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Abstract
Emerging evidence is fueling a new appreciation of oligodendrocyte diversity that is overturning the tradi-
tional view that oligodendrocytes are a homogenous cell population. Oligodendrocytes of distinct origins, 
maturational stages, and regional locations may differ in their functional capacity or susceptibility to injury. 
One of the most unique qualities of the oligodendrocyte is its ability to produce myelin. Myelin abnormali-
ties have been ascribed to a remarkable array of perinatal brain injuries, with concomitant oligodendrocyte 
dysregulation. Within this review, we discuss new insights into the diversity of the oligodendrocyte lineage 
and highlight their relevance in paradigms of perinatal brain injury. Future therapeutic development will be 
informed by comprehensive knowledge of oligodendrocyte pathophysiology that considers the particular 
facets of heterogeneity that this lineage exhibits.
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Introduction
Cellular diversity within the central nervous system is the 
evolutionary trend that underlies the brain’s ability to or-
chestrate complex behaviors and cognitive tasks. To this 
end, the oligodendrocyte lineage contributes greatly to the 
evolutionary success of vertebrates through its unique pro-
duction of myelin sheaths, lipid rich multilamellar mem-
branes that envelop axons in the central nervous system 
(Zalc and Colman, 2000; Schweigreiter et al., 2006; Zalc et 
al., 2008). Myelination is largely a developmental process 
that is preceded by waves of oligodendrocyte generation, 
proliferation, migration, and differentiation (Mitew et al., 
2014; Bercury and Macklin, 2015). During embryonic de-
velopment, oligodendrocytes originate from various pools 
of progenitor populations derived from separate germinal 
zones (Kessaris et al., 2006). Three waves of ontogenetically 
distinct populations of oligodendrocyte progenitor cells 
disseminate throughout the grey and white matter regions 
of the central nervous system (Tsai et al., 2009; Armati and 
Mathey, 2010). Ultimately, migratory oligodendrocyte pro-
genitors settle and differentiate into mature oligodendro-
cyte cells that provide local myelination and enable rapid 
impulse propagation through saltatory conduction (Susuki 
et al., 2013). Additionally, through their myelin sheaths, 
oligodendrocytes deliver trophic support for maintenance 
of axonal integrity (Funfschilling et al., 2012; Simons and 
Nave, 2015). Recent transcriptome data demonstrating new 
subtypes of oligodendrocytes in the central nervous system 
has considerably expanded our appreciation of oligoden-
drocyte diversity (Marques et al., 2016). These new insights 
into basic oligodendrocyte biology highlight the importance 

of adding to the paucity of research that truly addresses the 
heterogeneous nature of the oligodendrocyte lineage.

