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Abstract: In this paper, an amperometric immunosensor modified with protein A/deposited 

gold nanocrystals (DpAu) was developed for the ultrasensitive detection of carbofuran 

residues. First, DpAu were electrodeposited onto the Au electrode surface to absorb protein 

A (PA) and improve the electrode conductivity. Then PA was dropped onto the surface of 

DpAu film, used for binding antibody Fc fragments. Next, anti-carbofuran monoclonal 

antibody was immobilized on the PA modified electrode. Finally, bovine serum albumin 

(BSA) was employed to block the possible remaining active sites avoiding any nonspecific 

adsorption. The fabrication procedure of the immunosensor was characterized by 

electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), respectively. 

With the excellent electroconductivity of DpAu and the PA’s oriented immobilization of 

antibodies, a highly efficient immuno-reaction and detection sensitivity could be achieved. 

The influences of the electrodeposition time of DpAu, pH of the detection solution and 

incubation time on the current response of the fabricated immunosensor were investigated. 

Under optimized conditions, the current response was proportional to the concentration of 

carbofuran which ranged from 1 to 100 ng/mL and 100 ng/mL to 100 μg/mL. The 

detection limit was 0.1924 ng/mL. The proposed carbofuran immnuosensor exhibited high 

specificity, reproducibility, stability and regeneration performance, which may open a new 

door for ultrasensitive detection of carbofuran residues in vegetables and fruits. 
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1. Introduction  

Carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) is a broad-spectrum 

insecticide widely used in agriculture to control pests in horticultural crops to enhance production and 

control of insect-borne diseases. The presence of carbofuran in food has received worldwide attention 

because of its relatively high solubility of 700 mg/L in water at 25 °C and the fact it is a systemic 

insecticide, which can be absorbed by roots, steams and leaves and thus transmit and translocate in ther 

plant. Carbofuran can also cause acute toxicity to human through cholinesterase inhibition [1,2].  

Monitoring of pesticide residues in vegetables for evaluation of vegetable quality so as to avoid 

possible risks to human health is a priority objective [3]. Current analytical methods for carbofuran 

detection involving gas chromatography (GC) and high performance liquid chromatography (HPLC) 

with post-column derivatization are sensitive and reliable [4,5], but these methods require expensive 

instruments, skilled analysts and involve time-consuming sample preparation steps [6]. Therefore, 

there is a growing demand for more rapid and economical methods for detecting pesticide residues.  

It has been reported that biosensor measurements are a good method for rapid detection of pesticide 

residues [3]. Immunosensors, which combine the selectivity provided by immunological interactions, 

are also being proposed and proving to be powerful analytical devices for the monitoring of organic 

pollutants in food and the environment [7,8]. The immobilization of biomolecules on the electrode is 

the most important factor in generating rapid response and in fabricating high selective biosensor.  

In order to develop electrochemical immunosensor technology, the investigation of novel composite 

materials has attracted widespread attention, due to their excellent electronic transport properties,  

good biocompatibility, satisfying stability and so on [9,10]. Gold nanoparticles (GNPs) have been 

widely used for immobilization of biomolecules due to their large specific surface area, high surface 

free energy and biocompatibility. GNPs can adsorb biomolecules and play an important role in the 

immobilization of biomolecules for biosensor construction [11]. So far, GNPs have been widely 

applied in the biosensors for detection of pesticide residues [12-14]. However, most biosensors based 

on GNPs were modified with gold nanoparticles colloids, which involved time-consuming preparation 

steps and low adsorption. Therefore, deposited gold nanocrystals (DpAu) were studied because it could 

provide a stable surface for the immobilization of biomolecules [15,16]. Morver, the DpAu film could 

be controled through the concentrtion of gold chloride tetrahydrate (HAuCl4) solution and the 

electrodeposition time, which is more convenient than GNPs film. 

