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ABSTRACT

Summary: Frameshift (FS) prediction is important for analysis and

biological interpretation of metagenomic sequences. Since a genomic

context of a short metagenomic sequence is rarely known, there is not

enough data available to estimate parameters of species-specific stat-

istical models of protein-coding and non-coding regions. The chal-

lenge of ab initio FS detection is, therefore, two fold: (i) to find a way

to infer necessary model parameters and (ii) to identify positions of

frameshifts (if any). Here we describe a new tool, MetaGeneTack,

which uses a heuristic method to estimate parameters of sequence

models used in the FS detection algorithm. It is shown on multiple test

sets that the MetaGeneTack FS detection performance is comparable

or better than the one of earlier developed program FragGeneScan.

Availability and implementation: MetaGeneTack is available as a

web server at http://exon.gatech.edu/GeneTack/cgi/metagenetack.

cgi. Academic users can download a standalone version of the pro-

gram from http://exon.gatech.edu/license_download.cgi.

Contact: borodovsky@gatech.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Metagenomic sequences are obtained from environmental micro-

bial communities. The short sequences are usually sequenced
using next generation sequencing (NGS) platforms such as
Roche 454 and Illumina or traditional Sanger sequencing.

Each platform produces reads of different lengths and has dif-
ferent error models. 454 sequencing platforms produce reads of
�450nt; errors are usually insertions and deletions (indels) in

homopolymer regions. Illumina platform currently generates se-
quences of length �150 nt with substitutions constituting almost
all errors. Sanger sequencing produces reads that may contain

both types of errors, and the read length is �900nt. Before gene
calling, quality control methods are used to reduce errors on raw
reads (e.g. trimming the error-prone 20–25nt in Illumina 30 read

ends). Short reads are assembled into longer (shotgun) sequences
and contigs. In assembled sequences, the per-nucleotide error
rate can be reduced from 0.5% in raw reads to as low as

0.005%. Still, errors may affect �3% to �4.5% of genes in

assembled sequences (Luo et al., 2012). Even several thousand

nucleotides long metagenomic sequences do not carry enough

sequence data to accurately estimate parameters of statistical

models for protein-coding and non-coding regions. Moreover,

the performance of conventional tools of gene prediction and

annotation are impaired by indels in protein-coding regions

(Hoff, 2009). On the other hand, tools of comparative genomics

that have certain power in detection of frameshifts interrupting

evolutionary conserved regions rely entirely on comparison with

sequences from existing databases; these tools would not help to

analyse novel genes and genes having low similarity with known

genes (Kunin et al., 2008).
Previously we have developed an algorithm and software pro-

gram GeneTack (Antonov et al., 2010), an ab initio tool for

finding frameshifts in prokaryotic genomes. Since GeneTack re-

quires a species-specific statistical model, it cannot work with

sequences shorter than several hundred kilobases. The long

enough sequence is necessary for self-training of GeneMarkS

(Besemer et al., 2001), the gene finder providing model param-

eters and gene predictions to GeneTack. Here we introduce an ab

initio frameshift finder, MetaGeneTack, designed for metage-

nomic sequences. MetaGeneTack uses a heuristic method

(Besemer et al., 1999) to infer model parameters suitable for

analysis of a short sequence at hand (e.g. 400 nt). A recently

developed ab initio gene finder, FragGeneScan (Rho et al.,

2010), is also able to detect frameshifts in short sequences. We

have assessed the performance of MetaGeneTack in tests on

short sequences from 18 prokaryotic species. We have shown

that MetaGeneTack performs comparably or better in frameshift

detection than FragGeneScan.