Oligodendrocytes of distinct origins, maturational stages, 
or regional locations may differ in their functional capacity 
and susceptibility to any type of neural injury. However, 
oligodendrocyte diversity is particularly relevant to perina-
tal brain injury, as this stage in neurodevelopment exhibits 
heightened vulnerability to white matter injury. Throughout 
this review, perinatal brain injury is defined as damage to 
the brain acquired before or immediately following birth. 
Oligodendrocyte dysregulation leading to white matter inju-
ry is a predominant pattern observed in survivors of perina-
tal brain injury (Iida et al., 1995; Back et al., 2001; Robinson 
et al., 2006; Billiards et al., 2008; Buser et al., 2012; Jantzie et 
al., 2015). Myelination in the human central nervous system 
begins during the second half of gestation in an inferior to 
superior, posterior to anterior pattern, whereby myelin-
ation begins in the occipital lobe and continues through the 
temporal and frontal lobes (Jakovcevski and Zecevic, 2005; 
Tasker, 2006). The extraordinary metabolic demands re-
quired during myelination and the complexity of oligoden-
drogenesis render this neurodevelopmental stage vulnerable 
to insult (Nave, 2010a). Perinatal brain injury sustained 
from preterm birth is one specific example that classically 
involves white matter injury and subsequent myelin deficits. 
Preterm birth is the leading cause of infant morbidity and 
mortality in the United States (Wilson-Costello et al., 2005; 
Shapiro-Mendoza, 2016; Liu et al., 2017). The major form 
of brain injury in contemporary cohorts of preterm infants 
is diffuse white matter injury characterized by selective oli-
godendrocyte dysregulation that precipitates abnormal my-
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elination and cognitive impairment (Anderson and Doyle, 
2008; Aarnoudse-Moens et al., 2009; Buser et al., 2012). 
Oligodendrocytes are implicated in many preclinical models 
of perinatal brain injury including: in utero and postnatal 
hypoxic-ischemia (Robinson et al., 2005; Segovia et al., 
2008; Riddle et al., 2011; Jantzie et al., 2013; Davidson et al., 
2014), hyperoxia or hypoxia exposure (Gerstner et al., 2008; 
Schmitz et al., 2011; Brehmer et al., 2012; Jablonska et al., 
2012; Ritter et al., 2013; Deng et al., 2014; Pham et al., 2014; 
Scafidi et al., 2014; Yuen et al., 2014), ischemia (Falahati et 
al., 2013; Ahrendsen et al., 2016), fetal growth restriction 
(Tolcos et al., 2011; Reid et al., 2012; Rideau Batista Novais 
et al., 2016), hyperbilirubinemia (Barateiro et al., 2012, 2013, 
2014), exposure to myelin debris (Robinson and Miller, 
1999; Baer et al., 2009), leukodystrophy (Baracskay et al., 
2002), in addition to infection and inflammation (Valerio 
et al., 2002; Vela et al., 2002; Pang et al., 2003; Taylor et al., 
2010; Favrais et al., 2011; Nobuta et al., 2012). Preclinical 
models of toxic exposure during developmental myelin-
ation, such as gestational ethanol or isoflurane exposure, 
also involve white matter injury sustained from oligoden-
drocyte dysregulation (Brambrink et al., 2012; Creeley et al., 
2013, 2014; Newville et al., 2017). Interestingly, some models 
suggest that early insult to the oligodendrocyte lineage may 
permanently alter oligodendrocyte and immune function, ul-
timately contributing to adult pathogenesis (Jalabi et al., 2005; 
Benardais et al., 2014; Graf et al., 2014; Traka et al., 2016; Pa-
tra et al., 2017). Additional evidence that suggests early injury 
to oligodendrocyte lineage impacts cognition later in life is 
demonstrated by clinical studies of preterm cohorts, wherein 
persisting white matter structural abnormalities, as assessed 
by diffusion tensor imaging, correlate to an increased inci-
dence of neuropsychiatric disorders (Hagberg et al., 2012; 
Pyhala et al., 2014; Guy et al., 2015).

Within this review, we lay out evidence that elucidates a 
deeper understanding of oligodendrocyte function and sus-
ceptibility to injury that is dependent on origin, maturation-
al status, and location within the central nervous system. It is 
clear that the oligodendrocytes play a major role in perinatal 
brain injury and that the path toward developing appropri-
ate therapeutics will target oligodendrocyte cells (Olivier et 
al., 2009; Jantzie et al., 2013). Furthermore, future therapeu-
tic development will be informed by comprehensive knowl-
edge of oligodendrocyte pathophysiology that considers the 
particular facets of heterogeneity that this lineage exhibits.

Ontogenetic Origin
Oligodendrocyte cells that populate the central nervous sys-
tem are derived from spatially and temporally distinct waves 
of oligodendrogenesis (Figure 1). Within the developing 
forebrain, gradients of organizing signals emanate from 
specific centers to pattern the tissue, creating specialized 
regions that produce different neuronal and glial cell types 
(Rowitch and Kriegstein, 2010). Sonic hedgehog (SHH) se-
creted from the ventral center along with bone morphogenic 
proteins (BMPs) from the dorsal cortical hem signaling 
center, regulate the specification of oligodendrocyte pro-