Protein A has been commonly used as a binding material to orientedly immobilize antibodies 

because it can specially bind the Fc fragment of the antibody molecules. The antibody after oriented 

immobilization is favorable for antigen accessible [17-19]. As protein A can adsorb firmly onto gold 

surface, the traditional antibody immobilizations using PA tend to assemble protein A directly onto the 

gold-derivatized sensor transducers [20]. Such a convenient PA-based immobilization procedure might 

cause some problems associated with low loading amount and gold-induced denaturation of PA, which 
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results in low antibody-binding capacities and very few reuses of the sensors. In order to overcome 

these shortages, DpAu with high protein-loading capacity have been used to increase the amount of 

immobilized biomolecules. For example, Wang et al., have investigated a PA-based immobilization 

methodology for antibodies [21]. In recent years, PA has been used in the biosensors for the 

determination of phenylurea herbicide diuron, the herbicide simazine, and penicillin residues in  

milk [12,22,23].  

As mentioned above, using DpAu can immobilize PA efficiently as well as improve the electrode 

conductivity. Using PA can immobilize antibody orientedly. However, most researchers have utilized 

GNPs instead of DpAu. DpAu could provide a porous and stable surface for the immobilization of PA. 

To the best of our knowledge, immonosensors based on strong reaction between DpAu and PA for the 

detection of pesticide residues have not been reported. In this work, we developed an amperometric 

immunosensor modified with PA/DpAu for the detection of carbofuran. Optimal conditions of the 

described immunosensor are investigated in detail.  

2. Experimental 

2.1. Materials 

Anti-carbofuran monoclonal antibody, carbofuran, protein A and bovine serum albumin (BSA) 

were all purchased from Sigma. HAuCl4 was from Shanghai Sinopharm Chemical Reagent Co. Ltd., 

China. Carbofuran was standard product and other reagents were of analytical grade and distilled water 

was used throughout the experiments. Anti-carbofuran monoclonal antibody was dissolved with 0.01 M 

phosphate buffer solution (PBS, pH 7.4) processed by high-pressure sterilization and stored at 4 °C. A 

PBS (0.1 M, pH 7.4) containing 5 mM [Fe(CN)6]
3−/4− and 0.1 M KCl was used as the detection solution. 

2.2. Apparatus 

Cyclic voltammetry (CV) and the electrochemical impedance spectroscopy (EIS) measurements 

were performed with CHI 650D electrochemical workstation (Shanghai Chenhua Co., China). All 

expriments were performed with a conventional three-electrode system. The modified gold electrode 

(d = 1 mm) as the working electrode, a saturated calomel electrode (SCE) and platinum electrode were 

used as reference and auxiliary electrodes, respectively. The morphology of GNPs and DpAu film was 

studied by means of scanning electron microscopy (SEM, S-3000N, Hitachi, Japan). 

2.3. Fabrication of Immunosensor 

Gold electrodes with 1 mm diameter were polished carefully with 0.5 μm and 30 nm alumina 

powder. Then they were sonicated with piranha solution (a 1:3 mixture of 30% H2O2/concentrated 

H2SO4) for 10 min, and washed with distilled water. Next, they were immersed successively  

in 6 M HNO3, absolute ethanol and distilled water in an ultrasonic bath for 5 min to remove any 

physically absorbed substances. Before modification, the bare gold electrodes were scanned in 0.5 mM 

H2SO4 between −0.3 to 1.5 V at a scan rate of 0.05 V/s until a reproducible cyclic voltammogram 

(CV) was obtained. After that, the cleaned electrode was rinsed with distilled water, and then was dried 

in a stream of nitrogen. 
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The electrode was modified immediately after the cleaning step. DpAu was electrodeposited onto 

the pretreated gold electrode at −0.2 V for 100 s in a solution containing 2 mg/mL HAuCl4 and 0.1 M 

KNO3. SEM images of GNPs and DpAu are shown in Figure 1(A,B), respectively. From Figure 1(A) 

we can see that there are some small diameter GNPs on the bare Au electrode but the distribution is 

uneven. Compared with the GNPs [Figure 1(A)], the SEM image showed that the DpAu formed a 

uniformer and porous film onto the surface of electrode [Figure 1(B)], it also showed that DpAu was 

electrodeposited onto the gold electrode successfully. After rinsing thoroughly with distilled water and 

dried in a stream of nitrogen. Then 5 μL of 0.5 mg/mL protein A was dropped on the DpAu/Au modified 

electrode at room temperature for 1 h and then the electrodes was immersed in 5 μg/mL  

anti-carbofuran antibody and kept for at least 12 h at 4 °C. Finally, the electrode was incubated  

with 2.5% BSA at room temperature for 1 h in order to block nonspecific binding sites. The resulted 

immunosensor was stored above the 0.1 M PBS at 4 °C when not in use. The schematic illustration of 

the fabrication process was shown in Scheme 1.  

