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BACKGROUND: The correct interpretation of the ECG is pivotal for the accurate diagnosis of many cardiac abnormalities, and 
conventional computerized interpretation has not been able to reach physician- level accuracy in detecting (acute) cardiac 
abnormalities. This study aims to develop and validate a deep neural network for comprehensive automated ECG triage in 
daily practice.

METHODS AND RESULTS: We developed a 37- layer convolutional residual deep neural network on a data set of free- text 
physician- annotated 12- lead ECGs. The deep neural network was trained on a data set with 336.835 recordings from 
142.040 patients and validated on an independent validation data set (n=984), annotated by a panel of 5 cardiologists elec-
trophysiologists. The 12- lead ECGs were acquired in all noncardiology departments of the University Medical Center Utrecht. 
The algorithm learned to classify these ECGs into the following 4 triage categories: normal, abnormal not acute, subacute, 
and acute. Discriminative performance is presented with overall and category- specific concordance statistics, polytomous 
discrimination indexes, sensitivities, specificities, and positive and negative predictive values. The patients in the validation 
data set had a mean age of 60.4 years and 54.3% were men. The deep neural network showed excellent overall discrimina-
tion with an overall concordance statistic of 0.93 (95% CI, 0.92–0.95) and a polytomous discriminatory index of 0.83 (95% 
CI, 0.79–0.87).

CONCLUSIONS: This study demonstrates that an end- to- end deep neural network can be accurately trained on unstructured 
free- text physician annotations and used to consistently triage 12- lead ECGs. When further fine- tuned with other clinical out-
comes and externally validated in clinical practice, the demonstrated deep learning–based ECG interpretation can potentially 
improve time to treatment and decrease healthcare burden.
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With more than 300 million ECGs obtained annually 
worldwide, the ECG is a fundamental tool in the 
everyday practice of clinical medicine.1 The cor-

rect interpretation of the ECG is pivotal for the accurate 
diagnosis of a wide spectrum of cardiac abnormalities 
and requires the expertise of an experienced cardiol-
ogist. The life- threatening nature of a suspected acute 
coronary syndrome and ventricular arrhythmias requires 
not only accurate but also timely ECG interpretation and 
places a heavy logistic burden on clinical practice.

Automated triage of ECGs in categories that need 
acute, nonacute, or no attention may therefore be of 
great support in daily practice. Accurately prioritizing 
different ECGs could lead to improvements in time to 
treatment and possibly decrease healthcare costs.2 
Especially in prehospital care and noncardiology depart-
ments, expert knowledge to interpret ECGs might not 
always be readily available.3–5 However, a consistent and 
fast automated algorithm that supports the physician in 
comprehensive triage of the ECG remains lacking.
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Computerized interpretation of the ECG (CIE) was 
introduced more than 50 years ago and became in-
creasingly important in aiding the physician interpre-
tation in many clinical settings. However, current CIE 
algorithms have not been able to reach physician- 
level accuracy in diagnosing cardiac abnormalities.5 
The accurate interpretation of arrythmias and ST- 
segment abnormalities remains the most problem-
atic, and many algorithms suffer from high amounts of 
false positives for these disorders.4–9 Overdiagnosis 
and a failure to correct the erroneous interpretation 
by an overreading physician has shown to lead to 
unnecessary interventions and medication use.10,11

With the development of algorithms that can 
benefit from the large- scale processing of raw data 
without the need for hand- crafted feature extraction, 
a substantial improvement of CIE is forthcoming. 
Several of these techniques, deep neural networks 
(DNN) in particular, have shown to be highly effec-
tive in similar applications as speech recognition 
and image classification.12–14 DNNs are computer 
algorithms based on the structure and function of 
the human brain. Their hidden layers of neurons can 
be trained to discover complex patterns in signals 
such as the ECG.15 In comparison with conventional 
CIE algorithms, DNNs have the advantage that they 
jointly optimize both pattern discovery and classifica-
tion in an end- to- end approach that only needs the 
raw waveforms as input. In medicine, deep learning 
showed promising results when applied to arrhyth-
mia detection in single- lead ECG recordings and to 
early detection of atrial fibrillation in normal sinus 
rhythm ECGs.16,17 When combined with ultrasound 
or laboratory findings, deep- learning algorithms were 
able to detect reduced ejection fraction and hyperka-
lemia in 12- lead ECGs.18,19

This study aims to develop and validate a DNN for 
comprehensive automated ECG triage that could sup-
port daily clinical practice.