genitor cells (OPCs) within the ventricular zone (Orentas et 
al., 1999; Samanta and Kessler, 2004; Feigenson et al., 2011). 
The three distinct waves of OPCs that arise from the de-
veloping forebrain ventricular zone follow a ventral-dorsal 
temporal progression (Ivanova et al., 2003; Chojnacki and 
Weiss, 2004; Kessaris et al., 2006). The first wave of OPC 
production is dependent on SHH signaling, whereas the lat-
er waves of OPC production occur in an SHH independent 
manner (Pringle and Richardson, 1993; Pringle et al., 1996; 
Nery et al., 2001; Tekki-Kessaris et al., 2001). Cre-LoxP fate 
mapping studies in transgenic mice have shown that the first 
wave of OPCs starting at embryonic day 12.5 is generated by 
Nkx2.1 expressing progenitors from the medial ganglionic 
eminence and entopeduncular area (Kessaris et al., 2006). 
As these ventrally derived progenitors migrate tangentially 
and dorsally to populate the entire developing telenceph-
alon, the second wave of Gsh2 (also referred to as Gsx2) 
progenitors from the lateral and medial ganglionic emi-
nences begins at embryonic day 15.5 (Kessaris et al., 2006; 
Chapman et al., 2013). Finally, at birth, a third wave occurs 
from Emx1 expressing progenitors arising from the dorsal 
ventricular zone underlying the developing cortex (Kessa-
ris et al., 2006). By postnatal day 10, the Nkx2.1 expressing 
OPCs derived from the earliest wave have disappeared. The 
mechanisms behind the elimination and replacement of 
these early Nkx2.1 oligodendrocytes are unclear. One likely 
possibility is that subsequent populations of oligodendro-
cytes outcompete these early oligodendrocytes for survival 
factors such as platelet-derived growth factor (PDGF). This 
process would reflect how the overabundance of OPCs is 
balanced during myelination as these cells compete for the 
limited survival factors produced by axons and astrocytes 
(Barres et al., 1992; Trapp et al., 1997; Barres and Raff, 
1999). The oligodendrocytes that remain in the forebrain are 
the Gsh2 ventrally derived and Emx1 dorsally derived oligo-
dendrocytes at an approximate ratio of 1 to 4, respectively 
(Tripathi et al., 2011). These oligodendrocyte progenitors 
that arise during development have greater motility, more 
rapid cell cycle and better survival relative to oligodendro-
cytes generated later in life (Tang et al., 2000; Ruffini et al., 
2004). Throughout postnatal life, new oligodendrocytes are 
generated from a reservoir of nestin-expressing neural stem 
cells that occupy the subventricular zone (SVZ) of the lateral 
ventricle (Levison et al., 1993, 1999; Marshall et al., 2003, 
2005; Quinones-Hinojosa et al., 2006; Jablonska et al., 2010; 
Fiorelli et al., 2015). These neural stem cells exist in spatially 
segregated microdomains that produce different ratios of 
oligodendrocytes depending on their rostrocaudal coordi-
nates along the ventricular zone, with more caudal domains 
having a greater proclivity towards generating oligodendro-
cytes (Azim et al., 2016). Under normal conditions, rostral 
SVZ domains produce approximately one oligodendrocyte 
per thirty cells, whereas caudal domains produce one oligo-
dendrocyte per three cells (Menn et al., 2006). Once generat-
ed, SVZ derived OPCs migrate dorsally or laterally into the 
corpus callosum, fornix, or striatum, usually remaining at 
the same rostrocaudal level of their original precursor (Menn 
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et al., 2006). Neural stem cells in the SVZ increase their pro-
duction of oligodendrocytes in pathological circumstances 
such as stroke (Li et al., 2010), or demyelinating lesion (Menn 
et al., 2006; Aguirre et al., 2007; Mecha et al., 2013; Xing et 
al., 2014; Brousse et al., 2015). Following a demyelinating in-
jury in the central nervous system, oligodendrocytes are also 
generated from adult OPCs that are distributed uniformly 
throughout the postnatal parenchyma (Tripathi et al., 2010; 
Richardson et al., 2011). Considering that the populations of 
oligodendrocytes arise from diverse origins under differing 
transcriptional control (Bergles and Richardson, 2015), it is 
important to investigate possible functional heterogeneity 
within these described subpopulations. 