Figure 1. SEM images of GNPs film (A) and DpAu film (B) on Au electrode. 

(A) (B) 

Scheme 1. Schematic illustration of the stepwise immunosensor fabrication process. 

 

2.4. Experimental Method 

The carbofuran detection was based on relative change in current response (I% = (I0 − I1)/I0) where 

I0 and I1 were the cathodic peak currents of the CVs before and after the immunosensor’s reaction to 

the antigen, respectively. 
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2.5. Regeneration of the Immunosensor 

After the immunization, the electrodes were immerged in 0.1 M citrate buffer solution (CBS,  

pH 2.7) for 5 min, in order to separate antigen-antibody complex from the PA surface, and then 

immobilized anti-carbofuran refering to the above steps for carbofuran detection. 

3. Results and Discussion  

3.1. Characteristics of the Electrochemistry on Electrode Surface 

The EIS of different electrodes are shown in Figure 2(A). DpAu with large specific area and high 

electrical conductivity could improve the conductivity of the electrode, thus after DpAu were 

deposited onto Au electrode, the charge transfer resistance (Rct) decreased (curve b), demonstrating 

that DpAu have been successfully assembled on the bare Au electrode (curve a), which is consitent 

with previous reports [24]. When PA was immobilized on the electrode surface, Rct obviously increased  

(curve c), which was ascribed the inhibition effect of PA biomacromolecules for electron transfer [21]. 

Then anti-carbofuran was covalently immobilized on the PA/DpAu/Au, the Rct obviously increased 

further (curve d). The reason was that anti-carbofuran forms an insulating layer on the electrode surface, 

leading to a higher electron transfer resistance. A further increase was noticed (curve e) when the  

anti-carbofuran/PA/DpAu/Au was blocked with BSA. The explanation was that BSA can block possible 

remaining active sites and further hinder the electron transfer, which could clearly confirm that BSA was 

successfully immobilized on the electrode. After the immunosensor was incubated with 50 ng/mL 

carbofuran solution, a further increase in Rct was noted (curve f). This was because the formed 

immunocomplex on the electrode surface acted as an inert block layer. Thus hindered the diffusion of 

electron towards the electrode surface, which was in good agreement with the previous reports [25]. 

Figure 2. EIS (A) and CVs (B) of different electrodes in 5 mM [Fe(CN)6]
3−/4−: (a) bare Au 

electrode; (b) DpAu/Au; (c) PA/DpAu/Au; (d) anti-carbofuran/PA/DpAu/Au; (e) BSA/ 

anti-carbofuran/PA/DpAu/Au; (f) carbofuran/BSA/anti-carbofuran/PA/DpAu/Au.  

 

(A) 
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Figure 2. Cont. 

 

(B) 

In addition, cyclic voltammograms (CVs) were also used to monitor the fabrication process.  

Figure 2(B) showed the CV of different electrodes, in agreement with EIS results. Figure 3 shows the 

CVs of the prepared immunosensor in 5 mM [Fe(CN)6]
3−/4− at different scan rates. It could be found 

that both the anodic and cathodic peak currents increased linearly with v1/2 in the ranges of 25–700 mV/s. 

The regression equations of the two straight lines are as follows: Ipa(μA) = −4.851 − 1.0815v1/2 (mV/s) 

(R2 = 0.9959), Ipc(μA) = 4.4903 + 1.1101v1/2 (mV/s) (R2 = 0.9959). This result indicated that the 

electrochemical process was a diffusion-controlled reaction [26].  

Figure 3. CVs of the modified elecrode at different scan rates (from a to q): 25, 35, 45,  

55, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700 mV/s in 5 mM 

[Fe(CN)6]
3−/4−.  