METHODS
Data Availability
The anonymized expert panel–annotated validation 
data set used in this study is available from the cor-
responding author upon request. The training data 
and analytic methods are not available to other 
researchers.

Study Participants
The data set contained all 12- lead ECGs from pa-
tients aged between 18 and 85 years, recorded in the 
University Medical Center Utrecht from January 2000 
to August 2019, and obtained at noncardiology depart-
ments. All extracted data were deidentified in accord-
ance with the EU General Data Protection Regulation 
and written informed consent was therefore not re-
quired by the University Medical Center Utrecht ethical 
committee. 

Training Data Acquisition and Annotation
All ECGs were recorded on a General Electric MAC 
5500 (GE Healthcare, Chicago, IL). We extracted raw 
10- second 12- lead ECG data waveforms from the 
MUSE ECG system (MUSE version 8; GE Healthcare). 
All recordings in the University Medical Center Utrecht 
acquired in noncardiology departments were system-
atically annotated by a physician as part of the regular 

CLINICAL PERSPECTIVE

What Is New?
• Our findings indicate that a deep neural network 

may be used to support the physician in ECG 
triage and reduce the clinical workload with an 
improved prioritization of ECGs for interpreta-
tion by the cardiologist.

• The study shows that, in comparison with ear-
lier studies that combined ECG recordings with 
other imaging modalities or laboratory findings, 
it is also feasible to use the less structured and 
noisy physician labels to successfully train a 
deep neural network for comprehensive ECG 
triaging.

• Moreover, this is one of the first studies to visu-
alize regions in the ECG important for the deci-
sions of the deep neural network.

What Are the Clinical Implications?
• The proposed end-to-end deep neural network 

can triage 12-lead ECGs into normal, abnormal, 
and acute with high discrimination across all 
categories with an overall concordance statistic 
of 0.93 (95% CI, 0.92–0.95).

• In clinical practice, this could lead to improved 
time to treatment for acute cardiac disorders 
and decreased and better-balanced workloads 
for clinicians.

• Further improvement with other clinical out-
comes, prospective validation in other popula-
tions, and implementation studies are needed 
before implementation in clinical practice is 
possible.

Nonstandard Abbreviations and Acronyms

CIE computerized interpretation of the ECG
DNN deep neural network
PDI polytomous discriminatory index
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clinical workflow. These physicians were all trained to 
interpret and annotate an ECG as part of their cardiol-
ogy residency. During the annotation, the physicians 
had access to the name, sex, and age of the patient; 
the computer- calculated conduction intervals; the 
previous ECG recordings; and the full patient records. 
The ECGs were divided into the following 4 triage 
categories based on how quickly a cardiologist has 
to be consulted: (1) normal, (2) not acute abnormal 
(consultation with low priority), (3) subacute abnormal 
(consultation with moderate priority), and (4) acute ab-
normal (consultation with high priority).

The free- text physician ECG annotations were la-
beled into 1 of the 4 triage categories using a text 
mining–based approach. First, the annotations were 
tokenized and all frequent (ie, occurring >20 times) 
terms and multiword collocations were extracted. 
These terms, such as “STEMI,” and collocations, such 
as “first degree AV- block” and “1st degree AV block,” 

contained multiple variations of diagnostic ECG state-
ments. Therefore, they were mapped to the standard-
ized statements of the American Heart Association’s 
Electrocardiography Diagnostic Statement List.20 
Second, a panel of 3 electrophysiologists defined 
the triage category for every standardized diagnos-
tic statement. The used diagnostic statements and 
their corresponding triage category are provided in 
Figure 1. Third, a final triage category was assigned to 
every ECG. When multiple statements were given, the 
final triage category was the maximum category. All 
text- mining steps were performed with the quanteda 
package for R (version 3.5; R Foundation for Statistical 
Computing, Vienna, Austria).21 An overview of the text- 
mining steps can be found in Figure 2. 