2 MATERIALS AND METHODS

The idea of the heuristic method for building models of protein-coding

regions is that frequencies of oligonucleotides, if cannot be derived dir-

ectly owing to insufficient sequence length, can be inferred as functions of

the sequence GC content. Thus, the oligonucleotide frequencies could be

reconstructed as soon as we compute GC content of the short sequence

that may serve as an estimate of GC content of the genome the sequence

originated from. MetaGeneTack uses the fifth-order polynomial approxi-

mations of dependencies of hexamer frequencies on genome GC content

derived from data on 582 annotated prokaryotic genomes (for details see

Zhu et al., 2010).*To whom correspondence should be addressed.
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Heuristic method is used in two major steps of the MetaGeneTack

pipeline. At the first step the pipeline is running MetaGeneMark (Zhu

et al., 2010), an ab initio gene finder using the heuristic method in the

algorithm of analysis of short metagenomic sequences. This step identifies

an initial set of protein-coding genes and selects a corresponding heuris-

tic model (of bacterial or archaeal type of a particular GC content) for

each sequence. The input sequence is then split into fragments where pre-

dicted genes are located in the same strand. The fragments assigned to the

samemodel are grouped together. At the second step, the selected heuristic

models are used in GeneTack for FS prediction in the grouped fragments.

To reduce the number of false positives, MetaGeneTack uses three

post-processing filters for the initial FS predictions. Filter I rational is

as follows. In a frameshifted gene with two overlapping protein-coding

open reading frames (ORFs), the downstream ORF should not possess a

functional ribosomal binding site (RBS). Therefore, if a gene predicted in

the downstream ORF has a high RBS score (42.0), the FS prediction is

filtered out. Filter II is based on the following observation: in high GC

genomes, true FS is separated by a rather long distance from a stop

codon terminating the upstream ORF. Therefore, a predicted FS situated

on a short distance from the stop codon (Dð�Þ50:8� � 40, with � desig-

nating GC content in percentage scale) is filtered out. Filter III works as

follows: if an FS is predicted too close (550nt) to a border of the putative

frameshifted gene or to 30 or 50 end of the sequence fragment, such FS

prediction is filtered out. Filters II and III are applied to fragments with

high GC content (�450) and low GC content (�� 50), respectively. As a

training set for assignment of the filters’ parameters, we used genomic

sequences of Escherichia coli. To produce the program output, the final

set of FS predictions is mapped back to the initial metagenomic sequences

and combined with gene predictions of MetaGeneMark, thus producing

the full list of genes with or without frameshifts.

To evaluate the accuracy of FS detection, we generated multiple test

sets accounting for different sequence lengths and error models. To simu-

late metagenomic data, 18 prokaryotic genomes with GC content ranging

from 28% to 75% were cut into 400nt, 600nt and 800nt fragments

(see Supplementary Table S1 for genome names). In a given genome,

we selected 2000 fragments of each length. Frameshifts (indels) were

similated in coding regions of a certain fraction of the fragment set:

5%, 10% and 20% of all fragments. Selection of the 400nt as the min-

imum fragment length is in agreement with the conventional practice

where fragments shorter than 400nt are used for detecting nucleotide

polymorphisms and short functional motifs (Wooley et al., 2010).

Selecting 5%, 10% and 20% fractions correspond to current estimates

of per-nucleotide error rates in metagenomic fragments assembled from

raw reads ranging from 0.0065% to 0.05%.

In the simulations, the indels were made in long stretches of coding

regions (4200nt) at a random location, separated by a distance of at least

50 nt from the fragment boundary. If an FS was predicted in the 20nt

vicinity of the true FS position, it was reported as a true positive, other-

wise as a false positive.

