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Abstract: Over the last couple of decades, stimuli-responsive supramolecular gels comprising syn-
thetic short peptides as building blocks have been explored for various biological and material
applications. Though a wide range of stimuli has been tested depending on the structure of the pep-
tides, light as a stimulus has attracted extensive attention due to its non-invasive, non-contaminant,
and remotely controllable nature, precise spatial and temporal resolution, and wavelength tunability.
The integration of molecular photo-switch and low-molecular-weight synthetic peptides may thus
provide access to supramolecular self-assembled systems, notably supramolecular gels, which may be
used to create dynamic, light-responsive “smart” materials with a variety of structures and functions.
This short review summarizes the recent advancement in the area of light-sensitive peptide gelation.
At first, a glimpse of commonly used molecular photo-switches is given, followed by a detailed
description of their incorporation into peptide sequences to design light-responsive peptide gels
and the mechanism of their action. Finally, the challenges and future perspectives for developing
next-generation photo-responsive gels and materials are outlined.

Keywords: peptide; stimuli responsive; gel; trans-cis isomerization; azobenzene; arylazopyrozoles;
spiropyran

1. Introduction

Supramolecular self-assembly, governed by multiple non-covalent interactions, has
been explored as a powerful and elegant strategy for the hierarchical bottom-up synthesis of
soft materials across length scales [1–5]. Though the individual supramolecular interactions
are weak, the resultant interaction is strong enough to make soft materials with different
nanostructures, functions, and elegant properties when they work in tandem. An extreme
case of higher order self-assembly is the formation of supramolecular gels, basically, semi-
solid materials composed of three-dimensional (3D) networked structures with a large
amount of entrapped solvents (water in the case of hydrogels and other solvents for
organogels) [6–13]. Due to the reversible nature of the supramolecular interactions, such as
hydrogen bonding, π−π stacking, hydrophobic interactions, van der Waals interactions,
charge-transfer interactions, etc., the resultant gels are highly sensitive to different external
stimuli and thus making those gels highly dynamic in nature [14–16]. Over the past couple
of decades, a plethora of supramolecular gels with structural sophistication and functional
variations, particularly aromatic peptides because of their built π-interactions environment,
have been reported [17–21].

In light of this, peptides, because of their unique properties, are proven to be an excel-
lent class of building blocks for devising supramolecular gels [22–25]. They offer a wide
range of structural diversity, self-assembling propensities, and morphological variations
due to large possible combinations of amino acids which form peptide sequences [26–32]. In
addition, the design rules for the self-assembly of peptides are well documented. Moreover,
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peptides offer bioactive functionalities, biocompatibility [33,34], and biodegradability [35].
In addition to this, they can possess unique specific functions like cell targeting and envi-
ronmental responsiveness owing to their bio-active nature [36]. Chemically, the side chains,
free amino (–NH2), and carboxyl (–COOH) terminus further open up ample opportunities
to integrate drugs [37,38], carriers [39,40], and other functional molecules of interest. Due
to the chiral nature of the amino acids (except Glycine (Gly)), often, molecular chirality
gets transferred to the supramolecular level causing nano-structures with specific chiral-
ity [41–43]. Additionally, peptides are synthetically accessible due to the well-established
straightforward, efficient procedure of Solid Phase Peptide Synthesis (SPPS) that makes
them a promising candidate for assembling, programming, and recognizing with utmost
efficacy and minimum toxicity [44,45]. Additionally, peptides are well-known for their
smaller size (length ranging from 10 to 15 amino acids), even smaller than antibodies, and
they are less immunogenic and highly stable in physiological conditions, making them a
reliable candidate for conjugation with various kinds of nano-carriers for biological appli-
cation [46]. Finally, peptides are well-known for their co-assembling and co-aggregating
propensity with a wide range of molecular entities such as other peptide sequences, pro-
teins, polymers, drug molecules, inorganic and other molecules [47–55]. Co-assembly can
occur at the molecular level in mainly four different ways, viz. (a) cooperative co-assembly,
(b) self-sorting (or orthogonal co-assembly), (c) random co-assembly, and (d) destructive co-
assembly [50]. These newly generated multicomponent co-assembled systems give access
to tailored features, enhanced mechanical and architectural scope, desired morphology,
improved bioavailability, and functional complexity with emergent behavior [48–59]. In
fact, in recent years, a considerable amount of effort have been dedicated in the direction
of designing peptide-based multicomponent systems decorated with desired structures,
properties, and functions with multitasking abilityies via co-assembly, which is difficult for
a monocomponent peptide assembly to realize [48,57–61].

One potentially helpful feature of supramolecular gels is their switchable behavior
in different physical states in response to various external stimuli. Although a plethora
of incentives, for example, ionic strength [62–64], pH [44,64], enzyme [65–69], tempera-
ture [14,70–72], mechanical stress [73], light [74,75], etc., have been reported extensively
to show the switching ability, among them, light has received extensive attention because
of its non-invasive nature and more importantly, light permits to target a specific area of
gel remotely by using photo masks with a high level of spatiotemporal resolution causing
patterned gel surfaces and rapid phase transitions reversibly [17,18,76–78]. On top of that,
the system is free from waste generation/chemical contaminants hence closed systems
can be stimulated without introducing any foreign chemicals, and finally, the light can
be conveniently switched on and off with specific wavelengths and tunable intensities
to modulate and program supramolecular gelation [18,77,79]. Considering the utmost
advantages of peptides and light, in recent years, a variety of photo-responsive moieties
has been incorporated into the peptides to design photo-responsive gelators which can
display switchable, smart, and emergent features [15,80–84].

This short review features the recent advancement toward developing low molecular
weight supramolecular light-responsive peptide gels. Although a massive number of
light-responsive peptide assemblies have been documented in recent years, considering
the scope of this short review, we have only included the special cases where ‘gels’ are
involved, as shown in Scheme 1.
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Scheme 1. Schematic representation of light-responsive supramolecular gels.

2. Light-Responsive Molecular Switches

In view of light-responsive supramolecular gels, azobenzene [55,85–88], arylazopy-
rozole [89–91], benzoylhydrozone [92,93], stilbene [60,94], etc., are more frequently used
photoisomerizable molecules that switch between trans- and cis-isomeric forms under the
illumination of light (Figure 1). Spiropyran [24,78,80] is another critical photo-sensitive unit
for light-induced ring-opening and closing behavior. The 2-nitrobenzyl (NB) group [95–98],
coumarin [99–101], anthracene [102–104], and diarylethene [105,106] units are also used to
create light-responsive gels (Figure 1). The molecular structure and light-induced structural
changes of the most well-studied and explored photo-switches in recent years are shown in
Figure 1. Additionally, in view of chemical approaches, a schematic illustration is depicted
to synthesize the photo-switchable peptide monomers (Figure 1F).

