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Abstract

Microbial growth characteristics have long been used to investigate fundamental questions of biology. Colony-based high-throughput
screens enable parallel fitness estimation of thousands of individual strains using colony growth as a proxy for fitness. However, fitness esti-
mation is complicated by spatial biases affecting colony growth, including uneven nutrient distribution, agar surface irregularities, and
batch effects. Analytical methods that have been developed to correct for these spatial biases rely on the following assumptions: (1) that fit-
ness effects are normally distributed, and (2) that most genetic perturbations lead to minor changes in fitness. Although reasonable for
many applications, these assumptions are not always warranted and can limit the ability to detect small fitness effects. Beneficial fitness
effects, in particular, are notoriously difficult to detect under these assumptions. Here, we developed the linear interpolation-based detec-
tor (LI Detector) framework to enable sensitive colony-based screening without making prior assumptions about the underlying distribution
of fitness effects. The LI Detector uses a grid of reference colonies to assign a relative fitness value to every colony on the plate. We show
that the LI Detector is effective in correcting for spatial biases and equally sensitive toward increase and decrease in fitness. LI Detector
offers a tunable system that allows the user to identify small fitness effects with unprecedented sensitivity and specificity. LI Detector can
be utilized to develop and refine gene–gene and gene–environment interaction networks of colony-forming organisms, including yeast, by
increasing the range of fitness effects that can be reliably detected.
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Introduction
Colony-based high-throughput screens (CBHTS) of microbes are

increasingly used for basic science biomedical and industrial re-

search (Priola et al. 2016; Rallis and Bahler 2016; Saleski et al. 2019;
Zeng et al. 2020). These screens involve growing manually or ro-

botically “pinned” grids of microbial colonies on agar plates and

recording colony growth using imagery. The images are computa-

tionally analyzed to generate a quantitative output of colony

size, which is used as a proxy for the organism’s fitness. The wide

availability of tools to conduct and analyze CBHTS, combined

with the growing number of artificial gene constructs for micro-

bial model organisms, has provided a large-scale controlled ap-

proach to experimentally determine the effects of genetic and
environmental perturbations on the fitness of an organism.

CBHTS have been used to explore genetic interactions (Roguev

et al. 2008; Costanzo et al. 2010), protein–protein interactions

(Becker et al. 2004; Kamiya et al. 2010), chemical–genetic

interactions (Parsons et al. 2004, 2006; Galardini et al. 2019), and

microbial pathogenicity (Butland et al. 2008).
CBHTS fast track discovery thanks to the scale at which they

are performed. Various colony growth characteristics such as

colony size at saturation, growth rate, colony shape, opacity,
color, or volume have been used as a proxy for fitness (Collins
et al. 2006; Baryshnikova et al. 2010; Dittmar et al. 2010; Lawless
et al. 2010; Levin-Reisman et al. 2010, 2014; Wagih et al. 2013;
Young and Loewen 2013; Bean et al. 2014; Wagih and Parts 2014;
Bischof et al. 2016; Zackrisson et al. 2016; Herricks et al. 2017). Of
these, colony size at saturation is the most commonly used
growth characteristic in CBHTS (Supplementary Table S1).
However, spatial biases-like edge effects (Wagih et al. 2013; Bean
et al. 2014), local competition (Wagih et al. 2013; Young and
Loewen 2013), batch effects (Baryshnikova et al. 2010; Wagih et al.
2013), source-based bias (Bean et al. 2014), light artifacts (Dittmar
et al. 2010; Lawless et al. 2010), agar surface nutrient heterogene-
ity (Wagih et al. 2013; Young and Loewen 2013; Bean et al. 2014)
and humidity (Bean and Ideker 2012), all lead to undesired colony
size differences that are not relevant to the biological question
being investigated (Supplementary Figure S1). These spatial
biases need to be corrected before making any biological infer-
ences. The extent of spatial bias is difficult to predict a priori,
making its identification and correction a substantial computa-
tional challenge (Baryshnikova et al. 2010). A variety of existing
tools implement normalization algorithms to correct for spatial
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biases, including the HT colony grid analyzer (Collins et al. 2006),
Colonyzer (Lawless et al. 2010), ScreenMill (Dittmar et al. 2010),
ScanLag (Levin-Reisman et al. 2010), SGATools (Wagih et al. 2013),
Balony (Young and Loewen 2013), Scan-o-matic (Zackrisson et al.
2016), and MATLAB Colony Analyzer Toolkit (MCAT) (Bean et al.
2014) (Supplementary Table S1).

Most of the existing tools rely on the following assumptions
about the distribution of fitness effects (DFE): that the colony
sizes in an experiment are normally distributed, and that genetic
manipulations rarely cause significant fitness deviation from
wildtype (Wagih et al. 2013). These assumptions can be violated
in experiments with biased sets of mutants (Baryshnikova et al.
2010; Herricks et al. 2017), or experimental conditions producing a
high variance in the DFE (Baryshnikova et al. 2010). Even in unbi-
ased genome-scale screens, the assumption of normal distribu-
tion is usually violated due to a skew toward negative fitness
effects (Wloch et al. 2001; Joseph and Hall 2004; Van den Bergh
et al. 2018). As a result, while existing methods can reliably detect
large changes in fitness, they are less sensitive in detecting small
effects that are difficult to differentiate from noise. This difficulty
in detecting small fitness effects is especially pronounced for
small increases in fitness. Overall, methods that rely on strict
assumptions about the underlying DFE reduce the power of
CBHTSs for broader scientific inquiry.

Here, we present the linear interpolation-based detector (LI
Detector or LID), a CBHTS framework designed to avoid making
any a priori assumptions about the underlying DFE. This two-
part, experimental, and analytical framework utilizes a reference
colony grid on every plate of the experiment to predict and cor-
rect for spatial biases. The reference grid is an isogenic popula-
tion of colonies that are evenly distributed over the agar surface
to act as internal local controls (Zackrisson et al. 2016; Vakirlis
et al. 2020). Our results show that the LI Detector’s reference
colony-based linear interpolant can successfully control for spa-
tial bias. LI Detector is a tunable system that can provide the
users with the ability to identify 5% or lower fitness effects with
very high specificity and sensitivity. LI Detector performs as well
as a popular existing method, MCAT (Bean et al. 2014), when the
underlying DFE is normal and better when that is not the case.