3 RESULTS

Using A to denote the number of all FS predictions, T to denote

the number of predicted true positives andS to denote the number

of simulated frameshifts, we calculated sensitivity, Sn ¼ T
S and

specificity Sp ¼ T
A. Note that this definition of specificity, accepted

in bioinformatics literature, corresponds to the definition of pre-

cision in machine learning publications. Accuracy of

MetaGeneTack was compared with accuracy of FragGeneScan

(version 1.15, downloaded from http://omics.informatics.indiana.

edu/FragGeneScan/). FragGeneScan requires users to select a

sequencing method likely used for generating the input sequence

along with indication of approximate sequencing error rate. We

chose the option Sanger sequencing with 0.5%, as it yielded the

best results of FragGeneScan among all available options. The Sn

and Sp values averaged on the whole set of genomes are shown in

Table 1. To give an example of genome specific values of Sn and

Sp, we provide Supplementary Table S1 for the set of 400 nt frag-

ments with 20% containing FSs. Results are averaged between

sets of fragments with FS made by insertions and FS made by

deletions (see also Fig. 1).

In terms of (SnþSp)/2, MetaGeneTack performed better

than FragGeneScan by 7–12%. The values of FragGeneScan Sn

and Sp differed by �55 percentage points, whereas for

MetaGeneTack, this gap was much smaller. The differences were

likely due to different methods of derivation of sequence models

and differences in the hidden Markov model architectures.

To assess how effective the filters were, we evaluated

MetaGeneTack’s performance produced with various combin-

ations of filters and compared with performance of

FragGeneScan on fragment sets with insertion FS (Fig. 1A)

and sets with deletion FS (Fig. 1B). Here we show results for

600nt-long sequences with 20% fragments containing frame-

shifts. Without filters, the Sn of MetaGeneTack was close to

Table 1. FS detection accuracy of FragGeneScan andMetaGeneTack for

short fragments from 18 prokaryotic genomes

Fragment

length

Fragments

having FS (%)

FragGeneScan MetaGeneTack

Sn Sp Avg Sn Sp Avg

400nt 5 79.6 15.8 47.7 74.4 38.3 56.4

10 80.5 27.3 53.9 75.3 54.5 64.9

20 81.0 43.2 62.1 75.8 70.2 73.0

600nt 5 81.2 11.7 46.4 79.9 27.7 53.8

10 81.8 21.2 51.5 79.9 43.1 61.5

20 81.9 35.1 58.5 80.1 61.7 70.9

800nt 5 81.9 9.1 45.5 81.7 21.7 51.7

10 82.6 16.9 49.7 81.2 35.0 58.1

20 82.8 29.4 56.1 81.5 51.9 66.7

Values are averaged among genomes and then averaged between insertion and

deletion FS sets (see Supplementary Table S1 for details)

Fig. 1. Performance of MetaGeneTack with different combinations of

filters as well as performance of FragGeneScan (the leftmost columns)

using the 600nt sequences with 20% having simulated FSs as the test set.

The predicted frameshift is reported as true positive if it is located within

20nt from the true simulated frameshift position, (A) for fragments with

insertions, (B) for fragments with deletions. Values are averaged among

18 genomes
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FragGeneScan while the Sp was 410% higher in both cases.

With the filters, the average Sn and Sp of MetaGeneTack

increased by �5 percentage points. Similar results were observed

when an FS prediction was reported as a true positive if located

within 10nt from the simulated FS (data not shown). The

distribution of the distance between predicted FS positions and

true FS positions is shown in Supplementary Figure S1. The

standard deviation is 10.3 and 12.6 for MetaGeneTack and

FragGeneScan, respectively.

4 CONCLUSION

The new software program, MetaGeneTack, addresses the chal-

lenging question of predicting frameshifts in protein-coding re-

gions of metagenomic sequences without extrinsic knowledge.

An advantage of ab initio approach is the ability to detect frame-

shifts in genes of orphan proteins that do not have known homo-

logs. We have shown that the accuracy of MetaGeneTack is

comparable or better than the accuracy of the ab inito gene

prediction tool FragGeneScan. Most of the frameshifts predicted

by MetaGeneTack are supposed to result from sequencing

errors; still like GeneTack, the program is also able to detect

frameshifts caused due to indel mutations and ones related to

recoding (programmed frameshifts involved in gene regulation).

MetaGeneTack could be integrated into pipelines of metage-

nomic sequence annotation.
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