 

3.2. Optimization Conditions for Immunoassay 

The electrodeposition of DpAu onto Au electrode would improve the conductivity of the electrode 

and increase the absorbance of PA, so the electrodeposition time of DpAu greatly affected the 

analytical performance of the proposed immunosensor. As shown in Figure 4(A), the response  
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current increased with increasing electrodeposition time from 20 s to 100 s. However, when the 

electrodeposition times were longer than 100 s, the current response tends to be steady. The reason 

would be that thick DpAu layer hindered the electron transfer. Considering the requirement of our 

study and economic situation, 100 s was chosen as the optimal electrodeposition time.  

Figure 4. Effect of the electrodeposition time of DpAu (A), the pH of 5 mM [Fe(CN)6]
3−/4− 

(B) and the incubation time (C) on the immunosensor response. 

(A) 
 

(B) 

 
(C) 

The pH of the detection solution could influence the activity of the protein activity and the  

antigen-antibody reaction, thus the effect of pH values from 5.0 to 8.5 on the immunosensor 

performance was investigated in this work. As shown in Figure 4(B), current response increased with 

the solution pH increasing from 5.0 to 7.5, reaching a maximum current response at pH 7.5. However, 

when the pH was more than 7.5, the current response decreased. Thus, pH 7.5 was chosen as the 

optimal value and used throughout the experiment.  

The incubation time also influenced the immunosensor response for carbofuran detection. The 

immunosensor was incubated with 50 ng/mL carbofuran solution for different times at room 

temperature. Figure 4(C) showed that the current response decreased with increasing the incubation 

time at plateau at 15 min. Longer incubation time did not cause further decreases of the response 

current, indicating that the specific binding of antigen and antibody has reached equilibrium. As a 

result, the optimum incubation period was set at 15 min for the incubation steps in this study.  
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3.3. Detection of Carbofuran Using the Immunosensor 

Under the optimized experimental conditions, the developed immunosensor was used to detect the 

carbofuran solution of different concentrations. Figure 5(A) shows the CVs of the immunosensor 

incubated with different carbofuran concentrations. It was found that the current response decreased 

with carbofuran concentration. This may be due to more carbofuran binding to the immobilized 

antibodies at higher carbofuran concentrations, which acts as a definite kinetic barrier for the electron 

transfer. A linear relationship between the relative change in the current response and  

logarithm of carbofuran solution was obtained from 1 to 100 ng/mL with a regression equation:  

I% = 10.426 + 9.6704 lgC (ng/mL) (R2 = 0.9903) and another linear relationship from 100 ng/mL  

to 100 μg/mL with a regression equation: I% = 20.263 + 4.3357 lgC (ng/mL) (R2 = 0.9796)  

[Figure 5(B)]. We calculated the detection limit of 0.1924 ng/mL at a signal-to-noise ratio of 3  

(S/N = 3) between the detection signal of low concentration samples and the noise of blank samples.  

Figure 5. (A) The CVs of the immunosensor after incubation in different concentrations of 

carbofuran standard solution (from a to l): 0, 1, 5, 10, 50, 100, 500, 1.0 × 103, 5.0 × 103,  

1.0 × 104, 5.0 × 104, 1.0 × 105 ng/mL under the optimal conditions; (B) The calibration 

curve of the relative change of current response of the proposed immunosensor versus the 

logarithm of carbofuran concentration. 

 
(A) 

 
(B) 

The performance of the BSA/anti-carbofuran/PA/DpAu/Au sensor was compared with other 

reported immunosensors for the detection of carbofuran previously. As shown in Table 1, compared 

with other methods, the immunosensor has a relative large linear range and lower detection limit.  

Table 1. Comparison with other reported immunosensors for the detection of carbofuran. 