2.1. Azobenzene Conjugated Peptide Derivatives and Light-Assisted Self-Assembly/Disassembly
Phenomenon

Azobenzene core is the most common photo-responsive moiety incorporated in
peptide sequences to design low molecular weight peptide gelators to develop numer-
ous functional soft materials [78,107–113]. Under UV-light irradiation, the azobenzene
core undergoes trans- (E-) to cis- (Z-) isomerization, while the reverse cis to trans iso-
merization process is carried out by visible light or thermally in a dark environment
(Figure 1A) [78,107–113]. The trans-isomer is a thermodynamically favored state. The
photoisomerization leads to the change in molecular planarity, which in turn affects π−π
stacking interaction amongst the azobenzene moieties causing alteration of the molecular
packing of azobenzene-incorporated peptides, which ultimately results in the formation or
disruption of gels [109,113,114]. Hence, it is fascinating to incorporate azobenzene into short
peptide sequences to create light-responsive peptide hydrogels with variable properties
and functions due to light-induced changes in the steric profile of the installed azobenzene.

Following the light responsiveness of azobenzene, Prof. Rein Ulijn and coworkers
demonstrated the integration of light switching with enzymatic amide formation/hydrolysis
to form and manipulate low-molecular-weight peptide gelation [112]. In this work, they
started with a non-gelator molecule trans-Azo-Y (Y for tyrosine, Figure 2) and synthesized
a series of peptides, Ptrans-Azo−1, Ptrans-Azo−2, and Ptrans-Azo−3, using thermolysin cat-
alyzed amidation with X (X represents the side chain of phenylalanine (F), leucine (L) and
valine (V)). These dipeptides exhibit gelation at different time intervals after adding the
enzyme thermolysin. The contributing interactions of the gelation can be accredited to π−π
stacking between trans-azobenzene moieties and aromatic amino acids, combined with
hydrogen bonding among dipeptide units. Rheological analysis revealed that the storage
modulus (G′) of the dipeptide hydrogels (104–105 Pa) is higher than their corresponding
loss modulus (G′′, 103–104 Pa), suggesting the gel property of the hydrogels (Table 1).
Among the dipeptides, Ptrans-Azo−1 gel was tested for displaying light responsiveness, and
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when it was exposed to a UV lamp (365 nm), the hydrogel disintegrated and dissolved
after 48–72 h of illumination (Figure 2). This gel to sol transition of Ptrans-Azo−1 was ob-
served due to the conformational switching of the azobenzene from planar trans-(E) to
non-planar cis-(Z) form. The cis-isomer prohibits adequate π−π stacking and hydrophobic
interaction between azobenzene moieties required for gelation. On further exposure to
visible light (450 nm), the reverse isomerization, i.e., cis- to trans-form, restored gelation due
to reinstatement of the favorable supramolecular interactions. The authors claimed that
this light-induced trans-cis isomerization also results in a condition where the thermolysin
catalyzed hydrolysis favors condensation. They validated this behavior by comparing the
high-performance liquid chromatography (HPLC) yields of the bio-catalytic condensation
reaction of amidated F with trans-Azo-Y and cis-Azo-Y.

Figure 1. Molecular structure of: (A) Azobenzene; (B) Arylazopyrazoles; (C) Benzoylhydrazone
derivatives and light-induced reversible trans- and cis- isomerization; (D) Chemical structure and
light-assisted reversible equilibrium between Spiropyran and Merocyanine derivatives; (F) Schematic
illustration for synthesis of photo-responsive peptide conjugates using SPPS.
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Table 1. Parameters of the photo-switchable peptide gels and photo-responsive behavior.

SL. No System

Minimum
gelation conc.

(MGC, wt% and
mg mL−1)

Media Light Moduli (Before Light
irradiation) Pa

Moduli (After UV-Light
irradiation) Pa

Moduli (After Vis-Light
irradiation) Pa Morphology

G′ G′′ G′ G′′ G′ G′′

Azobenzene (Azo) derivatives

1. Ptrans-Azo−1 [112] 17 mM Phosphate buffer
(pH 8.0)

365 nm (UV)
450 nm (Vis) ~104–105 ~103–104 NR NR NR NR

Nanofibers
Micellar aggregates (UV)

Nanofibers (Vis)

2. OGAC/ AzoC2Py (5:1)
[115]

0.13 wt% of OGAC
and accordingly

AzoC2Py Water 365 nm (UV)
>400 nm (Vis) NR NR NR NR NR NR

Long nanofibers
Helical nanofibers (UV)

Thick and straight
Fibers (Vis)

3. Ptrans-Azo−6 [74] 16.2 mM Water
(pH~10)

365 nm (UV)
~102 ~10 ~103 ~102 NA NA Thin fibers

Long rod (UV)

4. Ptrans-Azo−7 [87] 15 mg mL−1 PBS (pH 7.4) 530 nm (GL)
410 nm (Vis) ~104 ~103 NR NR NR NR Fine fibers

Arylazopyrazoles (AAP) derivatives

5. P-1+ PAAP-1
+CDV [116]

2.5 wt% of P-1 and
0.25 wt% of

PAAP−1
Water 365 nm (UV)

520 nm (Vis) ~105 104–105 102–103 ~102 104–105 ~104 Cross-linked fibers

6. P-2+ PAAP−2+
CDVs [117]

1.0 wt% of P-2 and
20 % of PAAP−2 Water 365 nm (UV)

520 nm (Vis) ~27 × 103 NR ~24 × 103
NR ~26.5 × 103 NR NR

7 PAAP−3 [118] 5.0 wt% Water 365 nm (UV)
520 nm (Vis) ~7.8 × 103 ~10 ~6.3 × 103 >1 ~8 × 103 ~100 NR

8. PAAP−3 +Agarose
[118]

5.0 wt% of
PAAP−3 and 1.7 wt

% of Agarose
Water 365 nm (UV)

520 nm (Vis) ~6.8 × 103 ~1 ~6.3 × 103 >1 ~8.3 × 103 ~100 NR

9. PAAP−4 [90] 2 mg mL−1 Water (pH~5) 365 nm (UV)
520 nm (Vis) 325–350 ~25 125–225 ~50 150–300 ~50 Aggregate

10. PAAP−5 [90] 2 mg mL−1 Water (pH~5) 365 nm (UV)
520 nm (Vis) 140–180 <25 140–170 ~25 200–300 50–75 Cross-linked fibers

Spiropyran (SP) derivatives

11. PMC−4 [119] 11 mM Water (pH 3) 254 nm (UV)
420 nm (Vis) NR NR NR NR NR NR Fibers

12. SPI-RGD [120] 4.0 mg mL−1 Water (pH 5.2) 365 nm (UV)
420 nm (Vis)/∆ 300 ~80 2.3 ~NR ~315–335 NR Fibers

13. PSP−5 [121] 10 mM Water 254 nm (UV)
420 nm (Vis)/∆ NA NA NR NR NA NA No discernible structures

Twisted nanofibrils (Vis)
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Table 1. Cont.