Validation Data Annotation
For the validation of the DNN, a data set with higher 
annotation reliability was required. Therefore, an 

Figure 1. ECG diagnoses with their corresponding triage categories.
Triage categories as defined by the panel of electrophysiologists, with (1) normal, (2) not acute abnormal (consultation without priority), 
(3) subacute abnormal (consultation with some priority), and (4) acute abnormal (consult immediately). The ECG diagnoses derived 
from the text- mining algorithm were used to categorize the training data using these rules. When multiple diagnoses were given, the 
final triage category was the maximum category. AV indicates atrioventricular; AVNRT, atrioventricular nodal reentrant tachycardia; 
and AVRT, atrioventricular reentrant tachycardia.
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independent data set was annotated and triaged 
by the reference standard, a panel of 5 practicing 
senior electrophysiologists or cardiologists. All re-
cords were annotated by 2 independent annotators 
who were blinded to the other annotation. In case of 
disagreement in the triage category, a third annota-
tor was consulted, and the majority vote was used 
as the final label. The recordings with 3 discordant 
votes were discussed in a joint panel meeting, and 
the recordings of insufficient quality were excluded. 
Annotation was performed using an online tool, 
where the expert had access to the 12- lead ECG, 
computer- calculated conduction intervals, and age 
and sex of the patient. The experts were instructed 
to classify the ECGs into 1 of the 4 triage categories 
based on the rules in Figure 1. The input and annota-
tion steps in the validation data set are schematically 
shown in Figure 2.

As manual annotation by a panel is time intensive, a 
sample- size calculation was performed to achieve ad-
equate precision of the validation performance mea-
sures. For this, a minimum of 50 cases per category 
was needed.22 As the smallest triage category in the 
training data set has a prevalence of approximately 
5%, the validation data set consisted of 1000 record-
ings from unique patients. All ECGs of these patients 
were excluded from the training data set.

Algorithm Development
As leads III, aVR, aVL and aVF are derivatives of the 
other leads and  contain no new information, we only 
used the raw 10- second, 8- channel waveforms (I, II, 
and V1–V6), sampled at 500 Hz, as the input for our 
DNN. We applied an architecture similar to the Inception 
ResNet network by combining blocks of convolutional 
layers in parallel with residual connections.23,24 

Figure 2. Overview of the labeling into triage categories in the training and validation data sets.
The training labels (left), used for training, are derived from the free- text annotation given to the ECG by a single physician in daily 
practice. The ECG diagnoses are mapped to triage categories using the rules defined by a panel of electrophysiologists (Figure 1). 
The validation labels (right), used for validation of the deep neural network, are given by the expert panel based on visual inspection 
of a 12- lead ECG.
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This network is built with layers of identical blocks with 
a preactivation design consisting of 2 one- dimensional 
convolutional layers, preceded by batch normalization, 
rectified linear unit activation, and dropout.25–27 Every 
residual block consists of 3 parallel branches: 1 with a 
normal convolutional layer, 1 with a dilated convolutional 
layer, and 1 with a shortcut connection, where the input 
to the block is added to the output unadjusted.28 This en-
ables the network to determine the features in 2 different 
time dimensions, where the dilated convolution covers a 
complete heartbeat. The output of the last block was flat-
tened and used as input to a fully connected layer with a 
rectified linear unit nonlinearity, followed by dropout. The 
output layer consisted of 4 nodes, 1 for every triage cat-
egory, and a softmax function was used to produce a 
probability distribution over all triage categories. A similar 
auxiliary output was added in the middle of the network, 
and its loss was added to the total loss during training.

