRMs mediate substrate recognition via
sequence-specific RNA binding, whereas the RS domain is
thought to be involved mainly in protein—protein interactions,
but apparently also in protein—RNA interactions (7,8). Exon
definition may occur through ESE-bound SR proteins recruit-
ing components of the splicing machinery through their RS
domains (9,10), and/or by antagonizing the action of nearby
splicing silencer elements (11).

It has been estimated that at least 15% of point mutations
that give rise to human genetic diseases cause RNA splicing
defects (12). These mutations exert their effects upon the
standard consensus intronic splice sites, and normally result
in exon skipping, or less commonly in the creation of an
ectopic splice site or activation of a cryptic splice site (12).
The effects of exonic point mutations are less well understood.
Until recently, it was normally assumed that nonsense muta-
tions produce truncated protein isoforms or in some cases
target the mRNA for destruction, whereas missense mutations
were thought to identify amino acids that are important for
protein structure or function. Translationally silent mutations
were normally classified as polymorphisms and considered
neutral. The generality of these assumptions is now being
challenged, in part through the analysis of the mRNAs pro-
duced from mutant alleles, and this analysis is leading to the
re-classification of a number of exonic mutations and to the
realization that an even higher proportion of mutations affect
splicing (3). One possible explanation for the effects of such
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mutations is that they interfere with the function of exonic
regulatory sequences. Indeed, recent data implicate ESE inac-
tivation by point mutations as a significant cause of genetic
disease (13-26).

Several groups have employed functional systematic evolu-
tion of ligands by exponential enrichment (SELEX) for the
purpose of identifying sequences that can function as ESEs.
Functional SELEX, both in vivo (27) and in vitro (28-30), has
led to the discovery that a diverse array of both purine-rich and
non-purine-rich sequences can act as ESEs. A further refine-
ment of functional SELEX allowed the identification of
sequence motifs that can act as ESEs in response to specific
SR proteins (31,32). The motifs identified are short (6—8 nt),
degenerate and sometimes partially overlap. The frequencies
of the individual nucleotides at each position were used to
derive score matrices that can be used to predict the location
of SR protein-specific putative ESEs (31,32). The nucleotide-
frequency matrices are available in a web-based program
called ESEfinder (33). Previously, the matrices were used
to examine a limited set of exon sequences for the presence
of ESE motifs. Exonic high-score motifs were often found to
be clustered and also to be enriched in regions with known
natural enhancers (31,32). In addition, the motifs were found
to be present at a higher density within exons, compared with
introns. The predictive power of ESEfinder has been demon-
strated through the observation that a number of disease-
associated point mutations that result in exon skipping reduce
high-score motifs to below threshold values (13,14,17,
20,22,24-26). Conversely, a mutation that results in activation
of a cryptic 5" splice site due to increased SC35 binding to
an ESE, is consistent with the ESE scores predicted by
ESEfinder (34).

Ab initio computational approaches to identify ESE motifs
have recently been developed. RESCUE-ESE (35,36) identi-
fied putative ESE motifs by comparing hexanucleotide fre-
quencies in constitutive exons with weak versus strong splice
sites. Sequences preferentially associated with weak splice
sites were clustered into several families and demonstrated
to possess enhancer activity when functionally tested. A simi-
lar approach compared octamer frequencies from internal
non-coding exons versus unspliced pseudo exons and the
5'-untranslated regions (5-UTRs) of intronless genes, to
identify putative regulatory sequences involved in splicing
(37). This approach led to the discovery of both functional
enhancer and silencer sequences.

We have undertaken a large-scale analysis of SR-protein-
dependent ESE motif frequencies in the human genome using
ESEfinder. A thorough survey of ESE prevalence was war-
ranted, in light of the high percentage of mutations that cause
genetic diseases through aberrant splicing. In addition, a
genome-wide survey of ESE motifs in protein-coding genes
can give an indication of their importance in constitutive and
alternative splicing, and their overall contribution to exon
definition and splice-site selection.