SL. No System

Minimum
gelation conc.

(MGC, wt% and
mg mL−1)

Media Light Moduli (Before Light
irradiation) Pa

Moduli (After UV-Light
irradiation) Pa

Moduli (After Vis-Light
irradiation) Pa Morphology

G′ G′′ G′ G′′ G′ G′′

Coumarin (Cou) and anthracene (Anth) derivatives

14. PCou−1 [122] 10mM 365 nm Water (pH 7) ~20 (Pa) ~10 (Pa) ~150 (Pa) ~70 (Pa) NA NA Fibers
15. PCou−2 [22] 5 mg mL 365 nm Water (pH) 103–104 102–103 ~104 ~103 NA NA Fibers

16. PCou−3 [123] 2.7 mg mL−1 365 nm PEG200:H2O = 1:2. NR NR NA NA NA NA Spiral-shaped fibers
Fibers (UV)

17. PAnth−1 [102] 5 mg mL−1 350 nm (UV) water 102–103 101–102 0.1–10 0.01–1.0 NA NA Nanoribbons

Other derivatives (Benzoylhydrazone (BHz), Nitrobenzyl (NB) and 6-nitroveratryloxycarbonyl (Nvoc))

18. BHz-F(F)(F) [92] 0.5 wt% 325 nm
MES

buffer
(pH 7.0)

~104 ~103 NR NR 103–104 ~103
Nanofibers

NR (UV)
Nanofibers (Dark)

19. MAX7CNB [124] 2 wt% (260 < λ
< 360 nm) Water (pH 9) 103–104 ~102 ~103 ~102 NA NA Fibers

20. PNB−1 [125] 4.0 × 103 M 350 nm (UV) Water NA NA ~105 ~104 NA NA
Quadruple helix

(Before UV)
Cylindrical fibrils

21. PNB−2 [126] 4.0 × 103 M 350 nm (UV) Water NA NA ~105 ~104 NA NA Spheres (Before UV)
Fibers

22. PNB−3 [127] 1.70 mM 350 nm (UV) Water (pH 7.4) ~1–2 ~1 NA NA NA NA Long and tangled fibers
Less and finer fibers (UV)

23. NVOC-FF [128] 5 mg mL−1 365 nm (UV) DMSO:Water
(5:95) 103–104 102–103 ~1 NR NA NA Fibers

N.B: G′: Storage modulus; G′′: Loss modulus; NR: Not reported; NA: Not applicable; GL (Green Light); ∆: heat.
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Figure 2. Molecular structure of the synthesized peptides (Ptrans-Azo−1, Ptrans-Azo−2, and
Ptrans-Azo−3). Light-induced gel-sol-gel transition (When X = side chain of F) and TEM images
of Ptrans-Azo-1, Ptrans-Azo−2, and Ptrans-Azo−3. Adapted from Ref. [112]. Copyright 2014 Royal Society
of Chemistry.

Minghua Liu and coworkers adopted a co-assembly approach to realize supramolec-
ular dendron gel, which shows shrinking/swelling behavior upon photoirradiation and
thermal switch (Figure 3) [115]. In this case, mixing an amphiphilic dendron terminated
with three L-glutamic acid groups (OGAc) and a positively charged azobenzene derivative,
AzoC2Py (Figure 3A), produced Gel-1 (Figure 3B). Gel-1, when kept at 20 ◦C, shrank to
form a shrunken gel (S-gel, Figure 3B) by expelling water molecules due to the aggregation
of the hydrophobic trans-azobenzene moiety. On exposure to UV light, the trans- to cis- iso-
merization occurred, which led to the swelling of the shrunken gel to form Gel-2. The Gel-2
is relatively stable at room temperature unless the gel is subjected to visible light leading
to regeneration of S-gel due to cis- to trans- isomerization, and this swelling between the
S-gel and Gel 2 can be reversibly switched by alternate Vis/UV irradiation several cycles
(Figure 3B). Moreover, S-Gel to Gel-1 interconversion can be achieved by a thermal switch,
thereby making a system dual responsive, exhibiting three gel states. At the microscopic
level, Gel-1 exhibited nanofiber morphology, whereas for S-gel, thick and straight, and
Gel-2, helically entangled fibrous structures were observed (Figure 3C). Based on different
spectroscopic and microscopic observations, the authors proposed a possible mechanism,
as shown in Figure 3D–F, where OGAc adopted an interdigitated bilayer structure and
AzoC2Py occupied the head position of the bilayer leading to the formation of a fibrous
structure. Due to its hydrophobic nature and π−π staking ability, the trans-azobenzene
aggregated over time, and consequently, the water molecules were expelled, causing the
shrinking of the gel. The UV light-induced trans- to cis- isomerization resulted in a volume
change of the azobenzene moiety. Consequently, the water molecules were taken into
the bilayer, and swelling occurred to form Gel-2. Next year, the same group utilized the
aforementioned co-assembly approach to demonstrate a series of photo-responsive gels
with the help of alkylated-L-Histidine and carboxylic acid substituted-azobenzenes [129].

In an exciting work, Zhonghui Chen et al. reported a pair of dipeptide appended-
azobenzene photo-responsive reversible chiral gelators (Ptrans-Azo−4 and Ptrans-Azo−5,
Figure 3H), where the chirality plays an essential role in the photo-induced gel-sol tran-
sition [130]. The gelators are composed of an azobenzene flanked between L-Asp-L-
Phe (Ptrans-Azo−4) and D-Asp-D-Phe (Ptrans-Azo−5). The L-gel (i.e., the gel formed from
Ptrans-Azo−4) converted into sol much faster upon UV irradiation than the D-gel (i.e., the
gel formed from Ptrans-Azo−5). The authors claimed that the dipeptide units’ molecular
chirality determines the molecules’ orientation and molecular packing. These eventually
modulate the photo-induced trans- to cis- isomerization rates of azobenzene moiety, caus-
ing dissimilar disassembly kinetics of the two gels. The gels also exhibited light-induced
multiple gel-sol transitions, but at different rates for the L-gel and D-gel systems (Figure 3I).
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Figure 3. (A) Chemical structure of the precursors; (B) Stimuli-responsive gel-sol-gel transition;
(C) AFM images of the physical states mentioned in (B); Schematic illustration of hierarchical co-
assembly: (D) Thin layer fibril formation in fresh hydrogel; (E) Thick fibrous bundles in shrunken
gel; (F) Helices formation in light-induced swollen gel. Adapted from Ref. [115]. Copyright 2016
The Royal Society of Chemistry. (G) Molecular structure of the peptide gelators (Ptrans-Azo−4 and
Ptrans-Azo−5); Redrawn from Ref. [120]. Copyright is not applicable here; (H) Light-responsive gel-
sol-gel transition of Ptrans-Azo−4 and Ptrans-Azo−5; (I) Reversibility test for gel-sol-gel transition, black
and red curves represent L gel and D gel respectively. Adapted from Ref. [130]. Copyright 2017 The
Royal Society of Chemistry.