Electrode 
Liner range 

(ng/mL) 
Detection limit  

(ng/mL) 
References

AChE/PAMAM-Au/CNTs/GCE 1–20 0.89 [27] 
AuNP/AChE/Au - 7.293 [28] 
HRP/Ab/GNPs/L-cysteine/Au 40–140 40 [29] 
Carbofuran/Ab/SiSG/GCE 1–105 0.33 [30] 
BSA/Ab/PA/DpAu/Au 1–105 0.1924 This work 
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3.4. Specificity, Reproducibility, Stability and Regeneration of the Immunosensor 

To investigate the specificity of the immunosensor, we detected the current response of the 

immunosensor to carbofuran, other small molecules (chlorpyrifos, dichlorphos, phoxim) commonly 

present in real samples with same concentration of 50 ng/mL and their mixture. The relative changes 

of current response of the proposed immunosensor are shown in Figure 6. It can be seen that no 

significant changes are obtained for these interferences. It means that the developed immunosensor 

holds a high degree of selectivity for carbofuran detection.  

Figure 6. Relative change of current response of the immunsensor to 50 ng/mL carbofuran, 

50 ng/mL chlorpyrifos, 50 ng/mL dichlorphos, 50 ng/mL phoxim and the mixture containing 

50 ng/mL carbofuran, 50 ng/mL chlorpyrifos, 50 ng/mL dichlorphos and 50 ng/mL phoxim. 

 

The reproducibility of the immunosensor was estimated by determining 50 ng/mL carbofuran 

solutions with four immunosensors. Four electrodes exhibited similar current response and the relative 

standard deviation (RSD) was 3.6%. The results showed that the proposed immunosensor can be used 

repeatedly with an acceptable reproducibility. 

Under the optimal conditions, the immunosensor was measured by CV for 30 cycle successive scan, 

and a 2.4% deviation of the initial response was observed (Figure 7). The prepared immunosensors 

were suspended over the PBS at 4 °C for 2 weeks, and measured the current response every day. The 

immunosensors retained over 91% of their initial responses, indicating acceptable stability. 

Figure 7. 30 cycles CVs of the immunosensor in 5 mM [Fe(CN)6]
3−/4−. 

 

0.8 0.6 0.4 0.2 0.0 -0.2 -0.4
-8

-6

-4

-2

0

2

4

6

8

I/
µA

E/V  



Sensors 2011, 11                            

 

 

11688

Good regeneration performance is an important index for the popularization and application of an 

immunosensor. Figure 8 shows the current responses of the immunosensor in 50 ng/mL carbofuran 

solutions after processing by CBS and immobilized anti-carbofuran. As shown in Figure 8, after 

regenerating six times, the current response increased sharply. This is likely because PA can gradually 

shell off during continuous cleaning with the increase of regeneration times. Therefore, it leads to the 

anti-carbofuran antidody cannot immobilize onto the DpAu surface orientedly, and it furtherly affects 

the binding activities between antibody and antigen [31]. The results showed that the immunosensor 

had a good regeneration performance and could regenerate 6 times.  

Figure 8. Regeneration performance of the immunosensor. 

 

3.5. Real Sample Analysis 

In order to evaluate the feasibility of the proposed immunosensor for vegetables analysis, Chinese 

chive and celery cabbage samples were examined. A series of samples was prepared by adding 

carbofuran of different concentrations to these vegetable samples. The results were exhibited in Table 2 

and the RSD between 2.92% and 4.36% were obtained. The recovery was in the range 94.0%–106.1%, 

suggesting that the proposed immunosensor could be feasible for the direct analysis of carbofuran in 

real samples.  

Table 2. The recovery of the proposed immunosensor in real samples. 

Sample 
Added  

(ng/mL) 
Found  

(ng/mL) 
RSD  

(%) (n = 3) 
Recovery  

(%) 

Chinese chive 
10 10.43 4.18 104.3 

1.0 × 102 0.97 × 102 3.55 97.0 
1.0 × 103 0.94 × 103 3.81 94.0 

Celery cabbage 
10.0 10.61 4.36 106.1 

1.0 × 102 0.96 × 102 3.37 96.0 
1.0 × 103 1.03 × 103 2.92 103.0 
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4. Conclusions  

In this work, we introduced a strategy for preparing a new label-free amperometric BSA/ 

anti-carbofuran/PA/DpAu/Au immunosensor, which successfully immobilized the anti-carbofuran 

antibody on the modified electrode surface for the detection of carbofuran. Compared with GNPs,  

the DpAu film can immobilize PA efficiently, because it could overcome the low loading amount  

and gold-induced denaturation of PA, save the time and steps of preparation, and improve the  

electrode conductivity. Besides, due to PA’s specially binding ability of the Fc fragment of the antibody 

molecules, the application of PA could improves the capacity of antibody, thus enhance the detection 

sensitivity. With this strategy, a detection limit of 0.1924 ng/mL was achieved for carbofuran. Moreover, 

the developed immunosensor showed high specificity, reproducibility, stability and regeneration 

performance, which may find potential applications for the detection of other pesticides or compounds.  