MATERIALS AND METHODS
Database creation

The EnsMart search engine (38) was used to retrieve human
genomic sequence from Ensembl (version 24) (39). A set of

63218 constitutively spliced internal protein-coding exons
plus 100 nt each of flanking upstream and downstream intronic
sequence, was derived from a total of 12216 genes. Constitu-
tive exons were defined from genes having definitive annota-
tion in the NCBI Reference Sequence (RefSeq) collection,
whose transcripts demonstrated no evidence of alternative
splicing. Protein-coding exons were derived by BLAST
searching of exons with cDNA sequences, allowing the elim-
ination of non-coding and partially coding exons. We also
created a database of 2620 alternatively spliced (cassette)
exons from RefSeq genes with multiple transcripts, by map-
ping exons from these genes to their respective genomic coor-
dinates. For comparison with the alternative exons, we created
a set of 2880 constitutive exons selected to have a similar
length distribution (same mean and standard deviation of
exon lengths). A database of 20580 repeat-free intronic
pseudo exons was kindly provided by Dr Lawrence Chasin
(37). Sequence databases are available upon request.

Sequence analysis

ESE motif scores were calculated using the position weight
matrices available in ESEfinder version 2.0 (http://rulai.cshl.
edu/tools/ESE/) (33). The default threshold values from the
program were used. For the purposes of this study, we con-
sidered only above-threshold (high-score) ESE motifs as being
significant. These thresholds were defined previously as the
median of the highest score for each sequence in a set of
randomly chosen 20 nt sequences from the starting pool
used for the functional SELEX experiments (33). Note that
the motif scores for different SR proteins are not directly
comparable (33). Shuffled exonic and intronic sequences
were generated using the EMBOSS Shuffleseq program
(http://emboss.sourceforge.net/apps/shuffleseq.html).
Splice-site scores were calculated using score matrices
derived from the exon-finding program MZEF (40). The
matrices are based on position-dependent triplet-frequency
preferences for real versus pseudo splice sites in the window
(—15, +3) for 3’ splice sites and (—3, +8) for 5’ splice sites.

Statistical analysis

Bootstrap sampling was used to determine the level of signifi-
cance for the differences in average ESE motif frequencies
between exons and their flanking introns, and exons and
pseudo exons. The mean ESEs/nt from random selections
of 10000 sequences from the exon, intron and pseudo exon
groups were sampled and compared 5000 times to derive
P-values. ESE motif frequency distributions were compared
by quantile—quantile analysis, and median values were com-
pared by the two-sample #-test. The significance of the overlap
between motifs recognized by ESEfinder and RESCUE-ESE
or the putative ESEs of Zhang and Chasin was defined by
Fisher’s exact test. Statistical tests with P-values <0.01
were deemed significant.

RESULTS
ESE motif frequencies in constitutive exons

To date, most studies of ESE function have concentrated on
their role in alternative splicing, although functional ESEs are
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also present in constitutive exons (13,14,41,42). Important
questions remain unanswered, including the extent to which
ESEs participate in the process of constitutive splicing. A
large-scale analysis of ESE motif distribution in both exons
and introns would give some indication of their functional
relevance to splicing events of this nature.

We created a database of 63 218 constitutively spliced inter-
nal protein-coding exons of lengths =100 nt from 12216
human genes. To standardize for differences in exon length,
we created composite 100 nt exon sequences consisting of
25 nt from each end plus 50 nt from the center. To ensure
that the exons were constitutively spliced, sequences were
collected from single-transcript genes. Exonic sequences
plus 100 nt each of flanking upstream and downstream intronic
sequences were retrieved from Ensembl. For comparison, we
calculated ESE motif frequencies from a database of 20 580
repeat-free intronic pseudo exons (37) also standardized to
100 nt, plus 100 nt each of 5'- and 3’-flanking sequences.
ESEfinder scores sequences for the presence of motifs
matching the SELEX-derived consensus for four SR proteins:
SF2/ASF, SRp40, SRp55 and SC35 (33). We calculated
high-score ESE motif frequencies occurring at each position
in consecutive windows of 10 nt. For the purposes of this
study, all above-threshold values for a given motif were
considered to be equivalent.