In 2020, Das and co-workers showcased a short peptide-based water insoluble and
thixotropic hydrogel, which exhibits syneresis and expel water when exposed to UV
irradiation (Figure 4A) [74]. In this work, an azobenzene functionalized short peptide,
Ptrans-Azo−6, undergoes self-assembly in fresh aqueous NaOH solution through different
non-covalent interactions like π-stacking, H-bonding, hydrophobic, and disulfide bond
formation to form a self-supporting hydrogel (H-Gel, Figure 4A). Surprisingly, the formed
H- Gel is insoluble in water, and as a result, it restricts the movement of water to and from
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the gel. When illuminated with UV light (365 nm), the H-Gel displayed an irreversible
shrinkage by 50% of its volume by expelling water and formed S-Gel (Figure 4A). There
was a shift of morphology from fibers to mixed fibers and rods. Moreover, the S-gel was so
strong that neither the Vis light nor the standard disulfide breakers could disrupt the gel due
to more robust packing than the H-Gel. The mechanical superiority of the S-Gel over H-Gel
was further confirmed by rheological experiments where the G′ value S-Gel and G-Gel lie in
the range of ~103 Pa and ~102 Pa, respectively, in the linear viscoelastic region (Table 1). The
authors thoroughly investigated the unusual behavior of light-induced syneresis and gel
state morphology transfer where the dynamics of the constituent molecules remained highly
restricted. It was claimed that during the trans- to cis- isomerization, the Ptrans-Azo−6 dimer
adopted a new arrangement where the gel requires less water to sustain the assembly and
consequently expelled excess water. Finally, the authors exploited this syneresis property
of the gel to remove model dye molecules from water. In another report, azobenzene
incorporated collagen model peptide hydrogels having light-triggered phase transition
behavior was reported by Koga’s group [131].

Figure 4. (A) Molecular structure, self-assembly mechanism, photographs of formed gel and UV-light
induced possible molecular arrangement of the Azo-peptide hydrogelator, Ptrans-Azo−6. Adapted
from Ref. [74]. Copyright 2020 Royal Society of Chemistry. (B) Light-induced trans- to cis- isomeriza-
tion of the cyclic peptide; (C) Photographs of light-sensitive gel-sol transition. Adapted from Ref. [87]
Copyright 2021 Royal Society of Chemistry.

Recently, Pianowski and co-workers presented a cyclic dipeptide-conjugated azoben-
zene hydrogelator (Ptrans-Azo−7) that exhibited photo-induced reversible gel-sol transition
(Figure 4B) [87]. In this work, they synthesized a tetra-ortho-fluorinated azobenzene-cyclic
dipeptide hydrogelator conjugate considering the fact that aromatic C–F bonds improve
supramolecular interactions in the proximity of the fluorine atoms to reduce the minimum
gelation concentration (MGC) of the gelator. The gelator forms stable and homogenous
hydrogels in aqueous solutions under physiological conditions (PBS buffer, pH 7.4) with an
MGC of 17 g/L. The existence of strong hydrogel was confirmed by the rheometric analysis,
where the G′ and G′′ values were found to be around 104 Pa and 103 Pa, respectively,
within the linear viscoelastic region (Table 1). Upon irradiation with green light (530 nm),
the hydrogel dissolved and formed a homogeneous solution which, on further treatment
with violet light (410 nm) followed by incubation at room temperature in darkness, con-
verted back to the transparent hydrogel again. This phase transition was again due to
photo-induced isomerization of the azobenzene moiety. Finally, the authors exploited this
hydrogel to encapsulate an anti-cancer drug, plinabulin, for light-induced release without
any significant passive diffusion (leaking).
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2.2. Arylazopyrazoles Conjugated Peptide Derivatives with Light-Sensitive
Gelation Characteristics

Although a lot of progress has been made with azobenzene as a light-responsive
molecular switch, certain disadvantages restrict their application [132]. For example, the
UV-light used to trigger E→Z isomerization is harmful and can be vastly distributed in
biological tissue or nanomaterials [132–134]. Additionally, most azobenzene derivatives
exhibited low thermodynamic stability of the Z-form in comparison with other molecular
photo-switches [132]. Consequently, incomplete photoisomerization behavior is noticed
owing to the overlapping absorbances of both E- and Z-isomers. The photostationary
state (PSS) for classic azobenzene derivatives is about 80% for the E→Z and 70% for the
Z→E isomerization [132,135]. Because of this drawback, in highly multivalent systems,
a substantial fraction of the remaining E-isomer can still dictate the material properties,
causing partial switching [132,135–137].

For the last few decades, researchers have been trying to develop azobenzene deriva-
tives that can undergo visible light-induced isomerization to aim either to move the π→π*
transition to a longer wavelength or to acquire a splitting n→π* transition of the E- and
Z-isomer that typically fuse in 400–500 nm wavelength window [132,138]. Therefore, to
solve the issue, the pyrazole hetero cycle was introduced [132,139]. The replacement of
one benzene ring in azobenzene with a pyrazole ring resulted in arylazopyrazoles (AAP,
Figure 1B), as an alternative and a new light-responsive molecular switch. Introduced by
Fuchter et al. they have received enormous attention to the peptide chemist and pharmacist
because of their ease and scalable synthesis, good water solubility, and superior photophys-
ical properties [139,140]. As expected, APP displayed a noteworthy red shift of the n→π*
transition band of the Z-isomer, enabling almost quantitative isomerization by UV(E→Z)
or green light (Z→E) irradiation [132]. Additionally, AAP showed half-life times up to 1000
days, which can be attributed to the decreased steric repulsion within the Z-form [132].