Materials and methods
Validation experiment using an isogenic
population
A method validation experiment was conducted using an iso-
genic population that was mocked as either references or
mutants.

Yeast strain, medium and robotic equipment:
A previously characterized prototrophic Saccharomyces cerevisiae
strain in the S288C background, FY4 (Winston et al. 1995), was
used to conduct experiments in YPD medium (1% w/v yeast ex-
tract, 2% w/v peptone, 2% w/v dextrose, and 2% agar in the case
of solid medium). A single colony of FY4 (Winston et al. 1995) se-
lected from a streak out was used to inoculate liquid YPD me-
dium and grown overnight at 30�C. This culture was used to
create four 384-well glycerol stocks with wells containing 18 mL of
50% glycerol and 42 mL of culture media. Two to five wells in each
stock were left empty to create gaps in the colony grid when
pinned on solid medium. The stocks were stored at �80�C before
use. The benchtop RoToR HDA robotic plate handler (Singer
Instruments Co Ltd, Roadwater, UK.) was used for plate-to-plate
cell transfer (Supplementary Table S2).

Pin-copy-upscale:
The LI Detector experimental pipeline follows a pin-copy-upscale
protocol when starting from frozen glycerol stocks. The copy-
upscale steps are repeated until the desired colony density is
reached (Figure 1A). The four glycerol stock plates were pinned at
384-density to generate working copy agar plates. This process
was performed using the RoToR HDA robot with default settings
(Supplementary Table S2). The working copies were incubated at
30�C for 60 h to reach saturation. These were then copied 1-to-1
to make transition plates (#1) using default RoToR HDA settings
(Supplementary Table S2) and incubated at 30�C for 48 h. Distinct
combinations of the four transition plates (#1) were then con-
densed to make four 1536-density upscale plates (#1) using de-
fault RoToR HDA settings (Supplementary Table S2). The distinct
combinations ensure that colony grids from each plate occupy
different positions on the four higher density plates. The upscale
plates (#1) were incubated at 30�C for 30 h, after which they were
copied 1-to-1 to transition plates (#2) using custom RoToR HDA
settings (Supplementary Table S2). The overshoot setting value
at the target plate was increased, from 2 to 2.5 mm, to compen-
sate for the agar surface’s unevenness and the smaller pin size of
the higher density pin pads. These plates were incubated at 30�C
for 30 h. Four 6144-density upscale plates (#2) were then made by
condensing the four transition plates (#2) in distinct combina-
tions using default RoToR HDA settings (Supplementary Table
S2). These were incubated at 30�C until they reached saturation
and imaged at the following eleven time points: 1.0, 1.4, 2.9, 4.0,
4.9, 6.1, 6.9, 7.8, 9.0, 10.0, 11.0 h (Supplementary Figure S2). All
images are available at https://pitt.box.com/s/xbchjoa4ta3oq2g50
q4avfypjrgz7poq.

For the purposes of evaluating the performance of LI Detector,
colonies originating from a random working copy were mocked as
reference strains, while the colonies from the other three working
copies were mocked as mutant strains. In the upscale plates (#2)
used for our analyses, one-fourth of all colonies correspond to
references, and the rest are treated as mutants. These plates had
16 technical replicates for every colony that was present in the
working copy. Supplementary Figure S3 provides a simplified visual
representation of the plates at all pinning stages.

Colony size estimation
Raw estimates of colony sizes are an input to the LI Detector
framework (Figure 1B) and can be obtained in the user’s manner
of choice. Here, a custom-made lightbox with an overhead cam-
era mount was built to acquire high-resolution images using a
commercially available SLR camera (18Mpixel Rebel T6, Canon
USA Inc., Melville, NY, USA). The 6144-density upscale plates (#2)
were imaged at eleven time points beginning right after pinning
until the colonies reached saturation, around 11 h later
(Supplementary Figure S2). Saturation was determined as the
point at which the colonies would touch each other if the plates
were incubated for any longer. The images were analyzed in bulk
using the “analyze_directory_of_images()” function of the MCAT
(Bean et al. 2014) with the default threshold parameter (1.25) to
provide colony size estimations (https://github.com/sauriiiin/lide
tector/blob/master/imageanalyzer.m). The output files contain-
ing colony size information along with the images is available at
https://pitt.box.com/s/xbchjoa4ta3oq2g50q4avfypjrgz7poq.

Spatially cognizant colony size database
A unique position identifier (pos) was given to every possible col-
ony position across the different plates of the experiment. Each

2 | G3, 2021, Vol. 0, No. 0

https://pitt.box.com/s/xbchjoa4ta3oq2g50q4avfypjrgz7poq
https://pitt.box.com/s/xbchjoa4ta3oq2g50q4avfypjrgz7poq
https://github.com/sauriiiin/lidetector/blob/master/imageanalyzer.m
https://github.com/sauriiiin/lidetector/blob/master/imageanalyzer.m
https://pitt.box.com/s/xbchjoa4ta3oq2g50q4avfypjrgz7poq


pos was linked to plate density, plate number, column number,
row number and stored in a “position to coordinate” table (pos2-
coor). A “position to mutant name” table (pos2orf_name) was
used to store information on which colony position was occupied
by which mutant. The colony size estimations and the pos2coor
table were used to store the colony sizes in a spatially cognizant
manner. Supplementary Figure S3 is a visual representation of
the plate maps made using the pos2coor and pos2orf_name
tables. The colonies’ spatial layout and identity are an input to
the LI Detector framework (Figure 1B) and should be provided in
this format by users. The format, along with the data collected
for this manuscript, is available at https://github.com/sauriiiin/
lidetector.

LI Detector analytical pipeline
The LI Detector analytical pipeline (Figure 1B, https://github.
com/sauriiiin/lidetector/blob/master/lid.m) is designed to make
fitness assessments using local reference colony information.

Border colony removal:
Border colonies tend to grow larger because of increased access
to nutrients (Baryshnikova et al. 2010; Wagih et al. 2013; Young
and Loewen 2013; Bean et al. 2014; Zackrisson et al. 2016). To re-
move this artifact, we ignore colony size estimations of one, two,
and four border rows and columns from 384, 1536, and 6144-den-
sity plates, respectively. Doing this resulted in 4864 colonies for
304 mock references and 14,576 colonies for 911 mock mutants
across four 6144-density plates. All further analysis is done using
this set.