After hyperparameter and architecture optimiza-
tions, the final selected network consisted of 16 residual 
blocks with 2 one- dimensional convolutional layers with 
filter size 5 and a dilation of 100 (Figure S1). Every other 
block downsampled the input using a strided convolu-
tion, and the number of filters was doubled every fourth 
block. Dropout was performed with a probability of 
30%. The fully connected layer consisted of 256 nodes. 
This resulted in a final network with 37 layers.

This network was trained using the Adam optimizer 
with a learning rate of 0.0005 and a mini batch size of 
128.29 Weighted focal loss was used to counteract the 
category imbalance in the data set and to minimize the 
number of false negatives.30 Training was terminated 
when the loss stopped decreasing in the 5% subset of 
the training data set. Network training was performed 
using the PyTorch package (version 1.3) on a Titan Xp 
GPU (NVIDIA Corporation, Santa Clara, CA).31

The different network architectures and hyperparam-
eters were chosen using a combination of manual tuning 
and random grid search. The network with the lowest loss 
in a 5% randomly sampled subset of the training data set 
was chosen. When multiple architectures showed simi-
lar performance, the simplest architecture was selected. 
The following hyperparameters were assessed: the use 
of dilated convolutions, residual connections, max pool-
ing, an auxiliary loss and/or fully connected layers, the 
number of layers, the size and number of convolutional 
filters, the dropout rate, the learning rate, and the weights 
of the loss. We also experimented with an ordinal loss 
method instead of a multinomial loss method and with 
adding age and sex to the flattened layer, but this did not 
result in increased performance.32,33

Visualization of the DNN
To improve understanding of the decisions of the DNN, 
guided gradient- weighted class activation mapping, a 

technique for visual explanations in convolutional neu-
ral networks, was adjusted for use in 1- dimensional 
data.34 Guided gradient- weighted class activation 
mapping is a combination between the fine- grained 
guided backpropagation and gradient- weighted class 
activation mapping, which produces a coarse class- 
discriminative heatmap based on the final convolu-
tional layer.34,35 The heatmap is superimposed over 
the ECG recording and shows the regions in the ECG 
important to the DNN for predicting a specific triage 
category.

Statistical Analysis
Interobserver agreement was quantified using squared- 
weighted Cohen’s κ for 2 reviewers or tests and or-
dinal Krippendorff α for more than 2 reviewers.36,37 
Considering the imbalance in category frequencies, 
overall algorithm discriminatory performance was as-
sessed with the unweighted mean of all pairwise con-
cordance (or c) statistics (also known as area under 
the receiver operating curve) and the polytomous dis-
criminatory index (PDI).38–40 The first metric estimates 
the probability to correctly distinguish between all pairs 
of 2 patients from different categories, where a value 
of 0.5 denotes random performance and 1 perfect 
performance. The second assesses the discrimina-
tion between all categories simultaneously in a set ap-
proach. It estimates the probability to correctly identify 
a specific patient in a set of patients from every cat-
egory, where 0.25 denotes random and 1 perfect per-
formance with 4 categories.38,39,41 As a second step, 
category- specific performance is assessed with the 
c- statistic, PDI, sensitivity, specificity, and positive and 
negative predictive values. All category- specific meas-
ures, except the PDI, were applied in a 1- versus- other 
approach.

All statistical analyses were performed using R ver-
sion 3.5 (R Foundation for Statistical Computing). The 
Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis Statement 
for the reporting of diagnostic models was followed, 
where appropriate.42 All data are presented as 
mean±SD or median with interquartile range. The 95% 
CIs around the performance measures were obtained 
using 2000 bootstrap samples. 

RESULTS
The total training data set consisted of 336 835 re-
cordings of 142 040 patients. The distribution of triage 
categories was unbalanced with the most record-
ings in category 2 (45.5%) and the least in category 
4 (4.8%). In the validation data set, there was consen-
sus between the 2 experts in 736 cases (73.6%). After 
consultation of a third tie- breaker expert (248 cases, 
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24.8%), the panel meeting (29 cases, 2.9%), and the 
exclusion of recordings of insufficient quality, 984 vali-
dation cases were used for the analysis. There was 
good interobserver agreement, with a Krippendorff α 
of 0.72. Conflicts in the first expert annotation round 
occurred the most between categories 1 and 2 
(162/255, 64%), between categories 2 and 3 (30/255, 
12%), and between categories 2 and 4 (24/255, 9.5%). 
Disagreement between categories 1 and 2 was mostly 
attributed to different assessments on the presence 
of nonspecific ST- segment or T- wave abnormalities. 

