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Nowadays, insect chemosensation represents a key aspect of integrated pest
management in the Anthropocene epoch. Olfaction-related proteins have been the
focus of studies due to their function in vital processes, such ashost finding and
reproduction behavior. Hence, most research has been based on the study of model
insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the
passage of time and the advance of new molecular techniques, insects considered non-
models have been studied, contributing greatly to the knowledge of insect olfactory
systems and enhanced pest control methods. In this review, a reference point for non-
model insects is proposed and the concept of model and non-model insects is discussed.
Likewise, it summarizes and discusses the progress and contribution in the olfaction field
of both model and non-model insects considered pests in agriculture.
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INTRODUCTION

Among living species, insects are considered the major class with an estimated more than five million
species, and an important role in the ecosystem (Stork, 2018). However, with an ever-growing global
population and a subsequent intensive agriculture at a global scale, an increasing number of insect
species have become a threat to the food supply. Thus, the impact of insects pests on agriculture has
caused serious damage to the global economy, causing losses of 20%–40% of world food production
(FAO, 2017). In that sense, it has been reported that the greatest damage caused by insects lies in
direct feeding on plant parts, such as chewing leaves, piercing stems and roots (Cranshaw, 2004;
Oerke, 2006).

Since insecticides emerged, chemical control has been the main strategy to fight insect pests.
However, their indiscriminate use as a consequence of a high demand for food has resulted in long
residual on plants as well as leaching into soil, reaching groundwater and affecting soil nutritional
quality, threatening the environment and living beings (Peralta et al., 1994; Arora and Sahni, 2016;
Md Meftaul et al., 2020). It is believed that the inherent toxicity of insecticides has generated serious
issues for human health. This is manifest in neurological symptoms and some related diseases, such
as Parkinson’s disease, based on direct or exposure to these chemicals (Hertzman et al., 1994; Kamel
et al., 2005; Keifer and Firestone, 2007). Over the years, insects have managed to adapt to different
classes insecticides resulted in developing resistance (Heisey and Norton, 2007; Bass et al., 2014;
Khan and Ahmad, 2019; Mohammed et al., 2019; Attia et al., 2020; Khan et al., 2020). For instance,
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the intensive use of transgenic corn with the insecticidal protein
Cry1F has provoked resistance in some major corn pests, the
codling moth Spodoptera frugiperda, affecting the economy and
agriculture of Puerto Rico, Brazil and the United States (Storer
et al., 2010; Storer et al., 2012; Farias et al., 2014; Huang et al.,
2014; Yang et al., 2016).

Alternatively, volatile chemicals already present in nature have
been extensively studied for their potential role inmanipulating insect
behavior (i.e., semiochemicals). Particular emphasis has been placed
on sex pheromones, which are volatiles usually released by a female,
that can elicit strong attraction in conspecific males. Additionally, an
approach called “push-pull” that interferes with the ability of insects
to find hosts by using plants capable of producing attractants and
repellents has been used (Hassanali et al., 2008). Thus, these behavior-
based techniques are related to olfaction and employed as effective
control methods in pest management, being non-toxic nor invasive
for crops (Smart et al., 2014; Soroker et al., 2015).

To understand how insects smell and their resulting behaviors,
the study of their olfactory physiology has arisen as a
groundbreaking field of research. Insects smell mainly through
their antennae, which houses specialized units called sensilla.
Inside these, odorant-binding proteins (OBPs) and chemosensory
proteins (CSPs) are small extracellular proteins which thought to aid
in capture and transport of odorants and pheromones to the
receptors (Leal, 2005; Zhou, 2010; Leal, 2013). The OBPs and
CSPs play a fundamental role in the mechanism of olfaction and
in the evolutionary adaptation of the olfactory system (Pelosi and
Maida, 1990; Vogt et al., 1991; Vieira and Rozas, 2011; Pelosi et al.,
2018; D’Onofrio et al., 2020). On the other hand, different types of
transmembrane proteins are present in olfactory receptor neurons
(ORNs), such as odorant receptors (ORs), gustatory receptors (GRs),
ionotropic receptors (IRs) and sensory neuron membrane proteins
(SNMPs) (Croset et al., 2010; Abuin et al., 2011). Altogether, these
allow the transduction of chemical signals into electrical signals
(Kaissling, 2013). Currently, ORs, CSPs and OBPs are being studied
comprehensively to clarify their binding specificities and
mechanisms. Their use as targets to identify novel potent
semiochemicals can be argued in terms of failures and successes
(Venthur and Zhou, 2018). Ultimately, these approaches assumed to
play an important role in integrated pest management and
broadening the limited options available today.

Over the last few decades, the advance in our understanding of
how insects smell was based on a few species. An important
milestone included the identification and synthesis of the first sex
pheromone, bombykol, from the silkmoth Bombyx mori
(Butenandt, 1959; Butenandt, 1963; Mansurova et al., 2009).
Then came the advance in molecular techniques to identify
OBPs as key odorant carriers (Vogt and Riddiford, 1981) and,
years later, the first complete genome of an insect that was from
Drosophila melanogaster (Adams et al., 2000). Such events made B.
mori, Antheraea polyphemus and D. melanogaster the first
identifiable model insects for research. Later, other insect species
with complete genomes, such as the malaria mosquito Anopheles
gambiae (Holt et al., 2002) and the honeybee Apis mellifera
(Weinstock et al., 2006), have also been considered model insects
for olfaction research. Nowadays, moths, namely Manduca sexta
and Spodoptera littoralis, have outstanding studies related to

olfactory proteins through next generation sequencing and
functional assays (Grosse-Wilde et al., 2011; de Fouchier et al., 2017).