Local artifact correction:
Local artifact correction (AC) is inspired by the “competition
correction” feature present in existing tools (Wagih et al. 2013;

Young and Loewen 2013). An “artifact score” is assigned to every

colony on a plate as a ratio of its colony size compared to its cur-

rent and past neighbors. The current neighbors are a colony’s

eight immediate neighbor colonies, and the past neighbors are

eight neighboring colonies that were pinned from the same

source plate. The reference population’s artifact scores are used

to determine outliers, defined as two median adjusted deviations

(MADs) or more from the median. Outliers are defined as colonies

growing disproportionately big or small as compared to their

neighboring colonies. Outliers that occur as a localized group of

three or more neighbors of both big and small colonies are con-

sidered for correction. The less abundant outlier in the group is

expected to have driven the phenotype. For example, a single

small or dead colony would increase the relative access to

nutrients for all its neighbors, which would all be expected to

grow bigger than usual and vice-versa. Raw colony sizes of all the

driver’s immediate neighbors are median normalized using the

median reference population colony size for the plate. Users have

the option to skip this correction.

Source normalization:
LI Detector uses a source-based computational deconstruction of

high-density plates into their four lower density sources to cor-

rect the source-related colony size differences introduced during

the upscaling process (Supplementary Figures S4 and S5). This

correction is a reimplementation of MCAT’s interleave filter

(Bean et al. 2014). Each source-deconstruct is individually normal-

ized in the later steps, making it necessary for the penultimate

density plates to have a reference population grid. Users have the

option to skip this correction, although we strongly recommend

against skipping if upscales are performed.

Figure 1 The LI Detector framework consists of integrated experimental and analytical pipelines. (A) The pin-copy-upscale experimental pipeline from
frozen glycerol stocks (top) to imaging (bottom). Each box represents a pinning step, and the steps within the sky-blue highlighted portion can be
repeated until the desired colony density is reached. Illustrations to the right of the flowchart is a simplified representation of four experimental plates.
A reference population (gray) is introduced on every plate during the first upscale step. The analytical pipeline uses this population for spatial bias
correction and relative fitness estimations for the mutant strains of interest (purple). (B) Workflow of the analysis pipeline where columns from left to
right represent user inputs, analytical steps, and outputs. User inputs consist of raw colony size estimates and the strain layout of the plates. The
analytical pipeline performs: (1) local artifact correction, (2) source normalization, (3) reference-based background colony size estimation using a 2-
dimensional linear interpolation, (4) corrects for spatial bias by dividing the local artifact corrected colony sizes with the background colony sizes and
provides a measure of relative fitness, and (v) assigns empirical P-values using the reference strain relative fitness distribution. The outputs include
local artifact corrected colony sizes, background colony sizes, spatially corrected relative fitness, and mutant strains identified as having a mean colony
size that is significantly larger or smaller than the reference strain.
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Reference-based normalization:
A two-dimensional linear interpolant is applied to the reference
population grid to estimate expected colony sizes on the entire
colony grid, including the reference colony positions. This refer-
ence colony-based estimated colony size is referred to as the
“background colony size.” The background colony sizes represent
the predicted reference colony growth on every position of the
grid conditioned upon the spatial context. Relative fitness is esti-
mated as the ratio of the local artifact corrected colony size to
the background colony size, thus controlling for spatial context.

The goal of the two-dimensional linear interpolation is to pre-
dict the unknown function f at the point ðx; yÞ. It is assumed that
the value of f is known at the four points Q11 ¼ x1; y1ð Þ,
Q12 ¼ x1; y2ð Þ, Q21 ¼ x2; y1ð Þ, and Q22 ¼ x2; y2ð Þ. The first step is to
conduct linear interpolation in the x-direction:

f x; y1ð Þ �
x2 � x

x2 � x1
f Q11ð Þ þ x� x1

x2 � x1
f Q21ð Þ

f x; y2ð Þ �
x2 � x

x2 � x1
f Q12ð Þ þ x� x1

x2 � x1
f Q22ð Þ:

The next step is to move in the y-direction to obtain the de-
sired function:

f x; yð Þ �
y2 � y

y2 � y1
f x; y1ð Þ þ

y� y1

y2 � y1
f x; y2ð Þ:

The same result will be obtained if the interpolation is done
first along the y direction and then along the x direction.

Different strategies for fitness estimation
The LI Detector analytical pipeline is applied to colony size esti-
mates to control for spatial bias and measure relative fitness as
described above. The analytical pipeline is used as-is (LID),
without local artifact correction (LID-AC), and without source-
normalization (LID-SN) to measure the impact of these compo-
nents on the downstream analysis. Raw observed colony size
estimates were also used as “fitness” measurements without per-
forming any normalization (NO-NORM). Fitness estimates were
also made using the MCAT’s (Bean et al. 2014) SpatialMedian nor-
malization with window size nine along with the Interleave filter
(https://github.com/sauriiiin/sau-matlab-toolkit/blob/master/im
age2resBEAN.m).

Measuring spatial bias and the accuracy of
background colony size
The coefficient of variance of fitness and colony size estimations
was used to measure the impact of spatial bias in colony sizes of
an isogenic population (Supplementary Figure S6A). Ten random
observations were picked, with replacement, 2000 times to mea-
sure the coefficient of variance as a percentage of the mean
(CV%). CV% distributions for LID, LID-AC, LID-SN, MCAT (Bean
et al. 2014), and NO-NORM were compared using the Wilcoxon
rank-sum test.

The accuracy of background colony size was measured using
root mean square error (RMSE) estimation as a percentage of the
average observed colony size (Supplementary Figure S6B). A ran-
dom colony size predictor (RND) was used as a null model for
background colony size prediction. The RND generated random
colony sizes from a normal distribution, with the rnorm function
in R (R Core Team 2013) using the mean and standard deviation
of observed colony sizes. The Wilcoxon rank-sum test was used

to compare RMSE results from LID, LID-AC, LID-SN, MCAT (Bean
et al. 2014), and RND.