Based on these outstanding properties of AAP, in 2017, Ravoo’s group introduced
a unique hierarchical supramolecular hydrogel utilizing both self-assembly and host–
guest interaction of the designed amphiphilic peptides [116]. The peptides comprise a
tetrapeptide building block, Fmoc-RGDS (P1, Figure 5A), owing to its good water solubility
and excellent biocompatibility. The serine side chain was functionalized with AAP through
a TEG spacer with the help of click chemistry to design another peptide (PAAP−1, Figure 5B)
to create a light-responsive stable gel. The gel was fabricated with the combination of P1,
PAAP-1, and cyclodextrin vesicles (CDV). CDV is a macrocyclic host towards trans-AAP
as a guest with multivalent non-covalent crosslinking properties. The entanglement of
self-assembled supramolecular nanofibers and host-guest interaction between the trans-
AAP and CDV creates self-supportive hydrogels (Figure 5C, D). UV light irradiation forces
trans-AAZ to convert its cis- form and hence, destroy the host-guest interaction as cis-AAP
is very reluctant to bind CDV (Figure 5C). Therefore, a very soft non-supporting gel was
reached. The reversibility of the hydrogel was achieved either by storing the gel in the
dark for four days or by visible light irradiation. This can be ascribed to the non-covalent
host–guest interaction, which was restored under experimental conditions. Unfortunately,
the reversible gel failed to reach its initial moduli (G′ and G′′, Table 1). Next, the same group
established another light-responsive hydrogel utilizing a co-assembly approach [117]. The
beauty of their finding is that the formed gel is labile towards both light and magnet and, as
a result, it showed different rheological behavior (Table 1). The co-assembly between P2 and
AAP-modified photo responsive peptide, PAAP−2, and superparamagnetic nanoparticles
(CoFe2O4) embedded CDVs creates the distinctive gel (Figure 2E, F). The gel showed
around a 10% decrease of the storage modulus (G′) in response to UV light irradiation
(350 nm). The gel exhibited a continuous decline in its G′ value compared with the initial
value during the reversibility experiment (UV-Vis-UV, Figure 5G) and continued up to
four cycles. Next year, Ravoo et al. again presented a hybrid, photo-responsive dual gel
network without any external crosslinker made of AAP anchored LMWG, PAAP−3, and
agarose, a covalent polymer network (Figure 5H) [118]. In response to light, the peptide
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exhibited reversible gel-to-sol transition with 1 Equiv. of KOH. Although, in the presence
of agarose, the storage modulus of PAAP−3 displayed two-fold higher magnitude, no signs
of PAAP−3 leakage out of the non-responsive agarose network was tracked. Surprisingly,
in the presence of agarose, there are no macroscopic changes of the formed hybrid gel upon
UV and Vis light irradiation, which can be observed from photo responsive rheological
experiment also (Table 1). This can be attributed to the formation of the dual network by
the precursor gelator components.

Figure 5. (A) Chemical structure and plausible self-assembly mechanism of peptide, P1; (B) Molecular
structure of AAP modified peptide; (C) Gel-sol-gel transition under illumination of UV- and Vis-light
respectively; (D) Microscopic images of the resulting gel. Adapted from Ref. [116] Copyright 2017
Royal Society of Chemistry. (E) Chemical structure of the peptides (without AAP and with AAP)
for co-assembly; (F) Schematic presentation of the stimuli-responsive hydrogel formation through
co-assembly approach; (G) Light-responsive rheological behavior of the resultant gel. Adapted from
Ref. [117] Copyright 2019 Royal Society of Chemistry. (H) Molecular structure of AAP modified
peptide; (I) Light-triggered gel-sol-gel transition; (J) Schematic visualization of the created network.
Adapted from Ref. [118] Copyright 2020 Royal Society of Chemistry.

Interestingly, Ravoo and co-workers masterminded a family of tripodal photo-responsive
hydrogelators in which cyclohexane-1,3,5-tricarboxamide (CTA) and a cyclohexanetrishy-
drazide (CTH) act as a central core to provide sufficient π−π stacking and a terminal alanine
as an arm to provide water solubility and additional hydrogen bonding (Figure 6) [90].

For CTH-based LMWG, an aldehyde terminated AAP peptide (AAP-CHO) under-
goes glucono-d-lactone (GdL) induced dynamic hydrazone linkage formation with CTH-
hydrazide to form a gel (Figure 6C). At room temperature, G′ was found to be higher than
G′′, indicating gel characteristics. Under the influence of UV light (λ = 365 nm), the gel
(Figure 6E) showed a 50% drop in G′ value, emphasizing the AAP unit’s photoisomeriza-
tion (Table 1). It is important to highlight that although the gel recovered the G′ value
under Vis light irradiation, for reaching a plateau, more time is needed compared with
UV irradiation. However, G” value remains constant throughout the experiment. This can
be explained by the oscillation and network behavior of the fibers. In contrast to PAAP−5
gel, dynamic covalent hydrogel displayed a 30% decrease in G′ value after the first UV
irradiation (Figure 6B, Table 1). The photo-responsive rheology experiment showed similar
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behavior to PAAP−4, but the gel becomes stiffer after Vis irradiation, reflecting a higher G′

value (Figure 6E).

Figure 6. (A) Molecular structure of the hydrogelator, PAAP−4; (B) UV-Vis light-induced rheological
experiment; (C) In situ gel formation through GdL hydrolysis; (D) Microscopic fibrous network of
the in-situ gel; (E) Light-activated rheological analysis of in-situ hydrogel. Adapted from Ref. [90]
Copyright 2019 John Wiley and Sons.

2.3. Spiropyran Conjugated Peptide Derivatives and Light-Induced Gelation Behaviour

In light of the molecular photo-switches, spiropyrans have received extraordinary
attention from photo chemists and peptide chemists because of their outstanding pho-
tophysical properties [141]. Depending on the nature of illuminating light, two distinct
structural thermodynamically stable isomers exist with the gigantic difference in properties:
(i) colored planar merocyanine (MC) form, a charged hydrophilic ring-open form, and
(ii) colorless non-planar spiropyran (SP) form, a non-charged hydrophobic ring-closed form
which ultimately make spiropyran a unique photo-switch (Figure 1D) [119,141,142]. Be-
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cause of the planar structure, SP shows a high propensity to form aggregate-like structures
through intermolecular π−π stacking (Figure 1D) [119,121,143]. It is well-documented
in literature that a range of stimuli such as temperature, solvents, redox potential, acids,
bases, metal ions, mechanical forces, etc., can stimulate spiropyran’s reversible isomer-
ization [144–149]. Based on the properties mentioned above, increasing effort has been
made to create spiropyran appended novel materials over the decades [150–152]. In 2014,
Chen and Zhu et al. created a family of antibacterial peptides (PSP−1, PSP−2, and PSP−3,
Figure 7A), of which SP units were linked to both ends of the sequence in accordance
with varying chain lengths [153]. Under exposure to light, these peptides adopt different
thermodynamically stable states (MC and SP) at physiological pH.

Figure 7. (A) Molecular structure of SP-conjugated peptides (PSP−1, PSP−2, and PSP−3); Redrawn
from Ref. [153]. Copyright is not applicable here. (B) Light-induced sol-gel transformation of SP
and MC appended peptides. Adapted from Ref. [119] Copyright 2009 Royal Society of Chemistry
(C) Chemical structure of the SP analogs and connecting peptide motifs; Redrawn from Ref. [120].
Copyright is not applicable here. (D) Photographs of sol and gel because of the light-instructed
structural change from SP to MC form. Adapted from Ref. [120] Copyright 2015 The Royal Society
of Chemistry. (E) Schematic illustration of light-induced dissipative self-assembly of an SP-peptide
conjugate. Adapted from Ref. [121] Copyright 2021 The Royal Society of Chemistry.