The ESE motif frequency distributions (ESEs/10 nt) were
plotted separately for each SR protein (Figure 1). Points were
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plotted at the central position of the high-score motif. ESE
motif frequencies were higher within exons than in the flank-
ing intronic sequences for all four SR proteins. Sharp peaks
and troughs at the exon/intron borders are a consequence of the
conserved splice-site sequences. To avoid the contribution of
the splice-site consensus motifs, we calculated the mean ESE
motif frequencies (ESEs/nt) at the exact center of the exons
and each of the flanking intronic regions (50 nt upstream of the
3’ splice-site, and 50 nt downstream of the 5’ splice-site)
(Table 1). A bootstrap sampling strategy of the mean ESE
motif frequencies revealed that the higher density of ESE
motifs in exons than in introns was statistically significant
for all four SR proteins, and the P-values were all <0.001
for comparisons with both upstream and downstream flanks.
ESE motif frequencies were approximately constant within
exons. By comparison, ESE motif frequencies in pseudo
exons were significantly lower than in authentic exons for

Table 1. Mean ESE motif frequencies in constitutive exons, introns, and
pseudo exons (ESEs/nt)

SR Upstream Exon Downstream Upstream Pseudo Downstream
protein  intron intron flank exon flank
SF2/ASF 0.0376  0.0496  0.0402 0.0387  0.0425 0.0431
SC35 0.0412  0.0448 0.0420 0.0422  0.0435 0.0424
SRp40  0.0398  0.0436  0.0405 0.0410  0.0426 0.0415
SRp55  0.0401  0.0442 0.0387 0.0432  0.0427 0.0426
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Figure 1. ESE motif frequency distributions in constitutive coding exons and flanking introns. ESEfinder was used to analyze 63 218 constitutive coding exons =100
nt in length for the presence of high-score ESE motifs. The green box represents a composite exon standardized to 100 nt, as described in the text. The thin lines
represent 100 nt each of flanking upstream and downstream intronic sequence. ESE motif scores were measured at each position in windows of 10 nt, and high-score
motifs plotted at the central position of the motif. Exon/intron boundaries are indicated by the red vertical dashed lines. The blue horizontal dashed line represents the
mean intronic ESE motif density. The consensus motif derived from functional SELEX is shown for each SR protein. Red letters indicate above-background

nucleotide frequencies.
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Figure 2. Frequency distribution of ESE motifs in constitutive exons. ESE-
finder was used to score 63 218 internal protein-coding exons (=100 nt) for the
presence of high-score ESE motifs for SF2/ASF, SRp40, SRp55 and SC35.

three of the four SR proteins (Table 1) (P-values <0.002 for
SF2/ASF, <0.01 for SC35, <0.006 for SRp40 and <0.02 for
SRp55). The frequencies of ESE motifs in intronic pseudo
exons were similar to the frequencies found in the other
intronic regions analyzed. As a control, we shuffled the exonic
and intronic sequences, maintaining the nucleotide composi-
tion, and scored the resulting sequences with ESEfinder. The
frequency of ESE motifs in the shuffled exonic sequences
decreased for all four of the SR proteins, whereas the frequen-
cies in shuffled intronic sequences were higher than in the real
intronic sequences (data not shown). This provides further
evidence for the functionality of the ESEfinder motifs when
present at exonic locations.

We observed a wide variation in the absolute numbers of
ESE motifs per exon when we analyzed the complete exons in
our constitutive exon database (Figure 2). The exons ranged in
size from 100 nt to ~6 kb, and there was a modal frequency of
14 ESE motifs per exon. Interestingly, a small number of
exons (158) contained no ESE motifs, although it should be
emphasized that the current version of ESEfinder searches for
high-score motifs for only 4 of the ~10 SR proteins.

Correlation of ESE motif frequencies with
splice-site strength

It has been postulated that one function of ESEs is the recruit-
ment of spliceosomal components to weak 5" or 3 splice sites
(43). Therefore, it is possible that exons with weak splice sites
will have elevated frequencies of ESEs. This property was one
of the criteria used to identify ESE motifs by RESCUE-ESE
(35). We chose to investigate this hypothesis in the context of
constitutive splicing, to eliminate as far as possible any com-
plications arising from mechanisms regulating alternative
splicing.