Functional heterogeneity between ontogenetically distinct 
populations of oligodendrocytes is paramount to the context 
of neural injury and repair. Identification of potential differ-
ences may guide therapeutic targeting of certain populations 
that demonstrate greater propensity toward remyelination 
or survival during perinatal brain injury paradigms. Diph-
theria toxin mediated ablation of any one of these develop-
mental oligodendrocyte waves showed that the other unaf-
fected waves compensated for the loss numerically without 
any significant neurological consequences (Kessaris et al., 
2006). This finding contributed to the understanding that 
despite being derived from spatially and temporally distinct 
origins, all oligodendrocytes in the forebrain are seeming-
ly functionally analogous. However, recent research has 
suggested ontogenetic-dependent heterogeneity regarding 
developmental myelination, remyelination capacity, and 
susceptibility to developmental insult. Indeed, researchers 
have found functional differences between dorsally and ven-
trally derived oligodendrocytes in this respect. Dorsal OPCs, 
despite having indistinguishable electrophysiological prop-
erties from their ventrally derived counterparts, as assessed 
by whole-cell patch clamping, differ in their migration and 
settling patterns (Tripathi et al., 2011; Clarke et al., 2012). 
This was demonstrated in the spinal cord, whereby dorsally 
derived OPCs were less migratory and were able to outcom-
pete ventrally derived OPCs in dorsal territory (Tripathi et 
al., 2011). In response to demyelination in the mature cen-
tral nervous system, dorsally derived OPCs outperformed 
ventrally derived OPCs in measures of proliferation, migra-
tion, and differentiation (Zhu et al., 2011; Crawford et al., 
2016). This important finding, that dorsal OPCs contributed 
more to remyelination, underscores the need for future 
studies to determine if a similar dynamic occurs in peri-
natal myelin deficits. Interestingly, investigators revealed 
that these dorsal oligodendrocytes were more susceptible to 
age-associated differentiation impairment (Crawford et al., 
2016). Another study found that developmental injury in 
the form of ethanol exposure during the brain growth spurt 
in mice elicited acute oligodendrocyte cell loss dependent 
on ontogenetic origin, where embryonically derived (ventral) 
oligodendrocytes were depleted whereas the pool of post-
natally derived (dorsal) oligodendrocytes were numerically 
unaffected (Newville et al., 2017).

Emerging evidence that demonstrates functional differ-

ences between oligodendrocytes of distinct origins has im-
portant implications in the setting of developmental central 
nervous system injury. Particularly, the understanding of 
certain developmental pathologies that include oligodendro-
cyte dysregulation, such as preclinical models of neonatal 
encephalopathy, would be greatly improved if researchers 
considered ontogenetic origin as a factor of oligodendrocyte 
performance. The manner in which these sub populations 
of oligodendrocytes respond to therapeutic interventions 
that target oligodendrocytes, such as erythropoietin (EPO), 
Darbepoetin (a hyperglycosylated analogue of recombinant 
EPO), or melatonin, should also be investigated (Olivier et al., 
2009; Jantzie et al., 2013). These are treatments that are being 
used in clinical trials to improve outcomes in infants born 
preterm (Wu et al., 2012; Juul and Pet, 2015; McAdams and 
Juul, 2016; An et al., 2017). If in fact, oligodendrocytes are 
distinctly susceptible to developmental white matter injury 
associated with preterm birth, perhaps one subpopulation is 
more responsive to therapeutic manipulation than the other.

Maturational Stage
Oligodendrocytes are comprised of a continuous lineage of 
progressive maturational cell stages (Marques et al., 2016). 
These stages can be defined according to proliferative capac-
ity, temporal expression of cell surface markers, and mor-
phological complexity. These distinctions yield four separate 
maturational stages within the human and rodent forebrain: 
oligodendrocyte progenitor cells, pre-oligodendrocytes, 
immature pre-myelinating oligodendrocytes, and mature 
myelinating oligodendrocytes (Figure 2) (Kinney and Back, 
1998; Back et al., 2001; Baumann and Pham-Dinh, 2001; 
Butts et al., 2008). Specification, proliferation, differentia-
tion, and maturation of oligodendrocyte lineage cells are 
regulated through expression of various transcription fac-
tors that act on oligodendrocyte lineage genes (Emery and 
Lu, 2015). Once specified from multipotent stem cells, OPCs 
migrate radially and tangentially away from their respective 
germinal zone along the vascular network to populate the 
developing CNS (Tsai et al., 2016). This first committed oli-
godendrocyte lineage stage has simple bipolar morphology 
and is identified by the specific expression of platelet-de-
rived growth factor receptor alpha (PDGFRα) (Pringle et 
al., 1992). PDGFRα expression is regulated by Olig1, Olig2, 
and Mash transcription factors, which are influenced by the 
gradient expression of SHH morphogen (Butts et al., 2008). 
Other markers such as nuclear Olig1, Sox10, or sulfated 
proteoglycan NG2 are used to identify OPCs. However, 
these are also expressed in the subsequent pre-oligodendro-
cyte stage (Tolcos et al., 2016). Nuclear expression of the 
transcription factor Olig2, important for oligodendrocyte 
specification, is expressed throughout the oligodendrocyte 
lineage stages (Lu et al., 2002; Emery and Lu, 2015).