Calculating significant fitness changes and
assigning phenotypes
The relative fitness of each strain was measured as the mean of
estimated relative fitness among its replicates. This measure-
ment was done after removing the outlier observations based on
three MAD. MAD is a more robust outlier removal technique than
other measures such as mean, standard deviations or z-scores,
because it does not assume a normal distribution, is not im-
pacted by outliers and is capable of detecting outliers in small
samples (Iglewicz and Hoaglin 1993). The reference strain relative
fitness distribution was used as a null distribution for hypothesis
testing, as the reference strains are isogenic, and no real fitness
differences are expected. An empirical P-value was estimated for
all mutant strains based on where they fall relative to this null
distribution (https://github.com/sauriiiin/lidetector/blob/master/
lid.m). For example, an empirical P-value of 0.05 or below would
mean that the mutant’s relative fitness is in the top or the bot-
tom 2.5th percentile of the reference fitness distribution. The
phenotype of mutant strains significantly different from the ref-
erence population is classified as “beneficial” or “deleterious,”
depending on whether its estimated relative fitness is above or
below 1. The remaining mutant strains that do not have a signifi-
cant change in fitness are classified as having a “neutral” pheno-
type.

Alternate strategies for detecting significant
fitness changes
To ensure that our results were not confounded by using the
same strain for spatial bias correction and for empirical testing,
we mocked colonies originating from a working copy other than
the one chosen as the reference as a “tester” population. Hence,
the upscale plates (#2) in this case had one-fourth of all colonies
as references used for spatial bias correction, another one-fourth
as testers used for empirical testing and the remaining half
were treated as mutants. Everything else being the same, the null
distribution for the empirical testing was determined using the
relative fitness distribution of the tester. Results from this analy-
sis (https://github.com/sauriiiin/adaptivefitness/blob/master/scri
pts/paper/FIGURES_REV.R) are shown in Supplementary
Figure S7.

To ensure that our results were robust to the statistical test
being performed, the relative fitness distributions, post outlier re-
moval, for every mutant, were compared to that of the reference
strain using the nonparametric Wilcoxon ranksum test
(Wilcoxon 1946; Mann and Whitney 1947). The resultant P-values
were corrected for multiple hypothesis testing using Q-value esti-
mations as defined in Storey (2002). A Q-value cut-off of 0.05 was
used to determine significant fitness deviations. Results from this
analysis (https://github.com/sauriiiin/adaptivefitness/blob/mas
ter/scripts/paper/FIGURES_REV.R) are shown in Supplementary
Figure S8.

Empirical strategy for performance evaluation
An empirical strategy was devised to thoroughly examine the LI
Detector’s performance. A condition negative and positive
dataset were created to estimate specificity and sensitivity, re-
spectively (Table 1, Figure 2A, Supplementary Figure S9).

The condition negative dataset consisted of data where the
mock mutants and references have similar colony size distribu-
tion. To this end, colony size data taken from any time point
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represents a unique condition negative dataset (Figure 2B). We
tested 44 such plates, four plates for the 11 time points that
images were taken. The proportion of mock mutant strains that
are successfully called neutral by the LI Detector represents the
true negative rate or specificity.

The condition positive dataset consisted of colony size data
where mutant strains can be deleterious or beneficial. Two sets
of virtual plates were created to generate such a condition posi-
tive dataset. The first set of virtual plates contained a bimodal
distribution of colony sizes (Supplementary Figures S10 and S11)
where colony size estimations for reference and mutant colony
positions came from two different time points while maintaining
their topological context (https://github.com/sauriiiin/paris/blob/
master/techPowA.m). The fitness effect between the reference
and mutant colony size distribution is the difference of their
mean colony sizes as a percentage of the mean reference colony
size (Figure 2C). We tested 440 virtual plates with bimodal colony
size distribution resulting from combining reference colony size
data from 11 time points (tR) with mutant colony size data taken
from 10 time points (tM) and having four plates for each tR—tM

combination.
The second set of virtual plates contained a random distribu-

tion of colony sizes where reference colony size data from a par-
ticular time point was combined with mutant colony size data
randomly selected from all time points (Figure 2D). Colony size
estimates for replicates of the same mutant were all selected
from the same time point (https://github.com/sauriiiin/adaptive
fitness/blob/master/scripts/4CX/4C_MESSUP.R). We tested 44 vir-
tual plates with random colony size distribution by having 4
plates for the 11 time points that reference colony size data (tR)
can be taken from (Figure 2D).

Mutants that are successfully called beneficial or deleterious
in these virtual plates are used to estimate the true positive rate
or sensitivity of the LI Detector (https://github.com/sauriiiin/adap
tivefitness/blob/master/scripts/4CX/4C_POWDY.R). For the vir-
tual plates, an empirical P-value cut off that controls the false
positive rate at 5% was used to make the examination of sensitiv-
ity comparable between LID, LID-AC, LID-SN, MCAT(Bean et al.
2014), and NO-NORM. The results from this analysis are repre-
sented in Figures 3 and 4, Supplementary Figures S12 and S13.

Measuring the impact of the number of
references and replicates
The reference colony proportion was sequentially reduced from
25% to 18.75% to 12.5% to 6.25% by masking one-fourth of the
existing reference grid each time. This reduction was achieved by
masking colonies on the 384-density mock reference plate and

then propagating those masked colonies through the other densi-
ties. The number of replicates per strain was reduced in parallel
by masking the nth replicate of every mock strain. Replicates
were reduced from 16 to 2 in increments of 2. This process was
repeated ten times to mask a variety of replicate combinations
(https://github.com/sauriiiin/paris/blob/master/techPowA.m).
Results from the analysis of the resultant plates are repre-
sented in Figure 5, Supplementary Figures S14 and S15.

Data availability
All data generated/analyzed in this study is available in the main
text, in the Supplementary Figures and Tables, and as
Supplementary Data files. All supplementary data are also on
GitHub: https://github.com/sauriiiin/lidetector. Supplementary ma-
terial is available at figshare: https://doi.org/10.25387/g3.13373255.

Code availability
The code is available to download at https://github.com/sau
riiiin/lidetector, along with instructions on how to use it. Image
processing, relative fitness estimations, and analyses presented
in the result section are available at https://github.com/sauriiiin/
sau-matlab-toolkit. All images within the main article and sup-
plementary data were generated using code available at https://
github.com/sauriiiin/adaptivefitness/tree/master/scripts/paper.