For categories 2 and 3 and categories 3 and 4, the 
most common difference was the interpretation of ST- 
segment elevation or depression. Table 1 summarizes 
the patient demographics and triage category distri-
butions of the recordings in the training and validation 
data sets.

The overall discriminations, as measured by the un-
weighted mean of pairwise c- statistics and the PDI, of 
the DNNs demonstrated in this article were 0.93 (95% 
CI, 0.92–0.95) and 0.83 (95% CI, 0.79–0.87), respec-
tively. The c- statistics, PDIs, sensitivities, specificities, 
positive predictive values, and negative predictive val-
ues per triage category in a 1- versus- other approach 
are shown in Table 2, whereas the confusion matrix is 
provided in Figure 3. Visualizations of the regions in the 
ECG important for the DNN to predict a specific cate-
gory are shown in Figure 4. The full 12- lead ECGs can 
be found in Figures S2 through S6. 

The DNN predicted a lower triage category than the 
true category (undertriage) in 88 (8.9%) and a higher 
category (overtriage) in 107 (11%) of the recordings in 
the validation data set. Most undertriage (59/88, 67%) 
occurred between categories 1 and 2, and these un-
dertriaged recordings were categorized as 2 by the 
panel based on nonspecific ST- segment abnormalities 
(26/59, 44%), old ischemia (12/59, 20%), left ventricular 
hypertrophy (7/59, 12%) or other reasons (14/59, 24%). 
All 9 acute category 4 recordings triaged as category 
2 contained ST- depression or T- wave inversion and no 
ST- elevation. In the category 2 recordings overtriaged 
as 4, the panel did mention nonspecific ST- segment 
abnormalities in 20/34 (59%) recordings and old isch-
emia in 8/34 (24%).

As the labeling procedures for the training and val-
idation data sets differ (Figure 2), the performance of 
the DNN could be dependent on errors in 2 steps in 
the training labeling procedure. First, the interobserver 
agreement between manual categorization of the 
free- text physician ECG annotations into triage cate-
gories and the text mining–based categorization was 
excellent in the validation data set, with a weighted 
Cohen’s α of 0.96. Second, agreement between the 

Table 1. Patient Demographics and Distribution of Triage 
Categories in the Training and Validation Data Sets 

Training (n=336.835) Validation (n=984)

Male sex, n (%) 188 858 (56.1) 402 (54.3)

Age, mean (SD), y 60.8 (15.5) 60.4 (15.3)

Location, n (%)

Emergency 
department

92 532 (27.5) 310 (31.5)

Intensive care unit 20 045 (6.0) 63 (6.4)

Noncardiology 
outpatient clinic

73 170 (21.7) 161 (16.4)

Noncardiology 
ward

86 630 (25.7) 263 (26.7)

Preoperative 
screening

6300 (1.9) 8 (0.8)

Recovery ward 53 994 (16.0) 163 (16.6)

Other 4164 (1.2) 16 (1.6)

Triage category, n (%)

Normal 142 456 (42.3)* 418 (42.5)†

Abnormal, not 
acute

153 360 (45.5)* 410 (41.7)†

Abnormal, 
subacute

24 731 (7.3)* 76 (7.7)†

Abnormal, acute 16 288 (4.8)* 80 (8.1)†

A 5% randomly sampled subset of the training data set was used for 
model tuning and internal validation. The validation data set is independent 
from the training data set.

*Distribution based on text- mining categorization of annotations by 
physician in daily practice.

†Distribution based on the expert consensus panel annotations.