Considering the significant advance in insect research, we
believe that there is no clear definition of what makes an insect
either a model or non-model. Likewise, we believe that there are
insects that have not been sufficiently considered, which have
outstanding features at molecular, physiological and behavioral
levels that can provide key evidence for the understanding of
nature, from agricultural questions to broader fields. Therefore,
the present review aims to discuss the impact of studying insects
with agricultural importance in the last decade as well as to
identify patterns that can allow to propose a benchmark for
model and non-model insects, including the nuances between
both concepts. In addition, this revision provides a general
perspective of the importance of insect olfaction research and
hints of what future could bring for the field.

In order to retrieve information to build our datasets, a
literature search was performed in the Web of Science (WOS),
Scopus, PLoS and Scielo databases, mainly using the following
keywords: pest control, sustainability, insect olfaction, model
insects, non-model insects and chemosensory proteins. In
addition, some phrases such as olfactory physiology, control
methods, agriculture and chemoreception were used, thus
collecting more than 300 scientific articles. These datasets can
be found in Supplementary Tables S1, S2.

WHAT ARE MODEL AND NON-MODEL
INSECTS?

Although no clear definition of what either a model or non-model
insect is, a few factors can be established that are common among the
first identifiable model insects. For instance, B. mori is considered a
model system for entomological studies due to its large body size, ease
of rearing in laboratory, and economic importance in sericulture
(Mita et al., 2004). D. melanogaster, on the other hand, began to be a
study model because of its short generation times, ease of breeding
and tolerance to relatively high population densities (Ashburner,
1989). Studies on the red flour beetle (Tribolium castaneum) arose
because of its importance as a pest of stored grains and grain
products, with a worldwide distribution, in addition to its ease of
rearing, relatively short generation interval, ability to be reared in field
and lowmaintenance (Chu et al., 2014; Kumar et al., 2018). Finally,A.
polyphemus (similar to B. mori) has been extensively studied because
of ease of breeding, large size and molecular mechanisms of sex
pheromone action (Collins and Weast, 1961; Hall, 2015).

Considering the above, it is possible to establish common
characteristics that model insects have, such as ease of rearing
and size, which could have helped scientists perform early
molecular biology-related methods. By contrast, non-model
insects can be considered little-known species that are often
specific to a geographic region. For instance, Neotetranychus lek,
a species of the red mite family first reported in 2013 in Thailand, is
believed to be endemic to Southeast Asia and a pest of cassava of
agricultural importance (Flechtmann, 2013). Another example is
the Bactrocera jarvisi fly, endemic to Australia, which is considered
a pest in the territory due to the damage it causes to commercially
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important crops, such as mango (Peng et al., 2007; Fay, 2012).
Many times, however, it depends on the study area whether an
insect is considered a model or not. For example, the greater wax
moth, Galleria mellonella, a harmful pest of beehives, can be
considered a non-model insect in terms of its understanding of
olfactory physiology, with some recent advances in the field
(Aburto et al., 2019; Zhao et al., 2019; Lizana et al., 2020).
Nevertheless, it can be a model insect due to its ease of rearing
and use as hosts for the study of pathogens (Killiny, 2018; Ménard
et al., 2021). Another example is the butterfly Araschnia levana,
which can be considered a model for the study of the molecular
basis and evolutionary ecology of seasonal polyphenism due to its
characteristic seasonal dimorphism (Baudach and Vilcinskas,
2021). In recent years, the order Coleoptera has taken on great
importance in the identification of little-known species, which can
be considered models for their particularities. An example is the
canola beetle Meligethes aeneus, considered a model to determine
how agricultural practices affect pest population dynamics as well
as the impact of different control strategies on the risk and speed of
resistance development (Stratonovitch, et al., 2014). Another case is
the potato beetle Leptinotarsa decemlineata, which due to its special
ability to adapt to plants, environmental conditions, with particular
resistance to more than 50 pesticides, can be considered a model
species for agricultural pest genomics (Schoville et al., 2018).
Furthermore, the number of studies of a particular species over
the years may result in a species initially considered as non-model
now being classified as a model species. The study of non-model
insects can bring multiple advantages for researchers, such as new
and original research questions and greater knowledge of pest
insects of agricultural importance. This would enable the
establishment of both species-specific control methods and less
harmful to the environment. Moreover, the increased knowledge
through research on non-model insects endemic to different
geographic areas would allow the respective economic
development of these areas. An example are beetles endemic to
Chile, namely Hylamorpha elegans and Brachysternus prasinus.
These insects are distributed in the same geographic area (central
and southern part of the country) and are considered pests of
economic importance due to the serious damage they cause to
crops, such as wheat (Triticum aestivum) and red clover (Trifolium
pratense) (Gonzalez, 1989; Artigas, 1994; Aguilera, 1995; Palma,
2004). Therefore, the study of these coleopterans would allow us to
understand the sympatry present in them as well as speciation.
Another example is eggplant borer Leucinodes orbonalis in
Bangladesh, where it has been possible to establish control
using pheromonal traps, thus minimizing the use of pesticides
(Mazumder and Khalequzzaman, 2010).

Overall, we believe that a non-model insect has limited
information on genomics and biological mechanisms, and is
generally distributed in specific geographic areas.