Detailed protocol on the use of LI Detector can be found at
https://www.protocols.io/private/
21D4D9D12A7E11EBAB590A58A9FEAC2A.

Results
Development of a new CBHTS framework
The LI Detector framework is specifically designed to correct spa-
tial bias and sensitively detect small but significant fitness
changes without making a priori assumptions about the underly-
ing DFE of tested strains (thereafter, “mutant” strains). The exper-
imental pipeline (Figure 1A) follows a pin-copy-upscale protocol
that serves two purposes. It reduces colony size differences that
arise during the pinning process and adds a reference colony grid
(Zackrisson et al. 2016) on every plate. The copy step is instru-
mental in reducing the source-based bias (Bean et al. 2014) intro-
duced after upscaling (Supplementary Figure S5). The analytical
pipeline utilizes the reference colony grid to correct spatial bias
and infer the fitness of mutant strains relative to the reference
strain. The analytical pipeline (Figure 1B) consists of five main
steps: (1) local artifact correction (AC), (2) source normalization
(SN), (3) reference strain based background colony size estima-
tion using a 2-dimensional linear interpolant, (4) estimation of

Table 1 Empirical strategy for performance evaluation

Test Dataset Time of colony size data Colony size distribution Expected phenotype Performance measure

Condition Negative tR ¼ tM Uniform Neutral Specificity
Condition Positive (Virtual Plates) tR > tM Bimodal Deleterious Sensitivity

tR < tM Beneficial
tM� tR > tM Random Deleterious

Neutral
Beneficial

tR ¼ Reference colony size time, tM ¼Mutant colony size time
The testing space consists of a condition negative and condition positive datasets. The colony size datasets are generated using an isogenic population of
S. cerevisiae grown on four 6144-density agar plates (see Materials and Methods). These plates were imaged at eleven time points from pinning to saturation. A subset
of colonies on the plates were mocked as references, and the rest were mocked as mutants. This dataset was considered condition negative, as the reference and
mutant colonies: (1) are isogenic, and (2) grown to the same time point. The condition positive dataset was made up of virtual plates created by combining
reference and mutant colony size data from different time points so that the DFE is either bimodal or random. These datasets are used to measure the ability of the
LI Detector to observe a variety of fitness effects. tR represents the reference colony size time, and tM the mutant colony size time.
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spatially-corrected relative fitness as the ratio of the local artifact
corrected colony sizes divided by the estimated background col-
ony sizes, and (5) empirical hypothesis testing to identify mutant
strains with colony size distributions that have a significantly
larger or smaller mean than the reference strain.

The local AC step is designed to reduce spatially localized colony
size differences that arise due to differential access to nutrients. It
is similar to the competition correction feature implemented by
several existing methods (Wagih et al. 2013; Young and Loewen
2013). The SN step controls for differences in colony sizes that oc-
cur due to the upscaling process. This step was reimplemented
from the interleaving feature of MCAT (Bean et al. 2014). Briefly, it
deconstructs the colony size estimates of the higher density plates
into subsets corresponding to the source plates used for the

upscaling (Supplementary Figure S4). Both local AC and SN are pro-
vided as optional steps in the LI Detector analytical pipeline.

The background colony size estimation step predicts the size
that a reference colony would be for every position on the plate.
This step employs a two-dimensional linear interpolant based on
the reference colony grid. Relative fitness is then assigned to ev-
ery colony as a ratio of the local artifact corrected colony size to
the predicted background colony size. This estimate of relative
fitness corrects local spatial bias without making any assump-
tions of the underlying DFE. The only assumption is that, for any
location on the plate, the spatial bias is expected to affect the ref-
erence and mutant colonies to an equal extent.

Each mutant strain is assigned a relative fitness value corre-
sponding to the average relative fitness of its replicate colonies.

Figure 2 Condition negative and positive datasets used for performance evaluation. (A) Illustration of the condition positive and negative datasets
described in Table 1. The squares represent plates, and the circles within them represent colonies. The reference colonies are colored as gray and the
mutant colonies as purple. The middle row represents the condition negative dataset shown as a single plate at three different time points. There were
44 plates in this dataset. The top row shows two virtual plates made by combining reference colony size data from one time point with mutant colony
size data from another. These virtual plates had a bimodal colony size distribution. There were 440 such virtual plates. The bottom row shows two
virtual plates where the reference colony size data taken from one time point is combined with mutant colony size data randomly selected from any
time point. These virtual plates had a random colony size distribution. There were 44 such virtual plates. All virtual plates maintain the same spatial
layout of colonies as the condition negative dataset, as is shown by the arrows. tR is reference colony size time, and tM is mutant colony size time. (B)
Reference and mutant population colony size density plots from the condition negative dataset. Vertical black lines within the density plots represent
the lower, middle, and upper quartile. All mutants are expected to have a neutral phenotype. (C) Fitness effect matrix of the condition positive virtual
plates with bimodal colony size distribution. Mutant (tM) and reference colony size time (tR) is represented on the x-axis and y-axis, respectively. The
fitness effect was calculated as the difference in mutant and reference mean colony sizes as a percentage of the reference mean colony size
(Supplementary Figure S10). This dataset was used to calculate the sensitivity of the LI Detector as a function of the fitness effect. (D) Reference and
mutant population colony size density plots from the condition positive virtual plates with random colony size distribution. Vertical black lines within
the density plots represent the lower, middle, and upper quartile. Mutant strains could be beneficial, deleterious, or neutral. These virtual plates were
used to evaluate LI Detector’s sensitivity in situations where a priori assumptions of fitness are challenging to make.
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The distribution of relative fitness estimates for the reference

strain is then used as null distribution to calculate empirical P-
values describing the probability of the reference strain having a

more extreme value of relative fitness than the mutant strain.

