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Abstract
Bacteriophages are the most prominent members of the gut microbiome,
outnumbering their bacterial hosts by a factor of 10. Phages are
bacteria-specific viruses that are gaining attention as highly influential
regulators of the gut bacterial community. Dysregulation of the gut bacterial
community contributes to dysbiosis, a microbiome disorder characterized
by compositional and functional changes that contribute to disease. A role
for phages in gut microbiome dysbiosis is emerging with evidence that the
gut phage community is altered in dysbiosis-associated disorders such as
colorectal cancer and inflammatory bowel disease. Several recent studies
have linked successful fecal microbiota transplantation to uptake of the
donor’s gut phage community, offering some insight into why some
recipients respond to treatment whereas others do not. Here, we review the
literature supporting a role for phages in mediating the gut bacterial
community, giving special attention to Western diet dysbiosis as a case
study to demonstrate a theoretical phage-based mechanism for the
establishment and maintenance of dysbiosis.
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Introduction
Insights into the relationship between diet and the gut microbiome 
have significantly advanced our understanding of nutrition as 
a mediator of health and disease. The influence of the Western 
diet specifically on dysbiosis in the gut bacterial community 
is well established1. Conspicuously lacking from this body of 
research is a fundamental understanding of the gut virome, 
sometimes referred to as the “dark matter” of the microbiome2.  
It has long been known that the virome harbors genes for antibi-
otic resistance and bacterial toxins3,4, contributing to the viru-
lence of clinically relevant bacterial pathogens5,6. Emerging 
evidence implicates an altered gut virome in colorectal cancer, 
inflammatory bowel disease, and other states associated with 
microbiome dysbiosis7–10. The role of the virome, whether as  
cause or consequence of dysbiosis, is unclear.

Gut microbiome dysbiosis
Gut microbiome dysbiosis broadly encompasses the vari-
ous states of perturbed gut microbial community composition 
associated with disease or disorder in the host. In a healthy gut  
environment, the resident (commensal) gut bacteria (that is,  
symbionts) are non-pathogenic. A healthy gut microbiota–host 
interaction is a mutualism in which gut bacteria thrive in the 
gastrointestinal environment of the host while providing the 
host with multiple benefits through metabolism, immune system  
development, and protection from pathogens11. During dysbiosis, 
the homeostatic balance of this symbiosis shifts, disrupt-
ing the beneficial nature of the relationship and contributing 
to disease states. In this setting, otherwise beneficial gut  
symbionts may transition to a state of pathogenicity (that is, 
pathobionts). Dysbiosis is implicated in the etiology of numer-
ous clinical disorders ranging from those involving the digestive  
tract, such as inflammatory bowel disease and non-alcoholic 
steatohepatitis, to those outside the digestive tract, such as  
atherosclerotic cardiovascular disease and autism12–15.

The gut virome
Evidence on the role of gut viruses during dysbiosis is limited. 
The predominant members of the gut virome are bacteria- 
specific viruses called bacteriophages (phages). Phages are most 
commonly associated with phage therapy, a practice of admin-
istering lytic phages to control bacterial pathogens (for exam-
ple, Staphylococcus aureus, Escherichia coli, and Pseudomonas 
aeruginosa)16. About 1014 viruses, comprised of about 1200 viro-
types, reside in the gut17; this population is 10 times as abundant  
as gut bacteria but comparable in diversity18,19. Contempo-
rary studies of the gut bacterial community rely on next- 
generation sequencing of the universal 16s rRNA bacterial 
gene, which provides a compositional readout of the microbi-
ome. This approach is not possible with phages as they lack a  
conserved phylogenetic marker20, one of many challenges in 
phage research. Even the gold standard for studying phage  
communities, viral metagenomics, is limited by the lack of a 
genomic library to compare against the enormous diversity of 
uncharacterized phage genes collectively referred to as “viral dark 
matter”2.