We calculated the 5’ and 3’ splice-site values for each exon
in our constitutive exon database. We then ranked the exons as
strong (top 15%) or weak (bottom 15%) for 5" and 3’ splice
sites independently. ESEfinder was used to calculate high-
score ESE motifs from the four groups of exons. The number
of high-score ESE motifs was divided by exon length to give
ESEs/nt, and the frequency distributions were plotted as num-
ber of exons versus ESEs/nt. The ESE motif frequency dis-
tributions of the exons with strong and weak 3’ splice sites
were compared, as were the distributions of the exons with
strong and weak 5’ splice sites, by quantile-quantile analysis
(Supplementary Figure 1). This type of analysis determines if

Table 2. Mean ESE motif frequencies in exons with strong or weak splice sites
(ESEs/nt)

SR protein Strong 5 Weak 5’ Strong 3’ Weak 3/
SF2/ASF 0.0435 0.0434 0.0400 0.0425
SC35 0.0417 0.0424 0.0427 0.0398
SRp40 0.0444 0.0427 0.0430 0.0415
SRp55 0.0241 0.0258 0.0240 0.0244

Frequencies in boldface are significantly higher than in the other exon set in a
pairwise comparison (strong versus weak) (two-sample z-test, P < 0.01)

two datasets come from populations with a common distribu-
tion. If the strong and the weak splice-site score exons have the
same distribution of ESE motifs, then the points will fall
approximately on the 45° reference line. Departure from the
45° reference line, either below or above, indicates higher
ESEs/nt in exons with strong or weak splice sites, respectively.
Differences in the ESE motif frequency distributions were
observed between exons with weak and strong splice sites,
for both 5" and 3’ splice sites, for some of the SR proteins. A
summary of the data is shown in Table 2. The correlation of
ESE frequencies with splice-site strength reveals a compli-
cated relationship. For most of the comparisons, there are
no significant differences between exons with strong versus
weak splice sites. However, exons with weak 5’ splice sites and
exons with weak 3’ splice sites have more SRp55 and SF2/ASF
motifs, respectively. In contrast, exons with strong 5" splice
sites have significantly more SRp40 motifs than their weak
splice-site counterparts, and exons with strong 3’ splice sites
have significantly more SC35 and SRp40 motifs.

We further classified our constitutive exon dataset into
strong exons possessing both strong 5 and 3’ splice sites
(top 15%), or weak exons possessing both weak 5’ and 3’
splice sites (bottom 15%). Quantile—quantile analysis
(Figure 3) of the ESE motif frequency distributions of these
two groups of exons revealed significant differences in ESE
motif prevalence for three of the SR proteins: exons with
strong splice sites have more SC35 and SRp40 motifs, whereas
exons with weak splice sites have more SRp55 motifs
(Table 3). Therefore, there does not appear to be a simple
correlation between ESE motif frequencies and splice-site
strengths. When we combined the output of all four matrices
for the exon datasets in Tables 2 and 3, the differences between
strong and weak exons were averaged out (data not shown).
Our observations with the individual matrices suggest a poten-
tial role for a subset of the motifs and corresponding SR pro-
teins in the recognition of exons associated with weak splice
sites.

Comparison of ESE motif frequencies in constitutive
versus alternatively spliced exons

Alternative splicing events have previously been documented
to be associated with weak splice sites (44), traditionally on a
single transcript basis. Such a correlation is limited by the lack
of large-scale analyses. One recent report analyzed relatively
large datasets of both 5’ and 3’ splice site scores from con-
stitutive and alternative exons from a number of different
species, and found consistently higher scores for the constitu-
tive exons (45). However, the link between splice-site score
and alternative splicing remains unclear, and may not reflect a
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Figure 3. Correlation of ESE motif frequencies with splice-site strength. Constitutive exons were classified as weak, if both their 3’ and 5’ splice-site scores were in
the bottom 15%, or strong, if both their 3’ and 5’ splice-site scores were in the top 15%. ESE motif frequency distributions from the two exon groups were compared by

quantile—quantile analysis.

Table 3. Mean ESE motif frequencies in exons with both strong 5’ and 3’ splice
sites and exons with both weak 5’ and 3’ splice sites (ESEs/nt)

SR protein Strong Weak

SF2/ASF 0.0429 0.0421
SC35 0.0440 0.0404
SRp40 0.0447 0.0416
SRp55 0.0238 0.0252

Frequencies in boldface are significantly higher than in the other exon set in a
pairwise comparison (strong versus weak) (two-sample -test, P < 0.01).

simple relationship. The results of our studies of splice-site
score and ESE motif frequencies in constitutive exons led us to
investigate the corresponding frequencies in alternative exons,
and their correlation with alternative splicing events. There are
several forms of alternative splicing [reviewed in (46)], and for
simplicity we chose to investigate the most common one,
namely exon skipping/inclusion.