The empirical P-values are used to determine the significance of

the mutant strain fitness deviation from the reference strain (see

Materials and Methods).
In what follows, we compare the performance of LI Detector

with one of the most versatile and robust tools available for cor-

recting spatial bias, MCAT (Bean et al. 2014). The overall workflow

adopted for testing the two methods’ performance is described in

Table 1 and Supplementary Figure S9. In brief, we estimated the

specificity and sensitivity of the LI Detector and MCAT using col-
ony size datasets generated using an isogenic population of S. cer-

evisiae (see Materials and Methods). A subset of colonies was

mocked as references, and the rest were mocked as mutants. The

LI Detector and MCAT (Bean et al. 2014) spatial bias correction

was applied independently. For consistency, our empirical P-
value calculation strategy was used for the two methods. The

mutant strains were classified into beneficial, deleterious, or neu-

tral phenotypes depending on whether their relative fitness was

significantly higher, significantly lower, or unchanged compared
to the reference distribution.

Construction of condition negative and positive
datasets for performance evaluation
To evaluate the LI Detector’s performance, we constructed data-
sets where the underlying DFE was known, but colony sizes were
realistically affected by spatial biases and other technical arti-
facts of CBHTS (Figure 2A). To this end, we applied the pin-copy-
upscale experimental pipeline of our framework (Figure 1A),
starting with four 384-well glycerol stock plates, each containing
replicate frozen cultures of the same strain (FY4, Winston et al.
1995). This procedure generated four 6144-density agar plates
containing 16 replicate colonies for each culture in the starting
glycerol stock plates (see Materials and Methods). The sizes of these
colonies were measured at eleven time points while they grew to
saturation (Figure 2B, Supplementary Figure S2). The colonies
originating from one of the glycerol stock plates were treated as
reference, and the rest were treated as mutants.

To estimate specificity, we assembled a “condition negative”
dataset consisting of colony size measurements of our plates at
eleven time points. None of the mutants in this dataset should be
significantly larger (beneficial) or smaller (deleterious) than the
references (Figure 2B). We then assembled two artificial “condition
positive” datasets consisting of “virtual plates” that we used to
evaluate the sensitivity of the LI Detector (Figure 2, C and D).

Figure 3 The LI Detector has high specificity and sensitivity. (A) Average specificity (solid colored line) and standard error (gray region) at various
empirical P-value cut-offs for LID (blue) and MCAT (Bean et al. 2014) (green). Empirical P-values (x-axis) calculated using the reference strain relative
fitness distribution (see Materials and Methods). Specificity (y-axis) was estimated using the condition negative dataset as the proportion of mutants
classified as neutral (see Materials and Methods). (B) LID phenotype classification results from the virtual plates with bimodal distribution are arranged
according to increasing fitness effects. Here, the fitness effect is the mean mutant and mean reference colony size difference as a percentage of the
reference colony size for each virtual plate. Sensitivity is calculated as the proportion of mutants correctly identified as significantly different
(beneficial or deleterious) than the reference for each fitness effect value. The dotted red line indicates a 5% fitness effect. A 5% false positive rate was
maintained while generating these results. (C) MCAT (Bean et al. 2014) phenotype classification results from the same data as (B).
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These virtual plates were constructed so that the underlying DFE
would be known and readily comparable to the LI Detector and
MCAT (Bean et al. 2014) results. The first condition positive set
combined colony size estimates of the mock references and
mutants from two different time points, resulting in virtual plates
with bimodal colony size distributions: a reference distribution,
and a mutant distribution with a smaller or larger mean
(Supplementary Figure S10). The fitness effect was measured as
the difference in the mean colony sizes of the two distributions as
a percentage of the reference distribution mean colony size
(Figure 2C). Doing this allowed us to evaluate sensitivity for a
broad range of fitness effects. The second condition positive set
combined the reference distribution from a single time point with
mutant colony sizes from randomly chosen time points, resulting

in virtual plates with random DFE (Figure 2D). The random DFE
allowed us to estimate sensitivity when the traditional assump-
tions used for spatial bias correction are unwarranted. It is impor-
tant to note that all virtual plates retain realistic spatial biases in
colony sizes because they maintain the original plate layout.

We leveraged the condition negative and positive datasets to
compare the performance of LI Detector (LID), LI Detector without
source normalization (LID-SN), and LI Detector without local arti-
fact correction (LID-AC) with that of MCAT (Bean et al. 2014). We
also used a random generator (RND) to assign background colony
sizes by only taking the global colony size distribution of the refer-
ence population into account. Lastly, the observed colony sizes
were used as-is, as “fitness” estimates to generate phenotype results
when no normalization (NO-NORM) was done on the datasets.

Figure 4 The LI Detector maintains high sensitivity even when the underlying DFE is random. (A) The actual classification of the mutants in the
random DFE condition positive dataset, per construction, with 41.60% beneficial, 50.26% deleterious, and 8.14% neutral. (B) and (C) show the
classification results from LID and MCAT (Bean et al. 2014), respectively. (D–F). Bar graphs showing (D) actual, (E) LID, and (F) MCAT (Bean et al. 2014)
classification of mutants for each virtual plate with random DFE. The virtual plates are arranged according to their reference colony time point. (G–I)
Bar graph of pooled results from all plates arranged according to the fitness effects for the (G) actual classification, (H) LID and (I) MCAT (Bean et al.
2014). Each bar has a width of 10%. False positive rate was maintained at 5% for both LID and MCAT (Bean et al. 2014) in these analyses.
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LI Detector can accurately estimate background
colony sizes and eliminate spatial bias
In our condition negative dataset, variation in colony sizes should
only stem from the spatial bias and from occasional nongenetic
biological variation expected for some isogenic populations
exhibiting clonal heterogeneity (Van Egeren et al. 2018). Hence,
the fitness estimates obtained after spatial bias removal should
only reflect biological variability and the added noise from the
bias removal process. We measured the coefficient of variance
percentage (CV%) of the colony sizes and fitness estimates for
images taken at multiple time points (see Materials and Methods).
LID, LID-AC, and MCAT (Bean et al. 2014) showed a significant re-
duction in CV% compared to NO-NORM, while LID-SN did not
(Supplementary Figure S6A). This finding indicates that the LI
Detector can reduce spatial bias and confirms that SN plays a vi-
tal role in doing so (Bean et al. 2014).