Proliferation of the progenitor pool is stimulated by locally 
expressed mitogens, in addition to environmental cues such 
as chemokines (Robinson et al., 1998; Armati and Mathey, 
2010). Once an OPC has arrived at its final destination with-
in the white or grey matter, the OPC can differentiate into a 
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mitotically active, multipolar pre-oligodendrocyte, whereby 
it loses its migratory ability. Identification of this oligoden-
drocyte stage is defined as expression of O4 in the absence 
of O1 (Warrington and Pfeiffer, 1992; Reynolds and Hardy, 
1997; Back et al., 2001). These pre-oligodendrocyte cells dif-
ferentiate into immature pre-myelinating oligodendrocytes 

of increased multipolar morphological complexity. This 
third cell stage in the oligodendrocyte lineage is post-mitotic 
and expresses O4 and O1 in the absence of myelin proteins. 
Additionally, this stage expresses MAG and CNP, which 
are also expressed in later myelinating oligodendrocytes. 
Ultimately, immature pre-myelinating oligodendrocytes 

Figure 1 Oligodendrcytes 
(OLs) arise from three 
regionally and temporally 
distinct waves during 
neurodevelopment. 
New evidence reveals that 
oligodendrocytes exhibit dif-
ferent properties according 
to their ontogenetic origin. E: 
Embryonic day; P: postnatal 
day.

Figure 2 The lineage of 
oligodendrocytes (OLs) is a 
continuous series of maturational 
stages. 
Stage-specific properties of oligo-
dendrocyte lineage cells determines 
their distinct vulnerabilities in 
different models of perinatal injury. 
OPC: Oligodendrocyte progenitor 
cell.
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produce mature myelinating oligodendrocyte cells. A small 
fraction of pre-myelinating oligodendrocytes undergo pro-
grammed cell death under conditions of normal develop-
ment (Barres et al., 1992; Trapp et al., 1997). The expression 
of major myelin proteins, such as myelin basic protein (MBP) 
and proteolipid protein (PLP), denotes the final stage of the 
oligodendrocyte lineage. Mature oligodendrocytes are also 
commonly identified by their expression of Olig1, and the 
adenomatous polyposis coli antigen (APC, often referred 
to as CC1) (Kitada and Rowitch, 2006). The identification 
of stage specific markers was an important milestone in 
oligodendrocyte lineage research. Additional maturational 
stratification of oligodendrocytes has been suggested by 
recent transcriptome data from forebrain oligodendrocytes 
indicating a narrow path of differentiation from oligoden-
drocyte progenitor cell to myelin forming oligodendrocyte 
that then diversifies into six separate mature states (Marques 
et al., 2016). This new evidence suggests that limiting the 
maturational stages to four subtypes may depreciate the true 
diversity of the lineage. Categorizing oligodendrocytes into 
stages has been conducive for investigations into matura-
tion dependent vulnerability and function. Describing how 
different paradigms of neuronal injury effect these newly 
identified oligodendrocyte populations will be important in 
future research efforts.