We created a database of 2620 skipped internal protein-
coding exons from RefSeq genes with multiple transcripts,

and scored them with ESEfinder. High-score ESE motifs
were divided by exon length to give ESEs/nt. This analysis
was repeated on a set of 2880 constitutive exons selected to
have a similar length distribution (same mean and standard
deviation of exon lengths). ESE motif frequency distributions
were derived and compared by quantile—quantile analysis
(Figure 4). Departure from the 45° reference line, either
below or above, indicates higher ESEs/nt in constitutive or
skipped exons, respectively. Scoring for all four SR proteins
combined revealed that ESE motif frequencies were signifi-
cantly lower in skipped compared with constitutive exons,
with median values of 0.1466 and 0.1605 ESEs/nt, respec-
tively (two-sample t¢-test, P < 0.00001). The same result
was obtained when the exons were scored for individual SR
proteins. For example, skipped and constitutive exons scored
for SF2/ASF motifs had median values of 0.0384 and 0.0421
ESEs/nt, respectively (P < 0.0001).

The observation that skipped exons had significantly fewer
ESE motifs than constitutive exons led us to examine the ESE
motif frequency distribution in the flanking intronic regions of
skipped exons. We used ESEfinder to score 100 nt each of
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flanking upstream and downstream intronic sequence. Mean
ESE motif frequencies (ESEs/nt) at the exact center of the
skipped exons and each of their flanking introns (50 nt
upstream of the 3’ splice-site, and 50 nt downstream of the
5’ splice-site) were calculated (Table 4). Bootstrap resampling
of the mean frequencies demonstrated that only the SF2/ASF
motifs were significantly higher in the skipped exons com-
pared with their flanking introns (P < 0.001 for comparison
with upstream intron, P < 0.003 for comparison with down-
stream intron).

Calculation of the splice-site scores using position weight
matrices (40) revealed that the skipped exons had significantly
weaker splice sites than the constitutively spliced exons.

Table 4. Mean ESE motif frequencies in skipped exons and their flanking
introns (ESEs/nt)

SR protein Upstream intron Exon Downstream intron
SF2/ASF 0.0387 0.0418 0.0403
SC35 0.0399 0.0402 0.0406
SRp40 0.0402 0.0398 0.0395
SRp55 0.0407 0.0409 0.0404
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Figure 5. Splice-site score distributions of constitutively spliced and skipped
exons. Splice-site scores of 2620 skipped exons (dotted lines) and 2880 con-
stitutive exons (solid lines) were calculated and their frequency distributions
plotted separately for 3’ (A) and 5" (B) splice-site scores.

The mean values with standard deviations were 84.2 + 2.25
and 83.7 + 2.7 for constitutive and skipped 3’ splice sites,
respectively, and 46.93 + 1.7 and 46.67 + 2.09 for constitu-
tive and skipped 5’ splice sites, respectively. These values
were significantly different (all P-values <0.01) when ana-
lyzed by both parametric (one sample #-test) and non-
parametric (Wilcoxon rank test) statistical methods. It should
be noted that although the mean splice-site scores are signifi-
cantly different, the distributions of splice-site scores for both
exon types are very similar (Figure 5), and that splice-site
scores alone are insufficient to identify an exon as one that
is alternatively spliced.