ROLE OF NON-MODEL INSECTS IN THE
STUDY OF OLFACTION

For insects, there are some key aspects for the development of
their respective life cycles, such as searching for food, mate

finding, a place to oviposit and even detecting a nearby
predator. Interestingly, all of them depend on the olfactory
system (De Bruyne and Baker, 2008). Thus, insect olfaction at
perireceptor level has several types of proteins for such purposes.
Soluble proteins, namely OBPs and CSPs, transport
semiochemicals through the sensillar lymph to reach receptors
in ORNs. These carriers function as the first filter of olfactory
information for insects (Leal, 2005). Receptors (e.g., ORs, IRs and
GRs), on the other hand, recognize semiochemicals, allowing
signal transduction followed by a cascade of events that end in the
central nervous system of insects, unleashing behavioral
responses (Wicher and Marion-Poll, 2018). In particular, IRs
and GRs have been a matter of interest in recent years due to their
involvement in hygroreception or sugar/bitter perception,
respectively (Slone et al., 2007; Jiao et al., 2008; Wanner and
Robertson, 2008; Enjin et al., 2016; Kim and Wang, 2016; Knecht
et al., 2017). Conversely, SNMPs have received less attention.
However, these types of transmembrane proteins appear to have a
key role in signal transduction, likely involved in the heteromeric
complex of OR/Orco (Zhang et al., 2020). Besides these, OBPs,
CSPs and ORs stand out as the most studied to date. Hence, this
review will focus on these.

Odorant Binding Proteins and
Chemosensory Proteins: Key Transporters
for Chemoreception
OBPs play a fundamental role in binding hydrophobic odorants,
such as pheromones, plant volatiles, among others, in the pores of
the sensilla and transporting them through the sensillar lymph to
facilitate their solubilization (Prestwich, 1996). Thus, it is
proposed that they participate in the first biochemical stage of
perireceptor events in odorant capture (Jacquin-Joly and Merlin,
2004; Pelosi et al., 2005; Zhou, 2010). Defined as molecules
capable of recognizing a variety of volatile compounds
(Venthur et al., 2014), it has been established that OBPs act as
a semiochemical solubilizers, transporters and ligand filters,
mediating the activation of ORs (Fan et al., 2011). For in-
depth reviews around OBPs (and CSPs too), we suggest
readers revise Zhou (2010), Venthur et al. (2014), and Pelosi
et al. (2018).

Insect OBPs were first identified in A. polyphemus (Vogt and
Riddiford, 1981), adopting the nomenclature of pheromone-
binding protein (PBP) for those OBPs that were male-biased
in expression and that showed affinity to sex pheromones.
Nowadays, this classification has remained only for
Lepidopterans. An outstanding example is the PBP1 of B. mori
(BmorPBP1), which became a study model to understand the
binding mechanism of pheromone components and to expand
the knowledge about how these proteins function in the olfactory
system of insects (Wojtasek and Leal, 1999; Damberger et al.,
2000; Horst et al., 2001; Lee et al., 2002). Outstandingly, the first
three-dimensional (3D) structure for an insect OBP was
BmorPBP1, showing that residue Ser59 was important for
establishing hydrogen bonds with bombykol (i.e., B. mori sex
pheromone) (Sandler et al., 2000). Later, Lautenschlager et al.
(2005; 2007) were able to show that BmorPBP1 undergoes
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important conformational changes that depend on pH,
suggesting ligand binding under neutral conditions, and
release under acidic conditions (i.e., near the dendritic
membrane of ORNs). Furthermore, BmorPBP1 binds and
holds bombykol across different pH values, contrary to other
types of odorants (Damberger et al., 2013). This certainly opened
up the field to study other insect species. Currently, the 3D
structure of OBPs for a diverse range of insects, such as navel
orangeworm Amyelois transitella (Di Luccio et al., 2013), medfly
Ceratitis capitata (Falchetto et al., 2019), aphids Megoura viciae
and Nasonovia ribisnigri (Northey et al., 2016). For instance,
these last structures have been used as templates to build the 3D
structure of homologues OBPs for other insect species, allowing
their study at bioinformatics and biochemical level. Thus, aphid
Rhopalosiphum padi, for which OBP7 strongly bound (E)-β-
farnesene, a repellent for R. padi, was supported by the use of
crystal structures of M. viciae and N. ribisnigri OBPs. More
recently, the crystal structure for Epiphyas postvittana
PBP3 was reported, representing the first 3D structure of an
OBP for tortricid moths, which have an enormous economic
impact for agriculture worldwide (Hamiaux et al., 2020). This
represents an important advance in the study of other tortricids of
economic importance, such as Lobesia botrana, Grapholita
molesta and Cydia pomonella, allowing a more precise
construction of 3D models for OBPs.

CSPs, as well as OBPs, are involved in peripheral olfactory
processing, and together they are the most important proteins for
chemoreception due to their functions as carriers of
semiochemicals (Breer et al., 1994; Calvello et al., 2003).
Remarkably, early evidence not only suggested CSPs as
odorant transporters, but that they were also involved in non-
chemosensory functions (Qiao et al., 2013), as they have been
identified in both chemosensory and non-chemosensory organs.
An example of this is Locusta migratoria, where 17 CSPs were
identified in reproductive organs (Zhou et al., 2013). Unlike OBPs
that are considered to be more antenna-specific, CSPs are
distributed in various insect tissues, namely legs, proboscis,
thorax, etc. (Picimbon et al., 2001; Wanner et al., 2005; Foret
et al., 2007). However, recent reports strongly suggest their role as
carriers of semiochemicals (Li et al., 2016; Peng et al., 2017). For
example, CSP1, CSP2 and CSP3 of rice leaf folder Cnaphalocrocis
medinalis (major pest of rice plants) showed high binding affinity
to host-related semiochemicals, such as terpenoids, and even sex
pheromones (Z)-11-hexadecenyl acetate and (Z)-11-hexadecenal
(Zeng et al., 2018). More recently, silencing of CSP4 and CSP5 in
aphid R. padi (pest of Poaceae plants) resulted in significant
reduction of octanal detection, a host plant attractant (Peng et al.,
2020). In addition to the role of CSPs binding semiochemicals,
their involvement in insecticide resistance has been recently
reported for cotton aphid Aphis gossypii, a polyphagous pest
with such resistance (Li et al., 2021). The authors found that
CSP5 of A. gossypii is upregulated under insecticide treatments
(imidacloprid and cypermethrin), potentially helping to decrease
mortality.