Functional capacity changes as an oligodendrocyte ma-
tures. Famously, the most mature oligodendrocyte stage 
generates myelin that enables rapid impulse propagation 
along axons, via sodium ion fluxes at the nodes of Ranvier. 
Myelin wrapping by mature oligodendrocytes dictates the 
spatial organization of these nodes and the sequestration 
of ion channels within them (Kaplan et al., 1997; Susuki 
et al., 2013). Oligodendrocytes provide trophic support 
to neurons, especially to long axons that are isolated from 
their respective neuronal soma (Nave, 2010a, b; Simons and 
Nave, 2015). The function of OPCs, other than generating 
additional myelinating oligodendrocytes, is less obvious. 
OPCs receive synaptic inputs from neighboring axons and 
express numerous voltage-gated ion channels (Bergles et 
al., 2000; Chittajallu et al., 2004; Jabs et al., 2005; Ge et al., 
2006; De Biase et al., 2010; Clarke et al., 2012). Synaptic in-
put onto OPCs is lost as these oligodendrocyte cells progress 
into more mature stages (Kukley et al., 2010). The functional 
significance of electrical input from neurons has remained 
obscure. However, it has been demonstrated that neuronal 
spiking influences oligodendrogenesis and myelination, sug-
gesting that myelin biogenesis could be linked to the unique 
properties of OPC physiology (Wake et al., 2011; Gibson et 
al., 2014). In the specific case of glutamate, the manner in 
which this neurotransmitter effects OPC function is depen-
dent on pathological circumstance. Glutamate mediates a 
host of oligodendrocyte functions related to brain develop-
ment, such as migration, differentiation and myelination 
(Gallo et al., 1996; Gudz et al., 2006; Dimou and Gallo, 2015; 
Gautier et al., 2015). In brain injury associated with hypoxic 
ischemia, extracellular glutamate negatively impacts OPC 
survival by means of excitotoxicity (Johnston, 2005). 

Oligodendrocyte maturational state is another layer of ev-
er-growing oligodendrocyte heterogeneity that is important 
to consider in creating a more informed story of oligoden-
drocyte-associated pathogenesis in the context of develop-
mental brain injury. Solely focusing on the mature myelin-
ating endpoint, or choosing not to distinguish between the 
multiple stages of cellular maturation that exist, risks over-
looking important information regarding the susceptibility 
of these distinct populations. Experimental paradigms of 
perinatal injury that examine the entire oligodendrocyte lin-
eage, taking into consideration the selective vulnerabilities 
of cells at various stages of oligodendrocyte maturation, are 
able to parse out individual susceptibility profiles. Models of 
in utero and postnatal hypoxia ischemia aimed at determin-
ing the cellular underpinnings and molecular mechanisms 
behind diffuse white matter injury in preterm infants have 
shown that white matter injury is largely due to selective 
maturational arrest of pre-oligodendrocytes (Back et al., 
2002; Robinson et al., 2005; Riddle et al., 2006, 2011; Sego-
via et al., 2008; Jantzie et al., 2013; Davidson et al., 2014). 
Interference in oligodendrocyte lineage progression at the 
pre-oligodendrocyte stage has also been demonstrated in 
models of hypoxia (Jablonska et al., 2012; Scafidi et al., 2014; 
Yuen et al., 2014), postnatal inflammation (Pang et al., 2003; 
Favrais et al., 2011; Nobuta et al., 2012), hyperbilirubinemia 
(Barateiro et al., 2013, 2014), and fetal growth restriction 
(Tolcos et al., 2011; Reid et al., 2012; Rideau Batista Novais 
et al., 2016). Under the pathological conditions of preterm 
birth pre-oligodendrocyte cells fail to mature into myelinat-
ing oligodendrocytes resulting in white matter deficits and 
poor clinical outcomes (van Tilborg et al., 2016). This is a 
cellular maturational stage-specific property that is inde-
pendent of the developmental age of the animal or location 
of these cells within the cerebral white matter (Back, 2017). 
Further analysis has revealed that pre-oligodendrocytes are 
particularly vulnerable to apoptotic cell death under condi-
tions of hyperoxia (Gerstner et al., 2008; Pham et al., 2014). 
Another mechanism of perinatal injury that specifically tar-
gets immature oligodendrocytes is excitotoxicity. OPCs and 
pre-oligodendrocytes are vulnerable to excitotoxic cell death 
in models of postnatal hypoxic-ischemia (Follett et al., 2000; 
Ness et al., 2001; Deng et al., 2004; Talos et al., 2006; Back et 
al., 2007; Wood et al., 2007; Manning et al., 2008; Jantzie et 
al., 2010; Simonishvili et al., 2013). Developmentally regulat-
ed expression patterns of glutamate receptors on OPCs ren-
der these cells in their early stage of oligodendrocyte matu-
ration more susceptible to glutamate toxicity compared to 
their more mature, myelinating, counterparts (Rosenberg et 
al., 2003; Matute et al., 2006; Marinelli et al., 2016). In other 
experimental conditions of injury, OPCs show stage specific 
vulnerability to apoptosis in hyperbilirubinemia (Barateiro 
et al., 2012), and hyperoxia (Schmitz et al., 2011; Brehmer et 
al., 2012). Pathogenesis can also effect OPC proliferative ca-
pacity. OPCs show reduced proliferation in models of hyper-
oxia (Schmitz et al., 2014), inflammation (Valerio et al., 2002; 
Vela et al., 2002; Taylor et al., 2010), and prenatal alcohol 
exposure (Newville et al., 2017). Conversely, models of devel-
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opmental hypoxia, leukodystrophy, and ischemia augment 
the proliferation of OPCs (Baracskay et al., 2002; Ahrendsen 
et al., 2016; Jablonska et al., 2016). OPC maturational arrest 
has also been demonstrated in models of ischemia and expo-
sure to myelin debris (Robinson and Miller, 1999; Baer et al., 
2009; Falahati et al., 2013). Lastly, mature oligodendrocytes 
show stage specific susceptibility to apoptosis in models of 
hypoxia (Deng et al., 2014), and perinatal exposure to isoflu-
rane or alcohol (Brambrink et al., 2012; Creeley et al., 2013, 
2014). Hyperoxia induced myelination deficits demonstrate 
functional impairment in mature oligodendrocytes (Ritter et 
al., 2013). Disruptions to early oligodendrogenesis could neg-
atively affect downstream progeny and mature oligodendro-
cyte function. The evidence from studies outlined in Figure 2 
strongly demonstrates that the oligodendrocyte lineage cells 
are vulnerable to perinatal brain injury in a maturation-de-
pendent manner. These findings underscore the importance 
of considering this aspect of heterogeneity in future investiga-
tions (Butts et al., 2008; Back, 2017).