ESE motif recognition by ESEfinder and ab initio
ESE-prediction methods

Two recent reports employed ab initio computational methods
to predict sequences that have ESE activity. RESCUE-ESE,
developed by the Burge laboratory (35), identified 238
hexamers preferentially associated with constitutive exons
with weak splice sites, whereas the methodology of Zhang
and Chasin (37) identified octamers overrepresented in
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Table 6. Comparison of ESE motif recognition by ESEfinder and the putative
ESEs of Zhang and Chasin

SR Number of ESEfinder Expected number SR Number of ESEfinder Expected number
protein sequences high scores of high scores protein sequences high scores of high scores
SF2/ASF 1904 79 79 SF2/ASF 4138 263 171

SC35 11424 179 453 SC35 2069 80 82

SRp40 1904 64 78 SRp40 4138 166 169

SRp55 238 4 8 SRp55 6207 185 202

Total 15470 326 618 Total 16552 694 624

non-protein-coding exons compared with the 5-UTR of
intronless genes and pseudo exons. Both groups tested a num-
ber of candidate motifs and demonstrated enhancer function in
transfected cells. Although these two methods and ESEfinder
differ substantially, there may be some overlap in the
sequences they recognize as putative ESEs.

The functional SELEX-derived consensus motifs are a
hexamer for SRpS5S5, heptamers for SF2/ASF and SRp40,
and an octamer for SC35 (33). Because the sequences iden-
tified by RESCUE-ESE are hexamers, we expanded each
RESCUE-ESE motif by the addition of either 1 (for SF2/
ASF and SRp40) or 2 (for SC35) nt, and scored the resulting
sequences with ESEfinder. As a control, we calculated the
number of all possible ESEfinder high-score motifs for each
SR protein. Of all 16 384 heptamers, 678 (4.1%) are high-score
SF2/ASF motifs; 669 (4.1%) of all heptamers are high-score
SRp40 motifs; 2599 (4.0%) of all 65536 octamers are high-
score SC35 motifs; and 133 (3.2%) of all 4096 hexamers are
high-score SRp55 motifs. Using these percentages, we then
calculated the expected number of ESEfinder high-score
motifs from a complete random sample of all possible oligonu-
cleotide sequences equal in length to the test set of
RESCUE-ESE sequences. For example, for SF2/ASF and
SRp40 (heptamer consensus motifs), the addition of 1 nt at
either the beginning or the end of the RESCUE-ESE hexamers
results in (4 x 238) X 2 = 1904 sequences. We then calcu-
lated the expected number of ESEfinder high-score motifs
from 1904 random heptamers. The results of the comparison
(Table 5) indicate that the sequences recognized as ESE motifs
by RESCUE-ESE and ESEfinder do not overlap beyond what
is expected by chance.

A similar strategy was employed to investigate the extent of
overlap between the sequences recognized by ESEfinder and
the 2069 putative ESEs (PESEs) identified by Zhang and
Chasin (37). The PESEs were downloaded (http://www.
columbia.edu/cu/biology/faculty/chasin/xz3/octamers.txt) and
high-score ESE motifs calculated with ESEfinder. As a con-
trol, we calculated the expected number of high-score
ESEfinder motifs from a random sample of all possible
oligonucleotide sequences equal in length to the test set of
sequences. For example, there are two possible heptamers
contained within any one octamer; therefore, for SF2/ASF
and SRp40, we calculated the expected number of high-
score ESEfinder motifs from 2 x 2069 = 4138 random
heptamers. The results for SC35, SRp40 and SRp55
(Table 6) reveal that high-score ESE motifs for these three
proteins are not enriched within the PESE set. However, there
are significantly more SF2/ASF motifs (Table 6) than would
be expected by chance (P < 0.00001, Fisher’s exact test),
supporting the conclusion that there is some overlap between

the sequences identified as ESE motifs by these two very
different methods.

DISCUSSION

The importance of cis-regulatory sequences for accurate
splice-site recognition and exon definition is well documented.
However, most experimental studies to date have focused on
the regulation of single splicing events. A more global under-
standing of pre-mRNA splicing requires some knowledge of
the distribution of both splicing enhancers and silencers. Using
ESEfinder (33), we have undertaken a large-scale genomic
analysis in an attempt to uncover relationships between
ESE motif frequencies and splicing regulation. Many of the
experimental studies of ESE function have involved examina-
tion of their role in the regulation of alternative splicing, and as
such little is known about their functional relevance to the
process of constitutive splicing. Our studies implicate ESE
participation in the regulation of both constitutive and alter-
native splicing.