The first 3D structure to be solved for CSPs was cabbage moth
Mamestra brassicae CSP (Lartigue et al., 2002), a serious pest for
Brassica plants. On the one hand, 3D structures for Schistocerca

gregaria and M. brassicae CSPs, which have economic
importance as pests, have been solved and deposited in
databases (https://www.rcsb.org/). In the case of OBPs, more
3D structures are available; for example, there are 28 structures
available for Lepidoptera, two structures for both Coleoptera and
Hemiptera and in the case of Hemiptera, there are more than 30,
though only 3 are strongly related to agricultural pests.
Consequently, more structural studies can be performed for
OBPs than CSPs, being a key factor to study non-model insect
pests.

Odorant Receptors and Their Importance
for Understanding Insect Olfaction
In the family of membrane chemosensory receptors in insects, the
so-called ORs and IRs are found. Although both receptors are
responsable for chemical detection, ORs have received significant
attention due to their role in capturing secondary metabolites as
odorants, emitted by either host plants or conspecific insects. The
latter was identified inD.melanogaster using its assembled genome
(Adams et al., 2000), which encodes the particular 7TM for insects
(Clyne et al., 1999; Gao and Chess, 1999; Vosshall et al., 1999).
Then, with the identification of D. melanogaster Orco, initially
coded as Or83b (Vosshall andHansson, 2011), new questions arose
about the role of this receptor, since it was both highly conserved
across insect species and expressed in all ORN types (Vosshall et al.,
2000). Nowadays, it is known that Orco and ORs are a functional
heteromeric complex as odorant-sensing cation channels, which
ultimately provide the rapid odorant signaling of insects, which is
transient, sensitive and prolonged in nature (Neuhaus et al., 2004;
Wicher et al., 2008). For comprehensive reviews around insect
ORs, we recommend Yan et al. (2020) and Wicher and Miazzi
(2021).

Besides the identification of Orco, the role of ORs as specific
subunits was first tested in B. mori OR1 (BmorOR1) through
electrophysiological recordings using Xenopus oocytes (Sakurai
et al., 2004). The authors reported outstanding specificity of
BmorOR1, responding to bombykol but not bombykal. Using
D. melanogaster OR/Orco, Wicher et al. (2008) and Sato et al.
(2008) were able to answer how signal transduction functions
upon OR activation. Their results suggested that ionotropic
responses are followed by membrane depolarization and,
ultimately, metabotropic responses are unleashed. More
recently, the use of CRISPR-Cas9 to disrupt the expression of
Orco in the hawkmoth M. sexta showed that Orco is crucial for
sexual communication but not for host location (Fandino et al.,
2019). Despite all these advances based on model insects, the
study of a non-model insect established a milestone in insect
olfaction. The first three-dimensional (3D) structure of the Orco
was from the fig parasitic wasp, Apocrypta bakeri (Butterwick
et al., 2018). This has provided key knowledge on structure for
these receptors. Consequently, the A. bakeri Orco structure has
been used as a template for homology modeling on OR46 and
OR49 of bark beetle Ips typographus, a serious threat to forest
ecosystems (Yuvaraj et al., 2021).

Furthermore, the development of techniques, such as Calcium
imaging through HEK293 cells (Corcoran et al., 2014),
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electrophysiology through Xenopus oocytes (Choo et al., 2018)
and single-sensillum recordings (SSRs) from Drosophila (de
Fouchier et al., 2017), have allowed functional studies for non-
model insects. For instance, by using the moth E. postvittana the
utilization and capabilities of HEK293 cells in insects was
demonstrated (Corcoran et al., 2014). Another example is
aphid Acyrthosiphon pisum, where functional assays with ORs
enabled the identification of new candidate volatiles for aphid
control strategies and demonstrated that these assays are suitable
for aphid ORs (Zhang et al., 2017).

RELEVANT NON-MODEL INSECTS FOR
THE ADVANCE OF OLFACTORY
PHYSIOLOGY
In the last decade, different insect species have contributed to the
understanding of peripheral olfactory systems, which today are
known for being important economic pests, such as S. littoralis or
Helicoverpa armigera. In our analyses, groundbreaking findings
have been reported from early non-model insects, which are
summarized in Table 1. As shown, the order Lepidoptera has
contributed the most to olfactory physiology and, consistent with
the agricultural importance that these have, we propose that these
species can be considered study models. This summary supports
the fact that new discoveries are difficult to be achieved based on a
few insect species (e.g., study models). Thus, the particularities

presented by these insects such as the inverse sexual
communication of G. mellonella and the predatory behavior of
H. convergens that allows the control of pests, such as aphids
generate new study opportunities that model insects, such as D.
melanogaster and B. mori, cannot provide. Also, the study of non-
model insects shed lights to new patterns of insect biology that
had not been studied before.

A decade ago, advances in olfactory knowledge set a precedent
in the understanding of molecular mechanisms related to insect
olfaction. An example of this is the first complete analysis of the
antennal transcriptome involved in olfaction in what could had
been considered a non-model insect, M. sexta (Grosse-Wilde
et al., 2011). Another example is the first comparison of adult and
larval olfactory gene repertoires in the then non-model moth S.
littoralis (Poivet et al., 2013). Currently, both Lepidopterans can
be considered model insects according to the contributions in
olfactory physiology and number of studies on each moth. The
same happens with other insects that today can be considered
study models, but a decade ago were still incipient case studies,
such as Holotrichia oblita, H. armigera and G. mellonella.