Regional Specificity 
Migration of OPCs into distinct neuronal environments 
dictates their functional properties and vulnerability to in-
jury. Once specified, OPCs assume a bipolar morphology 
and depart their germinal zones to populate the grey and 
white matter regions of the central nervous system. OPCs 
associate with the abluminal surface of the vasculature me-
diated by Wnt-chemokine receptor 4 interaction and use the 
vessels as scaffolding to reach their destinations (Tsai et al., 
2016). Other factors that regulate migration are contact-me-
diated molecules that repel and attract OPCs, in combina-
tion with growth factor availability (de Castro and Bribián, 
2005; Bergles and Richardson, 2015). OPCs express a host 
of receptors for contact-mediated molecules also involved 
in neuronal migration such as Netrin-1 receptors (Jarjour 
et al., 2003; Tsai et al., 2003), Neuropilin-1 and -2 receptors 
(Sugimoto et al., 2001; Spassky et al., 2002; Syed et al., 2011), 
and Eph receptors (Prestoz et al., 2004). Furthermore, ex-
tracellular glutamate has been shown to induce OPC migra-
tion (Gudz et al., 2006; Harlow et al., 2015). OPCs exhibit 
self-avoidance, whereby they dictate their own tiling by con-
stantly surveying their local territory and retracting when 
their processes contact an adjacent OPCs (Zhang and Mill-
er, 1996; Hughes et al., 2013). Ultimately, oligodendrocyte 
progenitors evenly distribute themselves across grey matter 
regions and are only slightly outnumbered by progenitors 
within the white matter, 1 to 1.5 respectively (Chang et al., 
2000; Dawson et al., 2003). The OPC that persist into adult-
hood steadily proliferate and differentiate to generate new 
myelinating oligodendrocytes (Rivers et al., 2008; Psachoulia 
et al., 2009; Young et al., 2013). The degree to which these 
cells proliferate and differentiate, in addition to other func-
tional properties, is dependent on their regional location 
within the central nervous system.