Previously, the SR protein-specific matrices utilized by
ESEfinder were used to search a limited set of genomic
sequences for ESE motifs, which were found to occur more
frequently in exons versus introns (31,32,47). We have greatly
expanded these initial observations, and demonstrated a sig-
nificant enrichment for ESE motifs in >60000 internal con-
stitutive protein-coding human exons. The motifs identified by
the RESCUE-ESE technique (35) and the PESEs of Zhang and
Chasin (37) also occur more frequently in exons versus
introns. ESEfinder motif frequencies within exons were
approximately constant, supporting the hypothesis that
ESEs function to activate splicing from varying distances
from the splice sites, an observation also made for the exonic
distribution of PESEs (37). In addition, constant ESE motif
frequencies along exons may be a consequence of the ability of
single enhancer motifs to influence recognition of both 3’ and
5’ splice sites (43,48,49). The functional SELEX experiments
used to derive the ESEfinder matrices were dependent upon
the ability of sequences to enhance splicing of a 3’ terminal
exon (31,32). However, numerous studies have implicated
ESE motifs identified by ESEfinder in the splicing of internal
exons (13-17,20-26,34) and our new data support the conclu-
sion that these ESE motifs play a role in the splicing of internal
exons, in addition to terminal exons.

ESE motif frequencies for three of the four SR proteins were
significantly higher in exons versus pseudo exons, supporting a
role for ESEs in exon definition, and consistent with previous
studies of genomic ESE motif distributions (37,47). Zhang and
Chasin (37) found fewer PESEs in the same set of pseudo
exons that we analyzed with ESEfinder, but identification
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of the PESE motifs was conditional on their overrepresenta-
tion in exons versus pseudo exons. Therefore, the observation
that the PESE motifs were more frequent in a second test set of
exons versus pseudo exons was a logical expectation (37). The
functional SELEX experiments used to derive the ESEfinder
motifs imposed no such a priori criteria; therefore, the fact that
these motifs are present at significantly higher frequencies in
exons versus pseudo exons supports the conclusion that they
are involved in exon definition. In addition, there is evidence
supporting a role for silencers in the suppression of pseudo
exon splicing: a subset of pseudo exons with a relatively high
frequency of ESEfinder motifs was found to have increased
frequencies of elements capable of silencing splicing (47); and
Zhang and Chasin (37) also observed overrepresentation of
putative exonic splicing silencers in pseudo exons.

Experimental evidence demonstrated a role for ESEs in
constitutive splicing (13,14,41,42), a function supported by
our bioinformatic analysis. One ascribed function of ESEs
is facilitating the recognition of suboptimal splice sites.
Indeed, improving weak 3’ splice-site polypyrimidine tracts
negates the enhancer requirement for a number of substrates
(50,51). However, there is no evidence that all exons with
weak splice sites have an increased dependence upon ESEs.
Our comparison of ESE motif frequencies in constitutive
exons with weak and strong splice sites implicates ESE
involvement in splice-site recognition of all exons. We
observed significant differences in some ESE motif frequen-
cies when constitutive exons with strong and weak 3’ or 5’
splice sites were compared independently, or when exons with
both strong 3’ and 5’ splice sites were compared with their
counterparts with weak sites. However, there was not a simple
relationship between splice-site score and ESE motif fre-
quency, as in some instances exons with strong splice sites
were found to contain more ESE motifs. In addition, when we
repeated this analysis using Zhang and Chasin’s PESEs, we
observed no difference in the frequency of PESEs in exons
with weak splice sites compared with those with strong splice
sites (data not shown). It remains possible that weak splice
sites tend to be associated with stronger ESEs, rather than with
an increased number of ESEs, although it is known that mul-
tiple ESEs in the same exon act additively (52). This hypothe-
sis remains to be tested, and will require a more quantitative
version of ESEfinder.

A recent survey revealed an increase in the number of ESE
motifs identified by RESCUE-ESE in the vicinity of the splice
sites of constitutive exons (53). We only observed this trend
with SF2/ASF and SRp55 motifs in exons with weak 3’ and 5’
splice sites, respectively. As described above, ESE motifs for
some of the SR proteins are actually higher in exons with
strong splice sites. These differences in ESE motif distribu-
tions may be a consequence of the very different methods used
in their identification. The motifs identified as putative
enhancers by RESCUE-ESE were constrained by the require-
ment to be enriched in constitutive exons with weak splice
sites, whereas the sequences identified by functional SELEX
were selected by their ability to activate exon inclusion in the
presence of a particular SR protein. It is possible that
RESCUE-ESE identified a set of enhancer sequences involved
in the recognition of a restricted set of exons, and that
ESEfinder recognizes enhancers involved in a more general
aspect of exon definition.