Besides Lepidopterans, it is observed that Hemipterans appear
in a large number of studies, explained by their condition as
agricultural pests (Sorensen, 2009; Dedryver et al., 2010). Thus,
species such as Adelphocoris lineolatus, Myzus persicae, Sitobion
avenae, among others, can be found (Supplementary Table S2).
By contrast, Hemipterans appear under-represented. An
important number of studies around olfaction (i.e., OBPs,

TABLE 1 | Summary of early non-model insects and their contribution to olfactory physiology in the last decade.

Specie Order Host Genomea Contribution References

Galleria mellonella Lepidoptera Beehives Yes Advance in understanding inverse sexual
communication

Leyrer and Monroe (1973), Mylonakis et al.
(2005), Fuchs et al. (2010), Lizana et al.
(2020)Study model for bacterial and fungal pathogenesis

Spodoptera
littoralis

Lepidoptera Cotton No The first comparison of adult and larval olfactory
gene repertoires

Poivet et al. (2013), De Fouchier et al.
(2017), Bastin-Héline et al. (2019)

Comprehensive functional characterization of ORs
Novel lineage of candidate pheromone receptors

Dendrolimus
punctatus

Lepidoptera Pine Yes A novel lineage of candidate pheromone receptors Shen et al. (2020)

Eriocrania
semipurpurella

Lepidoptera Betulaceae No A non-ditrysian origin and evolution of pheromone
receptors across Lepidoptera

Yuvaraj et al. (2017)

Helicoverpa
armigera

Lepidoptera Cabbage Tobacco Yes Sensitivity of an OR regulates optimal mating time,
ensuring viability in fecundity

Chang et al. (2017), Wang et al. (2020)

A leg-biased OBP involved in flight activity
Holotrichia oblita Coleoptera Roots (Peanut,

Soybean, Corn)
No Co-expression of OBPs may potentiate the range

of odors to which olfactory receptor neurons
respond

Deng et al. (2012), Wang et al. (2013)

Hippodamia
convergens

Coleoptera Aphids No Olfactory behavior of lady beetles allows
identification of prey by sex pheromone (green
peach aphid)

Acar et al. (2001)
Verheggen et al. (2007)

Apocrypta bakeri Hymenoptera Ficus hispida Yes The first three-dimensional (3D) structure of Orco Butterwick et al. (2018)
Manduca sexta Lepidoptera Tobacco Yes The first complete analysis of the antennal

transcriptome
Grosse-Wilde et al. (2011)

Acyrthosiphon
pisum

Hemiptera Alfalfa, pea,
legumes

Yes Genomic model system for ecological,
developmental and evolutionary studies

Brisson and Stern (2006), Peccoud and
Simon (2010)
Vellichirammal et al. (2016)

Dendroctonus
ponderosae

Coleoptera Pine trees Yes The first functionally characterized cytochrome
P450 (DponCYP345E2) in insect olfaction

Keeling et al. (2013)

aBased on NCBI Assembly and InsectGenome databases
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CSPs and ORs) have been performed on different species of
Hemipterans, and besides A. pisum, we were unable to find
studies that represent a breakthrough in the research field. On
the other hand, the order Orthoptera includes insects that cause
serious damage to crops and tree seedlings, such as leafhoppers
(Joshi et al., 1999; Akhtar et al., 2012). However, no studies were
found in comparison with those included in Table 1. Without
underestimating evidence on Hempiterans and Orthopterans, we
believe it is important to advance in future studies that can
enhance our knowledge on their olfactory physiology, behavior
and likely control methods.

Role of Sequencing Techniques on
Non-Model Insect Research
The development of next generation sequencing (NGS) has
increased both genomic and transcriptomic studies of species
with limited information (Ekblom and Galindo, 2010;
McCormack et al., 2013; Wachi et al., 2018). These techniques
have contributed to the discovery of levels and patterns of genetic
diversity, phylogenetic relationships and adaptations (Nadeau
and Jiggins, 2010; Stapley et al., 2010). Examples are D.
melanogaster, B. mori, A. gambiae and T. castaneum (Adams
et al., 2000; Holt et al., 2002; Mita et al., 2004; Richards et al.,
2008), for which genomes were deposited in the early 2000s.
Furthermore, more precise and broad phylogenetic analyses have
been performed. For example, the first phylogenomic tree,
performed in 2014, had 2,696 genes from Lepidopterans,
establishing an evolutionary framework in relation to
butterflies and moths (Kawahara and Breinholt, 2014). It is
worth mentioning that during the last decade, extraordinary
efforts have resulted in hundreds of olfactory proteins
identified through both genome and transcriptome sequencing
projects. By 2019, Li et al. (2019) reported that 1,219 insect
genome-sequencing projects were registered in the National
Center for Biotechnology Information (NCBI). Likewise,

Venthur and Zhou (2018) showed that 54 antennal or head
transcriptomes (RNA-seq technology) were published. The
advance in RNA-seq has allowed the expansion in type and
number of samples to be sequenced. For instance, 67 RNA-seq
datasets have been reported for M. sexta (a recent model insect),
including different tissues and developmental stages (Cao and
Jiang, 2017). Despite this, there are still other insect species,
considered non-models as discussed above, with lack of
sequencing data (Oppenheim et al., 2015). It is noteworthy
that they are of great importance as agricultural pests or
because they have special features that allow advances in
scientific research. Nevertheless, an important increase in
genomic and transcriptomic studies in specific insect species
(i.e., non-model insects) has occurred in recent years
(Figure 1.). Thus, it can be seen that the ratio of studies on
model:non-model insects has changed from 1:1 to 1:14.
Therefore, lower costs in sequencing projects, the rapid spread
of insects worldwide and the search for control/monitoring
methods are among those factors that can explain these findings.