Acknowledgments 

This work was supported by the National Natural Science Foundation of China (No. 30972055, 

31101286), Agricultural Science and Technology Achievements Transformation Fund Projects of the 

Ministry of Science and Technology of China (No. 2011GB2C60020) and Shandong Provincial 

Natural Science Foundation, China (No. Q2008D03). 

References 

1. Plangklang, P.; Reungsang, A. Bioaugmentation of carbofuran residues in soil using Burkholderia 

cepacia PCL3 adsorbed on agricultural residues. Int. Biodeterior. Biodegrad. 2009, 63, 515-522. 

2. Zhu, G.N.; Jin, M.J.; Gui, W.J.; Guo, Y.R.; Jin, R.Y. Development of a direct competitive 

enzyme-linked immunoassay for carbofuran in vegetables. Food Chem. 2008, 107, 1737-1742. 

3. Bataillard, P. Calorimetric sensing in bioanalytical chemistry. TrAC Trends Anal. Chem. 1993, 12, 

387-394. 

4. Fu, Z.M.; Jin, M.C.; Jin, Y.G.; Yang, Y.; Fu, C.; Jiao, X.L. Study on the determination of 

carbofuran residues in vegetable by GC/MS. Chin. J. Healthy Lab. Technol. 2005, 15, 421-422. 

5. Bacigalupo, M.A.; Meroni, G.; Longhi, R. Determination of carbofuran in water using the on-line 

preconcent ration high-performance liquid chromatography. Sci. Technol. Ed. 2006, 32, 1106-1111.  

6. Rodriguezmozaz, S.; Lopez, M.J.; Marco, M.P.; Barcelo, D. Biosensors for environmental 

monitoring a global perspective. Talanta 2005, 65, 291-297. 

7. Su, X.D.; Low, S.; Kwang, J.; Chew, H.T.; Li, F.Y. Piezoelectric quartz crystal based screening 

test for porcine reproductive and respiratory syndrome virus infection in pigs. Analyst 2000, 125, 

725-730.  

8. Fung, Y.S.; Wong, Y.Y. Self-assembled monolayers as the coating in a quartz piezoelectric 

crystal immunosensor to detect salmonella in aqueous solution. Anal. Chem. 2001, 73, 5302-5309. 

9. Zhuo, Y.; Yuan, R.; Chai, Y.Q.; Sun, A.L.; Zhang, Y. A tris (2,20-bipyridyl) cobalt(III)-bovine 

serum albumin composite membrane for biosensors. Biomaterials 2006, 27, 5420-5429. 

10. Liu, G.D.; Lin, Y.H. Nanomaterial labels in electrochemical immunosensors and immunoassays. 

Talanta 2007, 74, 308-317.  



Sensors 2011, 11                            

 

 

11690

11. Hong, B.; Kang, K.A. Biocompatible nanogold-particle fluorescence enhancer for fluorophore 

mediated, optical immunosensor. Biosens. Bioelectron. 2006, 21, 1333-1338. 

12. Sharma, P.; Sablok, K.; Bhalla, V.C. A novel disposable electrochemical immunosensor for phenyl 

urea herbicide diuron. Biosens. Bioelectron. 2011, 26, 4209-4212. 

13. Du, D.; Wang, M.H.; Cai, J.; Qin, Y.H.; Zhang, A.D. One-step synthesis of multiwalled carbon 

nanotubes-gold nanocomposites for fabricating amperometric acetylcholinesterase biosensor. Sens. 

Actuat. B Chem. 2010, 143, 524-529. 

14. Shulga, O.; Kirchhoff, J.R. An acetylcholinesterase enzyme electrode stabilized by an 

electrodeposited gold nanoparticle layer. Electrochem. Commun. 2007, 9, 935-940. 