Advances in gut phage research have demonstrated a role for 
phages as agents of compositional change in the gut microbial 

community21,22. Phages exert enormous evolutionary pres-
sure on microbial communities by lysing their bacterial hosts 
or by mediating gene transfer23. In oceanic surface waters,  
phage-mediated lysis leads to the death of 20 to 40% of the 
total bacterial population every 24 hours24. In the gut, phages 
are primarily temperate and able to incorporate into the  
bacterial chromosome as latent prophages, thereby reproducing 
with the bacterial host (that is, the lysogenic cycle); prophages 
then may produce phage progeny by inducing the lytic cycle  
(Figure 1)20. Temperate phages also have the option of repro-
ducing by entering the lytic cycle directly and immediately 
lysing their bacterial host. About half of all sequenced bacte-
rial genomes in the GenBank database contain at least one 
prophage, and some species can harbor up to 1525. Prophages  
are intimately linked to bacterial resilience and function, encod-
ing genes for metabolism, antibacterial resistance, and toxin 
production (for example, shiga toxin production), thereby pro-
viding fitness benefits for the bacterial host6,9. Prophages further 
enhance fitness in their bacterial hosts by preventing infec-
tion from other phages (that is, superinfection exclusion) and 
by lysing competing bacteria (that is, “kill-the-relative”)26,27.  
Some phage-encoded genes are required for commensal gut  
bacteria to form a mutualism with their host28; conversely, 
phage-encoded virulence factors promote pathogenic behavior  
in their host6,29. These findings are highly relevant to the study 
of gut microbiome dysbiosis, which can be characterized by the 
transition of commensal bacteria from symbiont to pathobiont. 
The transition to dysbiosis is multifactorial and once established  
it becomes difficult to treat30.

A role for phages in mediating dysbiosis
Dysbiosis is associated with an increased abundance and richness 
of the mucosal temperate phage population7–9,31,32. Prophages 
in the gut are spontaneously induced into the lytic cycle at a  
modest baseline level33. Large-scale induction typically requires 
environmental stressors that cause a community-wide “SOS 
response” in the bacterial hosts34. The SOS response is trig-
gered by DNA damage in the bacterial chromosome35, essentially  
signaling to the prophage that the bacterial host is no longer 
suitable. The prophage reacts by inducing the lytic cycle to  
produce a new population of phage progeny, which seek out 
new hosts to infect. The inflamed gut is associated with an  
upregulated SOS response in resident gut bacteria36, loss of 
phage diversity32, and elevated levels prophage induction37.  
Elevated prophage induction is a mechanism of horizontal gene 
transfer between bacterial hosts, increasing rates of genetic 
recombination and diversification of phage-encoded genes38. 
This process has been found to drive the evolution of bacterial 
pathogens by expanding the reservoir of phage-encoded genes  
for virulence factors and antibiotic resistance5,37. In the setting 
of an infection by enteric pathogens such as shiga toxin– 
producing E. coli, antibiotics that trigger the SOS response acti-
vate shiga toxin synthesis through the phage induction pathway; 
this can lead to diarrhea, hemorrhagic colitis, hemolytic-uremic  
syndrome, and even death6. Prophages encode virulence factors for  
other clinically relevant pathogens, including Vibrio cholerae, 
S. aureus, Corynebacterium diphtheriae, and Clostridium  
botulinum29. In addition to directly encoding genes for tox-
ins, phage genes can indirectly upregulate production of  
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bacterial toxins and can influence adhesion, colonization, and  
invasion39.

Within the gut environment, phages are suspected of mediating 
diversification of the non-pathogenic, commensal microbial  
community40. Temperate phages are theorized to act on the com-
mensal microbiota via “community shuffling”, whereby prophage 
induction in response to SOS-triggering stressors may increase 
the pathobiont-to-symbiont ratio observed during dysbiosis41.  
Lending support to this theory is the finding that changes 
to gut phage community composition precede the onset of 
type 1 diabetes in children42. Furthermore, recovery from  
Clostridium difficile dysbiosis after fecal microbiota transplan-
tation (FMT) is associated with an uptake of the donor phage  
community43–45. Collectively, there is strong evidence of a role 
for gut phages in numerous disease states associated with gut  
microbiome dysbiosis.

Western diet dysbiosis as a case study
A Western diet, characterized by a high-fat, high-sugar, and 
low-fiber intake, is one of the most clinically important disrup-
tors of the gut microbiome. The substantial body of literature on 
the Western diet provides an ideal case study for this theoreti-
cal model, illustrating the potential role of phages in mediating  
dysbiosis (a graphical representation of this model can be found 

in Figure 2). It should be noted that a “Western” diet is often  
generalized as “high fat” when it has been shown that the 
type of fat is an important factor in the onset of dysbiosis and  
disease46,47. Indeed, a Western diet can be classified differently 
but is commonly associated with high levels of either n-6  
polyunsaturated fats or saturated fats1.