Alternative splicing serves to greatly expand the proteome,
with one recent report estimating that up to 74% of multiexon
human genes are alternatively spliced (54). ESEs, and the SR
proteins that bind them, have well defined roles in regulating
the process of alternative splicing [reviewed in (1,4,5,44,55)].
A commonly held assumption states that exons that undergo
alternative splicing have weaker splice sites, by comparison
with those that are constitutively spliced. Our previous ana-
lysis of a limited set of alternatively spliced exons supported
this assumption (56). In addition, a recent report found sig-
nificantly higher splice-site scores for constitutive versus alter-
native exons in five species, including humans (45). We
derived large datasets of constitutive and alternatively spliced
(included or skipped) protein-coding human exons, and again
demonstrated that alternatively spliced exons as a set have
significantly weaker splice-site scores. However, the splice-
site score distributions are surprisingly similar and largely
overlapping, such that the splice-site scores alone are not
sufficient to define a given exon as constitutive or alternative.

Intriguingly, we found that skipped exons have significantly
fewer ESE motifs than constitutively spliced exons. In addi-
tion, skipped exons, unlike those that are constitutively
spliced, do not have increased ESE motif frequencies in com-
parison with their flanking intronic regions, except for one of
the four SR proteins tested, SF2/ASF. Zhang and Chasin (37)
likewise reported finding fewer PESEs in alternative exons
compared with constitutive exons, and a comparable number
or slightly fewer RESCUE-ESE motifs were observed in
skipped exons (35). One can speculate that fewer ESEs per
exon may result in less efficient exon definition, and subse-
quently lead to exon skipping. However, this remains a
hypothesis that will require appropriate experimental valida-
tion. Two recent publications (57,58) reported significant con-
servation of the flanking intronic regions of alternatively
spliced exons, perhaps implying a function for intronic motifs
in the control of alternative exon definition.

ESE motif identification by functional SELEX, and the
computational methods of RESCUE-ESE or Zhang and
Chasin’s octamer analysis rely upon different methodologies.
However, the motifs identified share some commonalities,
namely overrepresentation in exons versus introns, and in
constitutive versus alternatively skipped exons. Interestingly,
our analysis revealed that the ESE motifs recognized by
ESEfinder and RESCUE-ESE do not significantly overlap.
Nevertheless, experimental data proved the ability of both
methods to define functional enhancers (31,32,35), and as
described above, these differences may arise at least in part
from the constraint of association with weak splice sites inher-
ent in RESCUE-ESE. Over 80% of the RESCUE-ESE hex-
amers are found in the collection of PESEs (37). However, in
contrast to the analysis of RESCUE-ESE motif distribution
(53), there was no increase in PESE frequency near the splice
sites (37). This difference may be due to differences in the
exonic databases analyzed, or it may be a consequence of a
small subset of the RESCUE-ESE motifs accounting for the
observed increase near splice sites. Our scoring of Zhang and
Chasin’s PESEs with ESEfinder revealed no enrichment for
high-score SC35, SRp40 or SRp55 motifs. However, we did
find an increase over the expected number of SF2/ASF motifs
within the PESE group, indicating some overlap between the
two methods. It should be noted that our analysis is limited to



four SR proteins, and it is highly probable that both the set of
RESCUE-ESE hexamers and the PESE octamers contain
enhancer sequences recognized by other SR and non-SR
proteins, though these methods do not identify the factors
responsible for motif recognition.

ESEfinder scores sequences for the presence of putative
enhancers, and we emphasize that experimental validation
is required for definitive proof that any given motif is a
bona fide ESE in its natural context. Other factors may
influence the ESE potential of any given motif. These include
sequence context, e.g. the presence of nearby silencers,
secondary structure effects and tissue-specific splicing factor
concentrations. Experimental efforts are underway to refine
the original matrices. Future improvements will include
experimental refinement of threshold values, and additional
SR protein-specific matrices.

SUPPLEMENTARY DATA
Supplementary Data is available at NAR Online.
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