In this context, an SP-linked dipeptide (SP-D-Ala-D-Ala, PSP−4, Figure 7B) hydrogela-
tor was reported by Zhang et al., which forms hydrogel (pH 3) with a fibrous network in
response to light [119]. Under UV light exposure, the non-planar SP form gets converted
to planar MC form and undergoes intermolecular π−π stacking to form an aggregated
structure. The gel turned into a yellow slurry upon visible light irradiation, owing to
disassembly. Later, the same group created a library of peptides (VPP, RGD, YDV, SDKP,
VVPQ, YIGSR, TIGYG, IKVAV, VYGGG, and LGAGGAG) conjugated with SPs (SPI, SPII,
and SPIII), which form hydrogel at a particular pH based on the connecting sequence
(Figure 7C) [120]. Amusingly, the MC form can be achieved at 70 ◦C with 80% yield within
3 min, and exposure to sunlight for 0.5 min reverts to its SP form (Figure 7D). Remark-
ably, such amazing heat-light-induced isomerization is completely reversible and can be
repetitive for more than five cycles. The rheology cycle also confirms the reversibility
of the gel (Table 1). As an application, the authors employed the MCI-RGD gel for an
erasable photolithograph material. In 2020, Stupp and Schatz et al. engineered a hybrid
photo-responsive soft material to mimic the mechanical actuation [154]. The material was
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prepared from peptide amphiphile supramolecular polymers covalently anchored with
SP. Upon UV irradiation, the formed gel expelled water to shrink to 84% of its original
volume, and that is only because of the isomerization phenomenon. Interestingly, the
shrunken gel reverts to its original swollen shape when kept in a dark place. Last year,
a tetrapeptide (Fmoc-KK(SP)KF-NH2, PSP−5, Figure 7E) was reported by Parquette in
which nitro-SP connected to the ε-amino lysine sidechain of the sequence to provide the
light-responsive hydrogelator [121]. The peptide remains in a solution state, but under
the illumination of light, the solution readily transforms into a gel with a fibrous network.
The gel achieved a free-flowing state when the light was switched off. Interestingly, the
cycle can be repeated for multiple cycles. Thus, the system was put under the category
of dissipative self-assembly, where the system needs a continuous source of energy in the
form of light to sustain. Once the light irradiation is stopped, the system disassembles.

2.4. Other Photo-Responsive Peptide Derivatives and Light-Induced Gel-Sol Transition or
Vice-Versa

Coumarins are well-known for their photodimerization tenacity when irradiated with
light of wavelength greater than 280 nm (Figure 1E) [22,155]. The photo-induced nature
of the coumarins has inspired scientists to prepare stimuli-responsive LMWGs [22,122].
As anticipated, the solubility of the light-induced dimerized coumarin decreases as the
coumarin monomer becomes double in size. As a result, hydrophobicity of the system in-
creases, which disrupt the gel network and, eventually, decreases in rheological parameters
observed [122,123,156].

As a proof-of-principle, in 2015, Parquette and Grinstaff et al. reported an LMWG
(PCou−1) in which two coumarin moieties are connected to both the N-terminal and N-
ε side chain free amine (-NH2) of a well-explored β-sheet forming dipeptide, dilysines
(Figure 8A) [122]. The gelator undergoes self-assembly in pure water, saline, and PBS to
form a bright yellow-colored gel which collapses to an insoluble precipitate upon prolonged
irradiation (>7 days) at 365 nm because of the enhanced dimerization between coumarin
units (Figure 8A). As a consequence, the storage modulus (G′= ~150 Pa) was enhanced
compared with the original gel (G′= ~20 Pa), indicating UV-light induced enhanced stiff-
ness in dimerized gel (Table 1). Inspired by this, Adam’s group reported a self-supporting,
transparent gel made of a popular Phe-Phe dipeptide motif and N-terminal protected
coumarin unit in the same year (PCou−2, Figure 8B) [22]. Under UV light, the gel fluoresces
blue light. Interestingly, the gel only experiences turbidity followed by opacity when ex-
posed to UV light irradiation (Figure 8C). Interestingly, light irradiation (15 min) enhanced
both storage (G′) and loss (G′′) modulus in comparison to the primary gel (Table 1). The
amplified moduli value can be ascribed to both the photodimerization (covalent bonding)
and dimerization (non-covalent bond) of the coumarin moieties in the gelator. In 2019,
Wu and Gao et al. demonstrated a photocleavable LMWG based on 7-amino coumarin
(PCou−3, Figure 8D) [123]. The gelator forms an opaque gel through π−π stacking between
Phe units and coumarin. Interestingly, the gel exhibits a spiral-shaped three-dimensional
fibrous network formed via intermolecular H-bonding (Figure 8D). The gel undergoes gel
to yellow colored sol when irradiated with 365 nm wavelength light. Surprisingly, the gel is
stable at 420 nm and 630 nm light. Another exciting feature of this gel is the photocleavage
property of the C-N bond in the 7-amino position of coumarin, which makes the gelator
from the conventional dimerized coumarin gels.
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Figure 8. (A) Molecular structure of a coumarin-based hydrogelator followed by light-induced self-
assembly to form a gel with nanofibrous structure. Adapted from Ref. [122] Copyright 2015 The Royal
Society of Chemistry. (B) Chemical structure and photo-induced dimerization of a coumarin-peptide
conjugate; (C) Photographs of gel: (i) under normal and UV light, (ii) Microscopic image displays
the fibrous network, (iii) Photographs of dimerized gel under normal and UV light, (iv) Microscopic
image of photo-induced dimerized gel. Adapted from Ref. [22] Copyright 2015 The Royal Society of
Chemistry. (D) Chemical structure and plausible self-assembly of a coumarin-peptide conjugate and
the light-sensitiveness. Adapted from Ref. [123] Copyright 2019 Elsevier.

In a similar vein, anthracene also undergoes a light-triggered [4 + 4] photodimerization
mechanism in which the short-life excimer of photoexcited diene undergoes a transition
into the cyclooctane structure (Figure 1E) [104,157–159]. Additionally, the self-assembly
nature of anthracene through hydrophobic and π-π interactions inspires the researchers to
create anthracene-based hydrogelators [102,160–162]. For example, Adam’s group demon-
strated anthracene dipep-tidedipeptide-based co-assembled hydrogel [163]. Later, Das
et al. reported 9-anthracenemethoxycarbonyl (Amoc)- protected dipeptides consisting of
PheLeu, PheTyr, and PhePhe that undergo self-assembly under physiological conditions
(pH 7.4, 37 ◦C) to smart, robust hydrogels with injectable and self-healable characteris-
tics [160,161]. In recent years, although there have been few examples of anthracene-linked
peptide hydrogels, light-induced self-assembly is very limited. In 2020, Webb et al. reported
modified amino acid to prepare light-responsive hydrogel (Figure 9A) [102]. To achieve that
N-terminal of the amino acid (here Phenylalanine, tyrosine) was protected with anthracene
moieties, and undergoes self-assembly to form a supramolecular self-supporting transpar-
ent gel in the presence of different triggers such as glucono-δ-lactone (GdL), a range of salts
(NH4 +, Na+, K+, GlcN·HCl and GlyNH2·HCl), cell culture media and heating-cooling
process (Figure 9A) [102]. The pH of the resultant gel was found to be around pH 11,
and to achieve the physiologically relevant pH, glycinamide (GlyNH2·HCl, trigger A) and
glucosamine (GlcN HCl) were added to the mixture. Rheological analysis revealed that the
metal-induced gel exhibited elastic modulus around 70 Pa, whereas B-(cell-culture media)
and C- (GlcN HCl in cell-culture media) triggered gel showed around 2000 Pa, implying
more stiffness (Figure 9B, Table 1). To check its light sensitivity, the C-triggered formed
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hydrogel in the cuvette was irradiated with 365 nm LED, and eventually, the irradiated
regions appeared yellow with decreased emission intensity. The gel to sol transition ap-
peared only in irradiated areas after ca. 15 min. In contrast, the other areas remain in gel
form even after 1 h of irradiation, indicating chemical changes induced disassembly. The
dimerization was confirmed with the help of NMR spectroscopy and mass spectrometric
techniques. Finally, the light-induced property was employed to release encapsulated cells
for standard biochemical analysis.