Examples of how useful these techniques have become is the
development of a computational acetyl cholinesterase that,
together with RNA-seq, determined insecticide resistance
mutations in insects like Plutella xylostella, Chilo suppressalis
and Bemisia tabaci (Guo et al., 2017). Interestingly, CSPs and
OBPs have been found to be involved in insecticide contact in P.
xylostella, where CSP4, CSP8 and OBP13 are reported to be up-
regulated after permethrin treatment (Bautista et al., 2015).
Furthermore, it has been shown that the use of NGS can
provide larger and more efficient large-scale RNA interference
(RNAi) targets to knock-down gene of interests, allowing their
application along with more conventional pest control strategies
(Wang et al., 2011). As shown in Figure 1, over the years antennal
transcriptome studies have steadily increased, and the
identification of chemosensory proteins has gained great scope
for researchers, with emphasis on non-model insects. It is
believed that in addition to the large amount of data from
transcriptomics, the next challenge is genomic sequencing and
the subsequent collection of massive datasets for non-model
species.

SPREAD OF NON-MODEL INSECTS: ROAD
TO BE STUDY MODELS OF ECONOMIC
IMPORTANCE
The growing and uncontrollable demographic trends have caused
great concern because of an increased demand for food. Estimates
have been made that by the year 2050 this demand will be up to
60% higher (Alexandratos and Bruinsma, 2012). In that sense,
agriculture plays a significant role in food production (Tilman
et al., 2011). Thus, it is estimated that with globalization more
than one-tenth of all known pests have reached other countries
where their hosts grow (Bebber et al., 2014). More discouraging is
the fact that climate change can affect insect pest establishment,
with increased invasion by insects due to a mixture of factors,
such as changes in precipitation and increases in both
atmospheric CO2 and temperature (Skendžić et al., 2021). On

FIGURE 1 |Number of studies published in the last 10 years on olfactory
protein identification from antennal transcriptome (detailed data available in
Supplementary Table S1).
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the other hand, it is proposed that a decline in flying insects has
occurred in recent years due to intensive agriculture as well as
urbanization and overuse of insecticides (Eggleton, 2020).
However, we as well as Eggleton (2020) argue that this is a
preliminary statement, and that anthropological activity (e.g.,
agriculture) can selectively support some insect species, such as
polyphagous pests, to settle in new geographic areas.
Consequently, it is crucial that in the face of a changing
world, basic research on a diversity of insects can be
performed. In particular, chemosensation (i.e., study of OBPs,
CSPs or ORs) can provide relevant information considering it is
the main driving force for insect behavior. Our literature analyses
suggest a significant increase in studies related to chemosensation
of non-model insects during the last decade (Table 2), from 16 to
more than 80 published research articles every year. Remarkably,
China is positioned as a highly productive country with
435 studies in the last decade followed by the US and France
with 27 and 19, respectively. This finding could be related to the
diversity of insects that have been studied. For instance,
11 different insect species were studied by 2011, whereas it
scaled up to 71 in 2020 and 52 in 2021. Despite this diversity,
there are some insects that were not initially considered as models
and that have been systematically studied in the last 10 years, such
as S. littoralis, A. lineolatus and H. armigera. It is worth
mentioning that about 20 studies related to olfaction of each
of these species have been published. Hence, these insects can be
considered as models for the number of studies in the area.
Finally, this summary evidences the impact of agricultural pests

in the last few years and how research teams have had to address
their control and monitoring.

Among those insects as study models, D. melanogaster can be
considered the most famous “workhorse” for bioinformatics,
experimental biology and genetics, with 6 Nobel prizes to its
credit. However, D. melanogaster is a small representative of a
large lineage of Drosophila species. An interesting subgroup of
species from melanogaster is the suzukii subgroup, where D.
suzukii appears. This fly is a serious pest of berries, laying eggs in
healthy unwounded fruits (Sasaki and Sato, 1995). Originally
linked to Southeast Asia, particularly Japan, China, Taiwan,
North and South Korea, and even the Russian Far East, D.
suzukii has spread rapidly across the European and American
continents (Cini et al., 2012). Nowadays, it can be found in South
America and Africa (Deprá et al., 2014; Hassani et al., 2020).
Interestingly, studies around chemosensation in D. suzukii are
only recent compared with other insect species mentioned in this
review. For instance, 71 OR genes were identified in 2016 by
comparative genomics, including D. suzukii, D. biarmipes and D.
takahashii (Hickner et al., 2016). More recently, the differential
expression of ORs was evaluated, which appeared to be
modulated by post-mating status in D. suzukii females (Crava
et al., 2019). Likewise, 27 chemosensory genes, such as ORs, OBPs
and CSPs, were found to be sex-biased in expression by 2020
(Ahn et al., 2020). Recent evidence in 2021 reported the role of
OBP69a and OBP76a inD. suzukii, being functional against floral
compounds, such as β-ionone (Zhan et al., 2021). These advances
represent an important first step towards likely big discoveries

TABLE 2 | Summary of insect olfaction studies in the last decade.

Year Geographical areaa,b Total
number of
studies

Number of
insect
species
studied

Most studied insectb

2011 China (8); Canada (2); EE.UU. (3); France (2); Germany (1) 16 11 Manduca sexta (2); Spodoptera littoralis (2); Locusta migratoria
(2); Heliothis virescens (2); Adelphocoris lineolatus (2)

2012 EE.UU. (6); China (24); Italy (2); France (4); New Zealand (2) 37 32 Spodoptera littoralis (4); Helicoverpa armigera (4)
2013 China (28); EE.UU. (5); India (1); France (2); Germany (1); Sweden

(2); Mexico (1)
40 23 Helicoverpa armigera (5)

2014 EE.UU. (3); China (31); Brazil (1); Chile (1); Italy (1); Belgium (1);
Australia (1); Germany (2); France (2); Sweden (1); Norway (1)

43 36 Spodoptera exigua (4)