The LI Detector’s ability to remove spatial bias depends on the
accuracy with which it can estimate background colony sizes using
the reference population colony sizes. We used the RMSE between
background and observed colony sizes as a percentage of the mean
observed colony size to measure this. LID, LID-AC, and MCAT
(Bean et al. 2014) RMSE% were indistinguishable for the higher time
points when the colonies begin to saturate (Supplementary Figure
S6B). RMSE% for LID-SN was significantly higher than LID
(P¼ 0.00019, Wilcoxon rank-sum test Wilcoxon 1946; Mann and
Whitney 1947), again indicating the importance of performing SN
(Supplementary Figure S6C). All methods performed better than
RND. Overall, these findings show the LI Detector performs as well
as MCAT (Bean et al. 2014) in eliminating spatial biases by integrat-
ing both global and local spatial contexts.

LI Detector identifies small fitness effects with
high specificity and sensitivity
To evaluate the LI Detector’s ability to detect neutral, beneficial,
and deleterious fitness effects, we estimated its specificity and
sensitivity using our condition negative and positive datasets, re-
spectively (Table 1, Figure 2, Supplementary Figure S9).
Specificity was calculated as the proportion of mutant strains
that were correctly classified as neutral using our condition nega-
tive dataset (Figure 2B). LID’s specificity was above 98% for an
empirical P-value cut-off of 0.05 and remained above 95% when
that cut-off was increased to an empirical P-value of 0.1. For com-
parison, MCAT (Bean et al. 2014) showed a maximum specificity

of 94.5% for an empirical P-value cut off of 0.05 using the same
dataset (Figure 3A).

Sensitivity was estimated as the proportion of mock mutant
strains correctly classified as either beneficial or deleterious at a
false positive rate of 5% using our condition positive dataset with
bimodal fitness distribution (Figure 2C, Supplementary Figure S10).
LID’s sensitivity was higher than 95% for beneficial and deleterious
fitness effects of 5%, reaching 100% for fitness effects of about 7%
(Figure 3B). These findings show that LID is highly sensitive in ob-
serving small fitness effects; notably, it is equally sensitive to
increases and decreases in fitness. This result depended on the fit-
ness estimation strategy, with LID performing significantly better
than LID-AC, LID-SN, and NO-NORM (Supplementary Figure S12).
We also performed the same analysis using MCAT (Bean et al.
2014). MCAT (Bean et al. 2014) was 80% sensitive in detecting 5% fit-
ness decreases, and only 40% sensitive when it came to 5% fitness
increases (Figure 3C). We hypothesize that MCAT’s (Bean et al.
2014) lower sensitivity stems from its use of a local window of sur-
rounding mutants rather than a reference colony grid to estimate
background colony size. These results show that the LI Detector
displays improved sensitivity, remarkably so for beneficial effects,
for the same specificity as MCAT (Bean et al. 2014).

We also measured LI Detector’s performance when two differ-
ent strains are used for spatial bias removal and for empirical
testing. To do this, we mocked a different source plate as our
“Tester” strain and repeated the above analysis (see Materials and
Methods). We found that LID’s specificity remains high, albeit
marginally lower when Tester is used for empirical testing in-
stead of the original Reference (Supplementary Figure S7A).
However, in both cases, the specificity is more than 95% for an
empirical P-value cut-off of 0.05. Similarly, LID’s sensitivity for
detecting 5% fitness effects remains more than 95% with the use
of Tester (Supplementary Figure S7B). These findings show that
the LI Detector’s spatial bias removal and empirical testing are
independent features and offers the users with additional flexi-
bility to suit their experimental design.

LI Detector maintains high sensitivity when the
DFE is random
We designed the LI Detector to be highly sensitive regardless of
the underlying DFE. To evaluate LI Detector’s performance when
the underlying DFE is random, we used our condition positive
dataset made of forty-four virtual plates with random colony size

Figure 5 Sensitivity is directly related to the number of references and replicates. Sensitivity for observing 5% fitness effects, as a function of the
varying proportion of references per plate (individual panels) and the number of replicates per strain (x-axis) was estimated for virtual plates with
bimodal (purple) and random (orange) colony size distribution. Error bars represent a single standard deviation.
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distribution (Figure 2D). The 44 plates combined contained
41.60% beneficial and 50.26% deleterious mutants with 16 repli-
cate colonies of each (Figure 4A). We found that LID was 98.93%
sensitive, successfully identifying 98.65% of beneficial and
99.20% of deleterious mutants (Figure 4B). In comparison, MCAT
(Bean et al. 2014) was 83.08% sensitive and successful in identify-
ing 82.76% of beneficial and 83.40% of deleterious mutants
(Figure 4C). The false positive rate was maintained at 5% for both
methods. Virtual plate-wise phenotype classification results
show that the actual classification (Figure 4D) is better captured
by LID (Figure 4E) and that MCAT (Bean et al. 2014), in general,
had more false negatives (Figure 4F). LID’s neutral calls were
mostly limited to fitness effects of 5% or smaller, whereas MCAT
(Bean et al. 2014) neutral calls covered a wider range of fitness
effects (Figure 4, G–I). That MCAT (Bean et al. 2014) was consider-
ably less sensitive than LID in this scenario was not surprising
since a random underlying DFE violates the assumptions of
MCAT (Bean et al. 2014) and other existing methods.

To examine how the choice of statistical testing strategy im-
pacted the sensitivity of LID, we conducted the above analyses
using the nonparametric Wilcoxon ranksum test (Wilcoxon 1946;
Mann and Whitney 1947) instead of an empirical test (see
Materials and Methods). For both LID and MCAT(Bean et al. 2014),
the nonparametric test’s use slightly increased true positive and
false positive rates relative to the empirical test (Supplementary
Figure S8B). This led to a small increase in sensitivity and a small
decrease in specificity for LID (Supplementary Figure S8C) and a
substantial increase in sensitivity and substantial decrease in
specificity for MCAT (Bean et al. 2014) (Supplementary Figure
S8C). Notably, LID maintained more than 95% sensitivity and spe-
cificity, regardless of the statistical test used (Supplementary
Figure S8C).