Figure 9. (A) Chemical structure and schematic light-induced dimerization of anthracene-based
peptide gelators (PAnth−1 and PAnth−2); (B) Photographs of gels before and after UV-light irradiation,
the irradiated zone is marked with a dotted line; (C) Rheological analysis of PAnth−1 gel before
and after UV-light irradiation. Adapted from Ref. [102]. Copyright 2020 The Royal Society of
Chemistry is not applicable here as this Ref. is licensed under a Creative Commons Attribution
3.0 Unported Licence. (D) Molecular structures of the peptide-type gelator (Ald-F(F)F(F)/BHz-
F(F)F(F)) and lipid-type gelator (Phos-cycC6); Redrawn from Ref. [92]; (E) Schematic illustration of
the phototriggered out-of-equilibrium pattern formation utilizing peptide-type nanofibers in the
SDN hydrogel network; (F) UV-Vis spectra of the above-mentioned schematic (E); (G) Time course
UV data at 378 nm before and after photoirradiation; (H) High-resolution Airyscan CLSM images of
the SDN hydrogels; (I) Time-lapse CLSM images of the BHz-F(F)F(F)/Phos-cycC6 hydrogel before
and after photoirradiation using a photomask. Adapted from Ref. [92] Copyright 2021 American
Chemical Society.
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Benzoylhydrazone is another interesting moiety that also exhibits reversible E-Z
isomerization on photoirradiation, but this moiety is less explored in the context of peptide-
based gelators (Figure 1C) [92]. Recently, the group of Itaru Hamachi demonstrated a
benzoylhydrazone-based photoresponsive peptide-based self-sorting supramolecular dou-
ble network (SDN) hydrogel system capable of showing photo triggered out of equilibrium
patterns generation (Figure 9D–I) [92]. They exploited the previously developed SDN
hydrogel composed of orthogonally self-assembled benzaldehyde-tethered peptide-type
gelator (Ald-F(F)F(F)) and a lipid-type gelator (Phos-cycC6) as a template to install photo
responsive module onto the aldehyde terminal of the peptide using a post assembly fabri-
cation (PAF) approach [164] (Figure 9D) without disturbing the SDN network structure.
This newly generated benzoylhydrazone moiety of the peptide [BHz-F(F)F(F)] in the SDN
hydrogel can undergo E-Z isomerization under UV light illumination, causing a perturba-
tion in the packing mode resulting in destabilization of the fibrous network. On thermal
agitation, the destabilized network could again get re-stabilized due to thermal Z-E iso-
merization, and this fiber destruction and reconstruction were assessed by Confocal Laser
Scanning Microscopic (CLSM) images (Figure 9H). Moreover, as the other network of the
SDN hydrogel is composed of lipid-type gelator (Phos-cycC6), it could not show such light
responsiveness. Thus lipid-type gelator fibers remain intact (Figure 9E,H). At this point,
it is worth mentioning that before applying their hypothesis of photo and light-induced
changes in the developed SDN system, they separately synthesized [BHz-F(F)F(F)] using
the PAF approach and tested its photo-thermo responsiveness (Figure 9D,F,G). Following
the selective photoresponsive behavior of the benzoylhydrazone-containing network of the
SDN hydrogel, when photoirradiation is conducted using a photomask, the peptide-type
nanofibers are selectively destroyed in the limited exposed area, and subsequent incuba-
tion under darkness causes the nanofibers to reconstruct in the same area. Furthermore,
additional thermal incubation causes spatial condensation of [BHz-F(F)F(F)] nanofibers in
the photoirradiated areas and concurrent nanofiber depletion in the nonirradiated areas
(Figure 9I). Finally, they fabricated unique complex patterns, namely (1) two-line pat-
terns from a one-line photomask and (2) grid-like patterns from a one-line photomask by
photomasks using their developed photo/diffusion-coupled out-of-equilibrium approach.

In the same context, 2-nitrobenzyl and 6-nitroveratryloxycarbonyl (Nvoc) photo-
cleavable groups were reported by Pochan and Schneider [124], Stupp [126], Shabat and
Adler-Abramovich’s group [128], who created a pathway to understand and design light
responsive self-assembly/disassembly. In a pioneering work by Schneider, the unfolded
gelator (MAX7CNB) transforms into a β-hairpin folded conformation followed by effi-
cient self-assembly (both facial and lateral) to form a transparent gel when exposed to
UV irradiation (λ > 300 nm) (Figure 10A) [124]. In this process, the rheological moduli
of decaged hydrogel (G′ (~103 Pa), G′′ (~102 Pa)) were found to be lower in comparison
to the original one (G′ (103–104 Pa), G′′ (~102 Pa), Table 1). Later, Stupp and co-workers
explored the self-assembly/disassembly process of 2-nitrobenzyl group appended peptide
amphiphiles (PANB−1, Figure 10B) [125]. In response to UV light (350 nm), the quadruple
helical fibers transformed into cylindrical fibrils. Based on this work, the same group
engineered another 2-nitrobenzyl conjugated PA (PANB−2, Figure 10C), which experiences
a sol-to-gel transition in the presence of light (Figure 10D) [126]. Intriguingly, under the
self-assembly condition, PA remains as a solution, but it forms a gel in the presence of
charge-screening Ca2+ salts when triggered with light. The sol nature of the PA is because
of the combined effect of the bulkiness of the photo caging 2-nitrobenzyl group and the
use of a weaker β-sheet-forming motif in comparison to the previously reported sequence
((GA2E2) vs. (GV3A3E3)). The storage modulus (G′ = ~105) was found to be higher than
the loss modulus (G′′ = ~104), indicating the gel behavior and which is comparable to
previously reported PANB−2 (Table 1). Considering all the above-mentioned references
into consideration, in 2020, Chen et al. demonstrated an advanced LMWG (PNB−3), which
undergoes sol-gel-sol transition under the influence of sequential metal and light induction
(Figure 10E) [127]. The peptide is composed of a well-established Phe-Phe dipeptide motif,
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o-nitrobenzyl protected phosphonated serine, and a short PEG chain with a C-terminal-free
carboxylic acid. The classical Fmoc moiety protects the N-terminal of the sequence. The
gelator forms soluble fibers in pure water (pH 7.4). However, the peptides solution (1.7 mM)
transforms into a transparent gel in the presence of Ca2+ ions (1.7–3.4 mM). This can be
attributed to the peptide crosslinking through coordination interaction between carboxylate
anions and divalent metal ions. Under UV-light irradiation (365 nm), the protected group
on phosphonate gets removed, resulting in the decaging of the negative charges. Therefore,
the gel again is dissolved. The rheological analysis confirmed the gel character (G′ > G′′,
Table 1), and interestingly, the moduli value belongs to the soft peptide hydrogel category,
indispensable for drug delivery applications. Inspired by the self-assembly of Fmoc-FF,
Adler-Abramovich and Shabat et al. reported Nvoc protected LMWG, Nvoc-FF, which en-
dures self-assembly in water to form 3D stable, self-supporting, transparent hydrogel [128].
In response to light, the hydrophobic aromatic Nvoc group gets cleaved, and thus, the gels
completely degrade (Figure 10F,G). The higher value of G′ compared with G′′ confirmed
gel properties. Under UV-light irradiation, the G′ value continuously decreased because of
the gel decomposition, and after some time, the gel liquified.