Table 2. Diagnostic Performance Measures per Triage Category for the Deep Neural Network in the Panel- Annotated 
Validation Data Set

Normal Abnormal, Not Acute Abnormal, Subacute Abnormal, Acute

C- statistic (95% CI) 0.95 (0.94 to 0.96) 0.91 (0.89–0.93) 0.94 (0.90–0.97) 0.94 (0.90–0.96)

PDI (95% CI) 0.91 (0.87–0.93) 0.80 (0.75–0.84) 0.82 (0.75–0.88) 0.80 (0.73–0.87)

Sensitivity 0.87 0.76 0.64 0.79

Specificity 0.88 0.89 0.98 0.94

Positive predictive value 0.85 0.83 0.78 0.55

Negative predictive value 0.90 0.84 0.97 0.98

The c- statistics, sensitivities, specificities, positive and negative predictive values are calculated in a 1- vs- other approach and compare the category with 
the highest probability to the reference standard. The PDI estimates the probability that a patient from that category is correctly identified from a set of cases 
from every category. C- statistic indicates concordance statistic, equivalent to area under the receiver operating characteristic curve; and PDI, polytomous 
discriminatory index.
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text mining–based triage categories and the reference 
standard was good (Cohen’s α, 0.74). The overall c- 
statistic and PDI for predicting the reference standard 
triage category with the text mining–based catego-
ries were 0.86 (95% CI, 0.85–0.88) and 0.48 (95% CI, 
0.43–0.53), respectively.

DISCUSSION
This study is among the first to apply DNNs to a large 
data set of 12- lead ECGs for automatic interpreta-
tion. We demonstrated that a deep- learning approach 
performs well in detecting abnormalities for triage of 
12- lead ECGs. Our DNN has an excellent c- statistic 
of 0.93 (95% CI, 0.92–0.95) and a good PDI of 0.83  
(95% CI, 0.79–0.87), with high positive and negative 
predictive values across all triage categories. These 
findings indicate that a deep- learning approach may 
be used to support the physician in ECG triage and 
reduce clinical workload with an improved prioritization 
of ECGs for interpretation by the cardiologist.

Interpretation of the ECG requires extensive knowl-
edge of the wide variety of electrical manifestations of 
heart disease and a good understanding of normal va-
riety. This has been a challenge for both manual and 
computerized interpretations and has led to a collec-
tion of definitions, measurements, and criteria to aid 
clinical decision making.5,20 This challenge is exten-
sively described in earlier studies, but comparisons are 
difficult, as the studies demonstrate wide variations in 
diagnostic measures, and an international accepted 
standard for the validation of ECG diagnoses is still 
missing.4,5 For comprehensive ECG interpretations, 

noncardiologist physicians correctly identified 36% 
to 96% of the diagnoses, with significant differences 
between physicians and increasing performance for 
more experienced physicians.4,43–45 Most studies fo-
cused on particular aspects of ECG interpretation, 
such as normal–abnormal differentiation, arrythmia 
classification, and detection of ST- segment–eleva-
tion myocardial infarction. Overall, for these aspects 
physicians have higher false negative rates, whereas 
computerized algorithms have higher false positive 
rates when compared with expert panels.4,5,7–9,43–45 
The DNN could improve both the high false positive 
and negative rates while producing consistent results 
not dependent on external factors, such as physician 
experience. 

Conventional CIE uses manually derived features, 
which only capture a fraction of the available informa-
tion for any manifestation of heart disease in the ob-
tained raw signal. This is one of the reasons that could 
explain the excellent performance of our algorithm and 
DNNs in general, as their integrated feature discovery 
and classification incorporates the whole raw input sig-
nal. In addition, conventional CIE algorithms are tuned 
to produce complete interpretations of the ECG and 
are less focused on one of their most important uses, 
quick triage. By training on a large physician- annotated 
12- lead ECG data set, where the labels are mapped 
to predefined triage categories, we focus on a single 
task and are able to achieve high accuracy. The large 
size of the data set makes that the network has seen 
a wide variety of ECGs and should therefore be well 
generalizable.