In a Western diet–induced mouse model of obesity, adverse 
effects include glucose intolerance and fatty liver, both of which 
improve after treatment with norfloxacin and ampicillin48,  
demonstrating the role of an antibiotic-sensitive microbiome. 
Antibiotic treatment reverses the state of increased intestinal per-
meability, a common outcome of a Western diet that results in 
elevated plasma concentration of bacterial endotoxins49. These  
findings suggest that a Western diet can disrupt homeostatic  
balance in the gut microbiome, promoting a state of increased  
intestinal permeability, increased endotoxin absorption, and endo-
toxemia. The endotoxin, in turn, drives the immune response of 
the host, thereby producing inflammation, glucose intolerance,  
and the other characteristic features of metabolic syndrome.

A Western diet is distinguished by not only its high lipid  
content but also its low availability of fiber. Deprived of fiber 
from the diet, the gut microbiota compensates by foraging host  
glycans from the epithelial mucus layer50. Whether phages 

Figure 1. Reproductive life cycles of a temperate phage. Temperate phages can reproduce via both lytic and lysogenic cycles. The 
decision as to which cycle gets induced depends on environmental factors. This simplified version of phage life cycles demonstrates how 
the cycles are intertwined.
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Figure 2. Theoretical model for phage-mediated dysbiosis. Prophages can drive otherwise commensal bacterial hosts (symbionts) to 
behave pathogenically (pathobionts) when exposed to environmental stressors, such as those associated with a Western diet. Phage-encoded 
genes support bacterial mechanisms for bacterial survival at the cost of the human host. The pathogenic behavior of these resident gut 
microbes promotes inflammation in the intestinal epithelium, which perpetuates the state of environmental stress and persistent dysbiosis.
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mediate genes related to glycan foraging has yet to be studied.  
A healthy mucus layer is a protective boundary separating the 
sensitive host epithelium from the pro-inflammatory contents  
of the intestinal lumen (for example, bacterial endotoxins).  
Degradation of the mucus layer by glycan-foraging bacteria 
depletes this protection, bringing luminal bacteria closer to the  
epithelium, thus promoting inflammation and increased intes-
tinal permeability51,52. A more permeable intestinal lining is 
hypothesized to allow more oxygen from the bloodstream 
to enter the normally anoxic intestinal lumen53, inflicting  
oxidative stress on obligate anaerobes in the gut54. This idea is  
supported by the finding that oxygen respiration becomes a 
dominant metabolic signature in mouse models of colitis55. 
Using the phosphorescence quenching method, Albenberg et al. 
(2014) showed that there is an oxygen gradient radially in the 
gut lumen whereby the oxygen concentration is highest near 
the mucosa56. Accordingly, the composition of the gut bacterial 
community is organized radially, and mucosally associated 
bacteria are the most oxygen-tolerant57. It is now appreciated  
that the intestinal barrier does not simply have two states,  
impermeable and permeable, but rather there exists degrees of 
permeability. However, there is a consensus that increased per-
meability associated with bacterial translocation and immune 
activation is harmful and leads to chronic inflammation11,53.  
A change in oxygen concentration may also affect the gut 
phage population as oxidative stress is a trigger of the SOS 
response and can induce prophages to enter the lytic cycle. In 
support of this hypothesis is a study by Kim and Bae (2016), 
who demonstrated that a Western diet expands phage-encoded  
genes for oxidative tolerance9. It is unlikely that oxidative stress 
on commensal bacteria is solely responsible for inducing gut 
phages, as the metabolic by-products of a Western diet have  
also been shown to trigger prophage induction58.

A Western diet has been found to increase the population den-
sity of phages in the gut mucosa and expand the reservoir of 
phage-encoded genes for phage reproduction9. Higher rates of 
temperate phage infection can cause pathogenicity in commen-
sal gut bacteria by disrupting the function of bacterial genes29.  
Systematic disruption of bacterial genes by phages may have 
the potential to drive the entire gut microbial community toward 
a state of increased pathogenic potential (that is, dysbiosis). 
Whether other disruptors of the gut microbiome—including 
antibiotic therapy, inflammation, exposure to anesthesia,  
surgery or other traumas, immune deficiency, and exposure to  
toxins—exert their effects on the microbiome via its phage  
population remains to be tested.