Figure 10. (A) Molecular structure of photo-sensitive peptides; Adapted from Ref. [124] Copyright
2005 American Chemical Society. (B, C) Light-induced photocleavable peptide amphiphiles; (D) Light-
assisted sol-gel transition of photocleavable PA. Adapted from Ref. [126] Copyright 2009 John Wiley
and Sons. (E) Plausible self-assembly behavior of nitro benzyl-conjugated peptide. Adapted from
Ref. [127] Copyright 2020 Royal Society of Chemistry. (F) Chemical structure of Nvoc capped peptide
and its photo-induced behavior; (G–I) Gel photographs and respective microscopic images. Ref. [128]
Copyright 2018 John Wiley and Sons.
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3. Challenges, Future Prospective, and Conclusions

Over the past decades, stimuli-responsive peptide gelators have taken the spotlight
as powerful building blocks to fabricate numerous molecular and biomolecular systems
and smart materials using supramolecular self-assembly strategies in both aqueous and or-
ganic media. Among the stimulus, light has received considerable attention in developing
peptide-based photo-responsive systems and materials. Unlike pH, heat, ionic strength,
etc., peptides are not usually responsive toward light; thus in order to make them photore-
sponsive, linking with light-sensitive chromophoric units is necessary. The light-sensitive
unit, on illumination with light having a specific wavelength, undergoes photoreactions
such as molecular switching (E-Z/Z-E isomerization), bond rupture, or bond formation
leading to a change in physical and chemical properties like dipole moment, conjugation,
geometric structures, and electronic properties, etc. These physicochemical changes dictate
the modified peptide to undergo assembly/disassembly or any other phase transition,
thus making the peptides responsive toward the light. Hence, in order to achieve the
photoresponsiveness in the peptide, proper selection of photoresponsive units is crucial not
only from the point of system development but also for desired properties and functions to
achieve. Indeed, the cross-fertilization of peptide chemistry with photo-chemistry not only
provides biocompatibility to the hybrid materials (gel) but also facilitates the structural
control of peptide assemblies at the microscopic and macroscopic levels using light. In
this short review, we have highlighted the recent developments made in the field of photo-
sensitive peptide gelators, where a variety of photo-sensitive units are integrated with
peptides either covalently or non-covalently. Many recent developments in this direction
allow us to think about new possibilities and opportunities in advanced systems devel-
opment and applications such as controlled drug delivery, modulation of cell behavior,
development of adaptive and self-healing materials, catalysis, etc. Although a substantial
effort has been devoted to designing and developing light-responsive peptide gelators with
varying peptide sequences and molecular photo-switches, however, the present systems
are restricted to proof-of-concept studies in the context of applications, particularly in the
area of biomedical applications, and the clinical trial seems to be a bit away. One of the
most common challenges is that majority of the light-responsive units need UV light to
respond. This UV-irradiation can damage tissue, making this system imperfect for cellular
applications. Moreover, UV light has poor penetration depth into human cells. To overcome
these challenges, new photo-responsive units must be designed and developed to respond
to low-energy light such as NIR light and to perform on-demand tasks. However, the use of
low-energy light can slow down the drug release kinetics. Additionally, the heat generated
by light irradiation can also cause cell mortality, which should also be considered while
designing photo-responsive peptide gelators for biomedical applications. On the other
side, the photoswitches are organic molecules. Due to their poor solubility in an aqueous
medium, the majority of the systems are developed either in pure organic solvents or in the
mixtures of organic-aqueous milieu, thus limiting in vitro and in vivo biological applica-
tions. Maturity in design principal and evaluation of biotoxicity, biostability, bioavailability,
and drug release kinetics of the developed system can improve the biological applications
step by step. Most of the developed photo-sensitive peptide gelators comprise only one
type of photo-switch to respond to a specific wavelength. However, peptide gelators having
two or multiple different photo-switch that can smartly respond to several wavelengths is
still to be developed to achieve selective and precise control over multifunctional respon-
siveness or orthogonal photo-modulation, which can give access to two or more properties
in a single peptide gel system. Currently, supramolecular assembly is moving towards the
non-equilibrium approach where ‘chemical fuels’ are being exploited to device adaptive
systems with multiple interactions, complex structures, and functions with spatio-temporal
control, in short, ‘life-like’ systems [165,166]. In this context, light as a fuel could be a better
alternative of ‘chemical fuel’ to device ‘life-like’ autonomous functional systems because
of its special resolution, lack of waste production, and wavelength selectivity. In fact, a
few ‘light fueled’ dynamic and autonomous peptide assemblies and gels are reported,
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which are limited to the system development only [121,167]. Development of transient
and self-abolishing color and ink, a temporary memory device, transient electric circuit,
signal transduction and catalysis, pre-programmed loading and release of pharmaceuticals,
etc., could be future applications of such dynamic light responsive (fueled) peptide gels.
We believe that with the proper synthetic toolbox, light responsive peptide gelators could
create a new avenue to achieve next-generation advanced systems with emergent behaviors
and to mimic properties and behaviors of living systems.

Although many challenges need to be addressed, we believe that the rational de-
sign of photoactive units and peptides, better understanding of gelation mechanism and
photoswitching kinetics, and introduction of a non-equilibrium approach can collectively
offer new generation peptide-based photo-responsive materials for practical applications.
Therefore, this field still demands a good amount of advanced research.
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