2015 China (35); EE.UU. (2); Sweden (1); France (1); New Zealand (2);
Australia (1); Japan (1); India (1); Thailand (1); Brazil (1)

47 37 Spodoptera litura (6)

2016 China (42); EE.UU. (2); Brazil (1); India (1); Saudi Arabia (2);
United Kingdom (1); Sweden (2); France (1); Japan (3); Chile (1);
Italy (1); Canada (1)

58 52 Cydia pomonella (4)

2017 Germany (3); China (45); France (1); Sweden (1); Brazil (1);
EE.UU. (3)

54 44 Adelphocoris lineolatus (5)

2018 Sweden (2); Chile (1); China (53); Japan (1); Saudi Arabia (1); Italy
(1); EE.UU. (1); Canada (1); India (1); France (1)

63 53 Bactrocera dorsalis (3); Grapholita molesta (3)

2019 China (51); Chile (3); Taiwan (1); Sweden (4); Germany (3); Italy
(2); EE.UU. (1)

65 57 Bactrocera minax (3); Spodoptera littoralis (3)

2020 China (71); Chile (2); Mexico (2); Canada (1); United Kingdom (1);
Sweden (1); France (1); Germany (1); Spain (1); Kenya (1);
EE.UU. (1)

83 71 Bactrocera minax (4)

2021 China (47); EE.UU. (1); Panama (1); Saudi Arabia (2); Italy (2);
Austria (1); Australia (1); Kenya (1); France (4); Sweden (2);
Colombia (1)

63 52 Adelphocoris lineolatus (3); Rhynchophorus ferrugineus (3);
Spodoptera littoralis (3)

aCountries have been showed in no particular order.
bNumber in parenthesis indicates amount of published studies that year. Full database can be found in Supplementary Table S2.
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around the chemical ecology of D. suzukii, which could become a
study model in the near future.

Another example of a non-model insect that has spread in
recent years is the grapevine moth Lobesia botrana. This moth is
reported as the most harmful pest in grapevine production in
Southern and Central European countries (Moschos et al., 2004),
and currently, including South and North American countries,
such as the wine-growing regions of Chile, California and
Argentina. The first report of L. botrana was in Austria in
1776 by Denis and Schiffermüller; however, its geographic
origin remains uncertain. Although this moth is linked to
grapes and originally to berries from Daphne gnidium, it is
considered a polyphagous insect (Maher and Thiéry, 2006).
Given its rapid spread and economic importance, it has been
extensively studied in terms of its chemical ecology and pest
management (Tasin et al., 2010; Chelef et al., 2020). In relation to
chemosensation, recent studies have addressed the identification
and functional characterization of olfactory proteins. Thus, a
profile of 61 ORs, 35 OBPs and 18 CSPs was reported for L.
botrana in 2018 (Rojas et al., 2018), and an OBP tuned to
pheromone components was reported in 2019 (Venthur and
Xhou, 2018). It is believed that L. botrana, like other
Tortricids of economic importance, such as C. pomonella and
G. molesta, will likely become a study model in the future.

Besides Dipterans and Lepidopterans, Coleopterans have been
a matter of research in recent years. An example is the red palm
weevil Rhynchophorus ferrugineus, which attacks palm trees in a
mass coordinated process (Oehlschlager, 2016). Originally related
to South and Southeast Asia, this insect has reached worldwide
distribution (El-Mergawy and Al-Ajlan, 2011; Fouda et al., 2022).
In terms of olfaction, important advances have been made in
recent years. For example, the OR, RferOR1, has been identified
as active against the pheromone ferrugineol ((4RS,5RS)-4-
methylnonan-5-ol) and ferrugineone ((4RS)-methylnonan-5-
one) (Antony et al., 2016). Likewise, the profile of olfactory
proteins (e.g., 37 OBPs, 10 CSPs and 63 ORs, among others)
has been reported (Gonzalez et al., 2021). In fact, the genome of R.
ferrugineus has been published, suggesting that this insect will
become a study model (Hazzouri et al., 2020). Another example
are bark beetles, such as Ips typographus, an important forest
pest, where olfactory proteins (15 OBPs, 6 CSPs, 3 SNMPs,
43 ORs, 6 GRs and 7 IRs) have been identified and analyzed
(Andersson et al., 2013). Recently, putative ligand binding sites
have been identified in ORs of this bark beetle that affect the
responses of these insect receptors (Yuvaraj et al., 2021).

Other insect species, such as aphids M. persicae and S. avenae
as well as Lepidopterans related to stored food pests, such as
Plodia interpunctella, are already being studied according to our
literature analysis (Supplementary Table S2). Thus, depending
on their contribution to insect chemosensation, we argue that
these insects (as well as others) can become study models.
Nevertheless, we believe that each contribution strengthens the
study of olfactory physiology, and pushes the limits towards more
in-depth research. Thus, in addition to the economic importance
of these insects, over the years the gap between model and non-
model insects has been narrowing, leading to an increase in
knowledge at the chemosensory level. However, there are still

insects that have not been studied or have been little studied. An
example is Euborellia annulipes, an important predator of pest
insects, whose olfactory system has not yet been studied (da Silva
Nunes et al., 2020; Tangkawanit et al., 2021).