Although the DNN does not use any manually se-
lected features of the signal, visualizations show that 
the network bases its decisions on the same regions in 
the ECG as would experts. As shown in Figure 3, the 
network correctly identifies a normal ECG, a long QT- 
segment, ST- segment–elevation myocardial infarction, 
and a junctional escape rhythm in sensible regions and 
correctly ignores a premature ventricular complex in a 
normal ECG. Furthermore, inspection of the misclas-
sifications of the DNN shows a similar pattern to the 
disagreement between the experts in the panel. The 
correct interpretation of ST- segment and T- wave ab-
normalities is apparently challenging for both the cardi-
ologist and the DNN.

The DNN is trained on triage category labels that 
were automatically derived using text mining on free- 
text annotations by a single physician in daily practice. 
Disagreement measures show that the text- mining 
categories do not completely agree with the labels 
given by the expert panel. Most of this disagreement is 
caused by disagreements between the expert panel la-
bels and the automatically categorized single- physician 
labels (Cohen’s α, 0.74). Considering this substantial 
disagreement between training and validation labels, 

Figure  3. Confusion matrix for the deep neural network. 
Rows represent the categories given by the reference 
standard (expert panel), and columns represent the 
categories predicted by the deep neural network.
The color map is normalized per row and represents the 
percentage in the true triage category.
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Figure  4. Examples of ECG leads II and V1 with a superimposed guided gradient- 
weighted class activation mapping visualization showing regions important for the deep 
neural network to predict a certain triage category. 
A, Normal ECG with focus on the P- wave, QRS- complex, and T- wave. B, Normal ECG with 
a single ignored premature ventricular complex. C, Subacute ECG with a long QT interval 
and a focus on the beginning and end of the QT- segment. D, Acute ECG with an inferior 
ST- segment–elevation myocardial infarction and a focus on the ST- segment and J- point. E, 
Acute ECG with a junctional escape rhythm and a focus on the pre- QRS- segment, where 
the P- wave is missing. The full 12- lead ECGs are available in Figures S2 through S6. 

A

B

C

D

E
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we might expect that the DNN cannot outperform the 
performance measures for prediction with only the text 
mining–based triage categories. However, the DNN 
exceeds both the overall c- statistic and PDI of the text 
mining–based triage categories and shows to be ro-
bust against considerable training label noise. This is in 
line with previous research that showed that the DNN 
can handle label noise quite well.46

Other research demonstrated the value of DNN 
for ECG interpretation for similar problems, where a 
single- lead ECG was used for arrhythmia classification 
and a 12- lead ECG for early detection of atrial fibril-
lation, contractile dysfunction, and hyperkalemia.16–19 
Our study shows that, in comparison with combining 
ECG recordings with other imaging modalities or labo-
ratory findings, it is also feasible to use the less struc-
tured and noisy physician labels to successfully train a 
DNN for comprehensive ECG triaging. Moreover, this is 
one of the first studies to visualize regions in the ECG 
important for the decisions of the DNN.34

Triage is the process of classifying according to the 
severity of the case to determine how quickly action is 
needed. Careful triage is needed to prioritize those cases 
where timely action reduces morbidity and mortality 
among patients. For a triage algorithm to be effective, it is 
important that undertriage (eg, failure to detect patients 
with acute disease) and overtriage (eg, false alarms) are 
minimized.  Our DNN shows very high negative pre-
dictive values for the highest categories, subacute and 
acute (Table 2). This can potentially reduce time to treat-
ment for patients with acute cardiac disorders as the al-
gorithm is able to provide triage advice immediately after 
the ECG is acquired and before the ECG is assessed by 
a physician with sufficient expertise. However, the sen-
sitivities for the subacute and acute categories of 64% 
and 79% are partly attributed to undertriage (Figure 3) 
and therefore need further improvement before clinical 
implementation is possible. The algorithm shows rela-
tively high positive predictive values, which will decrease 
the amount of false alarms in otherwise normal ECGs. 
Because most hospital- acquired ECGs fall into this cat-
egory, a modest improvement can already significantly 
decrease the workload for physicians.