15. Bonroy, K.; Friedt, J.M.; Laureyn, F.W.; Langerock, S.; Campitelli, A. Realization and 

characterization of porous gold for increased protein coverage on acoustic sensors. Anal. Chem. 

2002, 76, 4299-4306. 

16. Chen, Z.P.; Jiang, J.H.; Shen, G.L.; Yu, R.Q. Impedance immunosensor based on receptor protein 

adsorbed directly on porous gold film. Anal. Chim. Acta 2005, 553, 190-195. 

17. Babacan, S.; Pivarnik, P.; Letcher, S.; Rand, A.G. Evaluation of antibody immobilisation methods 

for piezoelectric biosensor application. Biosens. Bioelectron. 2000, 15, 615-621.  

18. Huang, C.H.; Li, J.X.; Tang, Y.; Chen, Y.Y. Detection of duck hepatitis virus serotype1 by 

biosensor based on imaging ellipsometry. Curr. Appl. Phys. 2011, 11, 353-357.  

19. Jaroslaava, T. Oriented immobilization of biologically active proteins as a tool for revealing 

protein interactions and function. J. Chromatogr. B Biomed. Sci. Appl. 1999, 722, 11-31.  

20. Martin, C.R.; Mitchell, D.T. Nanomaterials in analytical chemistry. Anal. Chem. 1998, 70,  

322-327.  

21. Wang, H.; Liu, Y.L.; Yang, Y.H.; Deng, T.; Shen, G.L.; Yu, R.Q. A protein A-based  

orientation-controlled immobilization strategy for antibodies using nanometer-sized gold particles 

and plasma-polymerized film. Anal. Biochem. 2004, 324, 219-226.  

22. Starodub, N.F.; Dzantiev, B.; Starodub, V.W. Immunosensor for the determination of the herbicide 

simazine based on an ion-selective field-effect transistor. Anal. Chim. Acta 2000, 424, 37-43. 

23. Zhu, Y.Q. Electrochemical Biosensors for the Detection of Penicillin Residues in Milk; Capital 

Normal University: Beijing, China, 2007; pp. 47-55. 

24. Wang, H.Y.; Sun, D.Y.; Tan, Z.A. Electrochemiluminescence immunosensor for α-fetoprotein 

using Ru(bpy)3
2+-encapsulated liposome as labels. Biointerfaces 2011, 84, 151-159. 

25. Jin, W.J.; Yang, G.J.; Wu, L.P. Detecting 5-morpholino-3-amino-2-oxazolidone residue in food 

with label-free electrochemical impedimetric immunosensor. Food Control 2011, 22, 1609-1616. 

26. Bard, A.J.; Faulkner, L.R. Electrochemical Methods Fundamentals and Applications; Chemical 

Industry Press: Beijing, China, 2005; pp. 255-256.  

27. Qu, Y.; Sun, Q.; Xiao, F.; Shi, G.; Jin, L. Layer-by-Layer self-assembled acetylcholine 

sterase/PAMA M-Au on CNTs modified electrode for sensing pesticides. Bioelectrochemistry 

2010, 77, 139-144.  

28. Shulga, O.; Kirchhoff, J.R. An acetylcholinesterase enzyme electrode stabilized by an 

electrodeposited gold nanoparticle layer. Electrochem. Commun. 2007, 9, 935-940. 

29. Sun, X.; Wang, X.Y.; Du, S.Y. Label-free amperometric immunosensor for the detection of 

carbofuran pesticide. Sens. Lett. 2011, 9, 958-963. 



Sensors 2011, 11                            

 

 

11691

30. Sun, X.; Du, S.Y.; Wang, X.Y.; Zhao, W.P.; Li, Q.Q. A label-free electrochemical immunosensor 

for carbofuran detection based on a sol-gel entrapped antibody. Sensors 2011, 11, 9520-9531. 

31. Liu, B.; Tong, Z.Y.; Hao, L.Q. Study on improving piezoelectric immunosensor’s performance 

with nano-gold surface modification. Piezoelectr. Acoustoopt. 2010, 32, 902-905. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