Most laboratory observations suggest that phages generally have 
a narrow host range (all bacteria a phage can infect)23, although 
recent evidence suggests that phages have a much broader 
host range in the gut than what has been observed in vitro59,60.  
Stressors that induce prophages (for example, antibiotic treat-
ment) consequently broaden phage host range and expand 
the reservoir of phage-encoded genes for surviving the  
stressor (for example, antibiotic resistance genes)5. Diet is a 
potential regulator of prophage induction among commen-
sal gut bacteria59, and unregulated prophage induction may be  

responsible for disturbing the homeostatic relationship between  
microbiome and host. Since perturbation of the gut environment 
by a Western diet upregulates phage-encoded genes for lipid 
metabolism and oxidative tolerance9, it can be reasonably  
postulated that these phages likely confer a competitive advan-
tage to their bacterial hosts in a gut environment with higher  
availability of lipids and increased levels of luminal oxygen. 
Phages with the combination of broad host range and genes for 
bacterial host fitness may have a substantial competitive advan-
tage in the gut microbial community, thereby propagating these 
genes across taxonomically distinct bacterial species within the 
microbiota and increasing competition for limited resources 
such as host glycans from the mucus layer. The microbiome  
composition during Western diet dysbiosis shifts with an expan-
sion of bacteria in the phyla Proteobacteria and Firmicutes61; 
Proteobacteria specifically are associated with numerous  
dysbioses, intestinal barrier dysfunction, and low-grade  
inflammation57. The majority of gut prophages are found in the 
genomes of these two phyla59, and there is a positive correlation  
between viral content and Firmicutes in the feces during  
obesity62.

There is clear evidence that prophages can help make the deci-
sion for their bacterial hosts to act as either symbionts or 
pathobionts6,28 and consumption of a Western diet may influ-
ence that decision. Outlined above is one possible mecha-
nism for the evolution of a phage community that promotes  
pathogen-like behavior in otherwise commensal gut bacte-
ria through elevated prophage induction, wherein bacterial 
survival may come at a cost to the human host. This theo-
retical model also takes into account the loss of phage diversity 
observed in response to gut microbiome perturbations, which 
may be responsible for the persistence of dysbiosis and resistance  
to clinical treatment. It is worth noting that our proposed 
model is not mutually exclusive with other mechanisms that 
may lead to Western diet–associated dysbiosis, such as those 
involving host metabolism in response to specific dietary  
fats47 or host genetic factors63,64.

Moving forward
As demonstrated by Howe et al. (2016), a Western diet 
mouse model reduces both bacterial and phage diversity65.  
After mice are transitioned back to a standard diet, diversity 
of the bacterial community returns to pre–Western diet levels 
whereas the diversity of the phage community remains low. It 
is possible that dietary disturbances permanently alter phage 
diversity as well as the functional nature of the phage-encoded  
gene reservoir; the long-term impacts of this lost diversity 
are unknown. Treatment of dysbiosis may be contingent on  
re-establishing a healthy phage community.

Recent developments in clinical FMT therapy have identified 
an association between successful treatment of C. difficile infec-
tion and uptake of the donor’s fecal phage community by the 
FMT recipient43,45. A clinical study found that administration 
of a bacteria-depleted fecal filtrate (phages retained) was  
sufficient for treatment of C. difficile infection and transition 
of the recipient phage community toward that of the donor44. In  
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an ulcerative colitis mouse model, FMT responders had 
reduced populations of mucosal phages compared with non- 
responders31. The composition of the donor’s phage community 
has yet to be considered an important factor for FMT. For that  
matter, the recipient’s diet has also not been considered. 
Gut phages heavily influence the composition of the gut  
microbiota and in turn its relationship with the human host.  
Much research still needs to be carried out to determine how 
the phage community responds to perturbation and contributes  
to the establishment, maintenance, and remediation of dysbiosis.

Abbreviation
FMT, fecal microbiota transplantation
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