This study has several limitations to address. Although 
a reasonably large training data set was used, the acute 
categories remained relatively small. This is custom-
ary to an unselected real- world data set but entails a 
chance of underprediction. We made use of the focal 
loss method, used in computer- vision DNN algorithms, 
to counteract this problem.26 In the validation data set, 
the triage category distribution was similar, but CIs 
showed adequate precision in the smaller categories as 
well. The representative sampling of the validation is also 
a strength, making it possible to derive positive and neg-
ative predictive values, which are most important to the 
patient. We believe that the panel-annotated validation 

data set in this study provides a good measure of gen-
eralizability to hospital populations comparable to ours.  
It has been shown that ethnicity influences the ECG and 
could be taken into account to improve automated inter-
pretation.47 External validation is therefore needed when 
used with different recording machines and in different 
populations, such as patients in the general practice or 
populations with different ethnical compositions. This is 
beyond the scope of this study and will most likely re-
quire (re)training on a such a data set.

Both manual and computerized ECG interpretations 
are hard to standardize, as can be seen by the high 
disagreement rates between the experts (Krippendorff 
α, 0.72). This number is comparable with earlier stud-
ies on the interobserver agreement between experts 
on ECG interpretation.4,6,48 The panel- annotated val-
idation data set used in this study is the current best 
reference standard available, but in clinical practice, 
many other diagnostic tests are used to interpret the 
ECG findings. Therefore, we suspect the diagnostic 
accuracy of our algorithm could be further optimized 
with hard clinical outcome data, such as a diagnosis 
and localization of myocardial infarction with coronary 
artery angiography, cardiac enzymes, and electrolyte 
disorders from laboratory data and even mortality. 
Both optimization with clinical outcome data and ex-
ternal validation are necessary before clinical imple-
mentation is possible.

Another future perspective of the DNN is the ca-
pability to continuously improve and learn by adding 
new cases. Traditionally, neural networks did not pro-
vide uncertainty around their predictions, but this was 
changed because of new insights from several differ-
ent bayesian methods.49 When combining uncertainty 
around predictions with active learning, it becomes 
possible to let uncertain cases be annotated by a car-
diologist and improve the algorithm, whereas easier 
cases can be classified automatically.50 Moreover, to 
determine the most important ECG leads, the algo-
rithm could be trained and evaluated with fewer input 
channels. This could make the use of a similar algo-
rithm with home- monitoring devices with less leads 
possible.

In conclusion, our end- to- end DNN can triage 12- 
lead ECGs into normal, abnormal, and acute with high 
discrimination across all categories. In clinical practice, 
this could lead to improved time to treatment for acute 
cardiac disorders and decreased and better- balanced 
workloads for clinicians. Further improvement with 
other clinical outcomes, prospective validation in other 
populations, and implementation studies are needed 
before implementation in clinical practice is possible.
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SUPPLEMENTAL MATERIAL 
 
 
 



Figure S1. Design of the deep convolutional neural network.  
 
 

 
 
Schematic representation of the design of the 37-layer 1D residual convolutional neural network. 
BatchNorm: batch normalization. ReLU: rectified linear unit.  



 
 
Figure S2. Example of a full 12-lead electrocardiogram (ECG) corresponding to panel A of figure 3, showing a normal ECG.   



 
 
Figure S3. Example of a full 12-lead electrocardiogram (ECG) corresponding to panel B of figure 3, showing a normal ECG with two premature 
ventricular complexes. 



 
 
Figure S4. Example of a full 12-lead electrocardiogram (ECG) corresponding to panel B of figure 3, showing a subacute ECG with a long QT 
interval.  



 
 
Figure S5. Example of a full 12-lead electrocardiogram (ECG) corresponding to panel B of figure 3, showing an acute ECG with an inferior ST-
elevation myocardial infarction. 



 
 

Figure S6. Example of a full 12-lead electrocardiogram (ECG) corresponding to panel B of figure 3, showing an acute ECG with a junctional 
escape rhythm. 