The LI Detector’s sensitivity increases with an
increasing number of references and replicates
LI Detector’s superior performance comes at the cost of having to
integrate a reference colony grid, and therefore use a higher
number of plates to screen the same number of mutant colonies.
We analyzed how the number of references per plate and the
number of replicates per strain affected LID’s sensitivity. To do
this, we computationally masked portions of the reference colony
grid and replicates, and then reanalyzed the virtual plates with
bimodal and random DFE in our condition positive dataset (see
Materials and Methods). We observed that LID’s sensitivity in
detecting 5% fitness effects increased in proportion to the num-
ber of reference colonies per plate, as well as to the number of
replicates per strain in both sets of virtual plates (Figure 5).
Unsurprisingly, sensitivity was higher for detecting a fitness ef-
fect of 7% (Supplementary Figure S14A). Increasing the number
of replicates was most powerful when there were more referen-
ces on the plate (Supplementary Figure S14B). In general, the sen-
sitivity was higher in the virtual plates with bimodal than
random DFE (Figure 5). These observations are consistent with
the finding that RMSE% is inversely related to the number of ref-
erence colonies per plate (Supplementary Figure S15). On the
other hand, LID’s specificity was consistently above 95%, inde-
pendent of the fitness estimation strategy (see Materials and
Methods), the proportion of references per plate, and the number
of replicates per mutant strain (Supplementary Figure S13). The
LI Detector users may choose the number of references and repli-
cates adequate for their purposes as a function of the fitness
effects they expect to observe and the sensitivity they aim to
achieve.

Discussion
LI Detector is a CBHTS framework (Figure 1) that generates reli-
able and well-resolved fitness estimations without being depen-
dent on a priori assumptions of the DFE (Figures 3, A and B and 4,
B, E, H). LI Detector is specifically designed to observe small dele-
terious and beneficial fitness changes (Figure 3B). Therefore, it is
a valuable method for precision phenotyping and for improving
the resolution of gene–gene and gene–environment interaction
networks of colony forming organisms.

Existing spatial bias correction methods work best in unbiased
genome-wide studies with a large number of plates and mutants
(Baryshnikova et al. 2010). While alternate methods have been de-
veloped to increase sensitivity at the small scale level (Herricks
et al. 2017), LI Detector provides a flexible approach that can be
applied to CBHTS independent of their scale and of the choice of
strains to screen. For example, LI Detector can be used as effi-
ciently for a highly biased screen of nonsynonymous mutations
in a single gene to identify important residues (Garst et al. 2017;
Bao et al. 2018; Guo et al. 2018; Roy et al. 2018; Sadhu et al. 2018;
Sharon et al. 2018; Despres et al. 2020), or for a genome-wide syn-
thetic genetic array used to infer genetic interactions (Costanzo
et al. 2010, 2016; Zimmermann et al. 2017; Klobucar and Brown
2018; Kuzmin et al. 2020). LI Detector may conceivably be lever-
aged for high-throughput quantitative protein interaction map-
ping as well. This freedom of experimental design expands the
applicability of CBHTS for broader scientific inquiry.

We show that LI Detector has the power to uncover significant
fitness effects as small as 5% with 95% sensitivity when 25% of
the plate is dedicated to reference colonies and mutant strains
are represented by 16 replicate colonies (Figures 3B and 5).
Smaller fitness effects can be observed with comparable sensitiv-
ity by increasing the number of replicates per strain
(Supplementary Figure S14A). Existing methods, like MCAT (Bean
et al. 2014), also provide quantitative output of fitness with high
resolution; however, without a reference grid and proper spatial
bias correction, one cannot statistically determine if the small
effects are meaningful. LI Detector’s ability to detect small
increases in fitness, in particular, makes it a favorable method to
examine gain-of-function mutations, questions of evolutionary
biology, and pharmacological screens of adaptation and resis-
tance (Tong et al. 2001; Parsons et al. 2004; Nichols et al. 2011;
Hoepfner et al. 2014; Lee et al. 2014; Piotrowski et al. 2017; Durand
et al. 2019; Eberlein et al. 2019; Helsen et al. 2020; Vakirlis et al.
2020). The unprecedented sensitivity of LI Detector augments the
discovery potential of CBHTS.

LI Detector is a flexible framework whereby the statistical
strategy can be adapted to study design. For example, spatial bias
correction and empirical testing for significant fitness deviations
can either be performed using a single reference strain or sepa-
rate reference and tester strains (Supplementary Figure S7). This
enables the user, for example, to conduct spatial bias correction
for a variety of different experimental conditions using a com-
mon strain while using different strains to quantitate fitness
deviations in each condition, or vice-versa. At the analytical level,
alternate statistical testing strategies can be incorporated with-
out compromising sensitivity and specificity (Supplementary
Figure S8C).

A caveat of LI Detector is that a portion of the colony positions
on the plates is sacrificed for reference colonies that could other-
wise be used for mutants. Consequently, this increases the over-
all resources required for the experiment, including media,
number of plates, storage space, pinning time, and imaging time.

10 | G3, 2021, Vol. 0, No. 0



We have shown that LI Detector’s accuracy in predicting back-
ground colony sizes and its sensitivity in detecting small fitness
effects is directly related to the proportion of reference colonies
on a plate (Figure 5). However, the proportion of references per
plate and the number of replicates per strain can be tunable
according to the user’s requirement. It must be noted that the
cost of reducing the number of references is lower for detecting
more substantial fitness effects. For example, sacrificing 12.5% of
the plate for reference colonies instead of 25% has almost no det-
riment to detecting 7% fitness effects (Figure 5, Supplementary
Figure S14A). A higher number of references and replicates can
be used if the goal is to look for minute changes in fitness, as are
frequently observed with the deletion of nonessential genes or
minor changes to the coding sequence of a given gene.
Alternatively, fewer references and replicates may be used where
larger fitness effects are expected or desired, such as finding the
most drug-resistant mutant. That said, users interested in large
fitness effects exclusively may use existing methods like MCAT
(Bean et al. 2014) instead of the LI Detector to save resources, as
long as a priori assumptions of the DFE are reasonable to make.

In summary, the LI Detector framework experimentally introdu-
ces a reference population grid on plates whose colony size esti-
mates are used to correct for spatial bias independently of the
underlying DFE. It has the potential to expand the utility of CBHTS
by making them independent of scale, sensitive toward small fit-
ness effects, and equally sensitive in detecting increases and
decreases in fitness. LI Detector also provides a robust and reliable
method to analyze 6144-format CBHTS, where a larger number of
strains and replicates can be characterized simultaneously.
Although developed and validated using S. cerevisiae, it can be ap-
plied to any colony-forming-microorganisms, including clinically
relevant isolates, as long as they can be grown in the laboratory.
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