CONTROLOFNON-MODEL INSECTS STILL
LED BY CONVENTIONAL INTEGRATED
PEST MANAGEMENT STRATEGIES
With industrial revolution pushing the limits of productive areas,
agriculture was no exception. By 1940 insect pest control
strategies were needed to mitigate negative impacts; therefore,
insects were controlled using man-made chemicals, called
pesticides (Jones, 1998). However, concerns were raised in the
ensuing decades because of pesticide persistence, groundwater
contamination and appearance of resistance in insects (Hou and
Wu, 2010; Hillocks, 2012; Garrigou et al., 2020). Therefore,
alternative approaches emerged, such as the use of
semiochemicals, which served for integrated pest management
(IPM) strategies. This term is defined as a pest management
strategy that employs methods consistent with economic,
ecological and toxicological requirements in order to maintain
pests below the economic threshold, giving priority to natural
limiting factors (Katsoyannos, 1992; Jones, 1998). Consequently,
it was necessary to understand the biology and life cycles of insect
pests to apply IPM strategies. In that sense, several olfaction-
dependent techniques raised in the context of IPM strategies,
such as mating disruption, mass trapping, lure and kill and push-
pull (Jones, 1998). For a more in-depth review of these
techniques, we suggest readers to check Nesreen and Abd El-
Ghany (2019), and Morrison et al. (2021).

During the 2000s, the first steps in understanding insect
olfactory systems allowed some advances in the area of insect
pest control, where OBPs were used as targets, despite being
discovered years before by Vogt and Riddiford (1981). Thus,
OBPs were the first target to use to clarify behaviorally active
chemicals as a response to issues in semiochemically-based IPM
strategies, such as time-consuming experiments for
semiochemical identification, extensive bioassays at laboratory
and field level, and related costs. Nowadays, OBPs and ORs have
been proposed to be key targets for pest control, thus ligand
binding to these proteins could interfere with specific insect
behaviors (Venthur and Zhou, 2018). Therefore, the last
decade has been marked by the development of reverse
chemical ecology approaches, which take advantage of
olfactory proteins (i.e., OBPs or ORs) to identify novel potent
semiochemicals for pest control (Leal, 2005). The first successful
study was on the OBP1 of mosquito C. quinquefasciatus, where
trimethylamine and nonanal exhibited potent attraction (Leal
et al., 2008). More recently, OR36 of C. quinquefasciatus has been
studied, which from a panel of 230 odorants, acetaldehyde was
the strongest in activating OR36 (Choo et al., 2018). Likewise, 4-
methylcyclohexanol was found as a specific activator of OR80 in
Chagas vector Rhodnius prolixus, being repellent in behavioral
assays (Franco et al., 2018). In addition, with scientific advances
in the area, reverse chemical ecology has been implemented in
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non-model insects of agricultural importance. In the oriental fruit
moth G. molesta, it was demonstrated through behavioral and
field trapping assays that the compound codlemone ((E,E)-8,10-
dodecadienol) is an excellent pheromone synergist that can be
detected by GmolPBP2 and also provides an optimization of
commercial sexual attractants used in the control of this pest (Liu
et al., 2022).

It is worth noting that in recent years reverse chemical ecology
has evolved into a genetically-based approach. For example, in
the cotton leafworm S. littoralis, the CRISPR-Cas9 technique was
used to edit the genome by eliminating the Orco gene
(Koutroumpa et al., 2016). Results showed that more than
80% of the individuals had mutations in the Orco gene,
passing them on to the next generation, which caused
problems in the olfactory detection of pheromones by this
moth. This appears to be the first step into new, ethically
debatable, control techniques for specific species.

Despite the progress in olfactory physiology in both model and
non-model insects, the jump towards IPM strategies based onOBPs,
CSPs and/or ORs, remains elusive. Currently, many insect pests are
still monitored and/or controlled by conventional IPM strategies. An
example is the use of pheromones, which have proven to be a
successful method (i.e., mating disruption) for several pest species,
mainly in Lepidoptera (Conchou et al., 2019), by releasing high
concentrations of pheromones in crop fields (Reddy and Guerrero,
2010; Benelli et al., 2019). Recently, sex pheromone-baited traps
((Z,Z)-7,10-hexadecadienal) were designed for monitoring the apple
orchard pest Chilecomadia valdiviana, certainly a non-model insect
(Barros-Parada et al., 2021). The mating disruption technique has
also been used against the olivemoth Prays oleae to suppress damage
in olives (Ortiz et al., 2021). The authors’ findings suggest that
aerosol-type traps could yield >75% of male captures and 20% less
damage in olives.

Other types of conventional IPM techniques are also still used.
For example, the push-pull strategy is a technique that repels an
insect pest from a crop of interest, while attracting it towards an
external location. A reduction in population of leafhopper
Empoasca flavescens has been reported by using repellents and
attractants to control the insect (Niu et al., 2022). Likewise, mass
trapping has been useful in controlling medfly Ceratitis capitata,
which functions as powerful trap full of attractants (Hafsi et al.,
2019). For C. capitata, two food attractants (amine and organic
acids) were released from baited sprays, which resulted in low
damage (2.2%–3.9%) to citrus fruits.

To date, it is clear that IPM strategies are pivotal in insect pest
control and monitoring in order to pursue environmentally
friendly methods. However, with the enormous number of

olfactory proteins identified year by year in response to the
spread of non-model insects, we strongly believe that
significant discoveries and technological advances are yet
to come.

CONCLUDING REMARKS

The study of insect olfaction is no longer a novel approach for
integrated pest management. It has evolved from the study of a
few insect species and their olfactory proteins to dozens of insect
species and several type of proteins. This might be led by such
factors as insecticide resistance, intensive agriculture and climate
change that have affected spread and establishment of pests
worldwide. Consequently, sequencing technologies are
becoming increasingly feasible for studying insect olfaction.
This has resulted in groundbreaking evolutionary studies as
well as improved integrated pest management strategies.
Particularly, non-model insects have provided us with a
profound knowledge of olfaction, from structural features of
receptors (A. bakeri Orco) to tissue-biased expression with
special functions (H. armigera OBP3). Furthermore, we believe
that the study of non-model insects, in addition to providing
multiple benefits for agriculture, can pave the way to face future
challenges in a changing ecosystem.
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