Illuminating the differences between white matter and 
grey matter OPCs has demonstrated functional heterogene-
ity dependent on location. For instance, despite equivalent 

levels of PDGFRα expression, white matter OPCs demon-
strate a greater proliferative response to PDGF than grey 
matter OPCs (Hill et al., 2013). OPCs within the developing 
grey and white matter have distinct electrophysiological 
properties and express different profiles of membrane K+ 

and Na+ channels (Chittajallu et al., 2004). During develop-
ment and throughout postnatal life, OPCs generate mature 
oligodendrocyte cells. It is not definitively known if these di-
verse populations of OPCs give rise to functionally distinct 
mature oligodendrocytes, however, one study suggests that 
oligodendrogenesis is regulated differently in grey and white 
matter regions (Baracskay et al., 2002). In adulthood, OPCs 
located in white matter differentiate into mature myelin 
producing oligodendrocyte with greater proficiency then 
those in the grey matter (Dimou et al., 2008). Furthermore, 
when white matter or grey matter derived OPCs are trans-
planted into the cerebral cortex, white matter derived OPCs 
differentiated into mature oligodendrocytes with greater 
proficiency (Vigano et al., 2013). Although evidence is 
mounting that demonstrates region-specific properties, the 
extent to which these functional differences are dependent 
on cell intrinsic factors or extrinsic control remains specu-
lative (Mayoral and Chan, 2016). Morphological differences 
have been observed between grey matter and white matter 
pre-myelinating oligodendrocytes. The cellular processes of 
pre-myelinating oligodendrocytes in the callosal white matter 
were more numerous and shorter in length than their cortical 
counterparts (Trapp et al., 1997). Additionally, white matter 
oligodendrocytes myelinate more axons than grey matter oli-
godendrocyte (Trapp et al., 1997). Within the cortical layers, 
researchers showed that the distinct myelin profiles produced 
within certain levels was influenced by the neuronal subtype 
in the immediate proximity suggesting extrinsic control (To-
massy et al., 2014). As reviewed previously, extrinsic factors 
mediated by neuron and astrocyte heterogeneity also contrib-
ute to myelin diversity (Ornelas et al., 2016; Tomassy et al., 
2016). On the other hand, new evidence has emerged show-
ing that myelin sheath length was determined by intrinsic 
oligodendrocyte control (Bechler et al., 2015). Regardless of 
whether intrinsic or extrinsic control prevails in determining 
oligodendrocyte regional specific functioning, it will be im-
portant for future researchers to consider this aspect of oligo-
dendrocyte diversity in their analysis. 

Regional heterogeneity is an important aspect of oligoden-
drocyte biology and is relevant in oligodendrocyte suscepti-
bility to perinatal injury. The patterning of pre-oligodendro-
cyte lineage cells across grey and white matter regions of the 
developing brain dictates regional vulnerability to perinatal 
white matter injury associated with hypoxic-ischemia and 
inflammation, both common occurrences in preterm infants 
(Hagberg et al., 2002; Khwaja and Volpe, 2008; Ferriero and 
Miller, 2010; Anblagan et al., 2016). For example, during 
development the increased distribution of pre-oligoden-
drocytes in the germinal matrix, a region that includes the 
ventricular and subventricular zones, makes this area more 
susceptible to hypoxic-ischemic injury. Although intrin-
sically regulated mechanisms underlie the vulnerability of 
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pre-oligodendrocyte cells in these conditions of injury, other 
factors can influence oligodendrocyte vulnerability to injury 
that are imposed by local niches. One study that used tissue 
explants from early postnatal pups demonstrated that white 
matter OPCs were more responsive to PDGF than grey 
matter OPCs (Hill et al., 2013), supporting the hypothesis 
that regional location may be important for oligodendrocyte 
function in the perinatal brain. Overall, information regard-
ing extrinsic control of oligodendrocytes by regional niche 
factors within normal and injured perinatal brain is re-
markably absent. Recent studies of multiple sclerosis lesions 
reveal differences in the pathology and the extent of remy-
elination by oligodendrocytes within grey matter or white 
matter (Albert et al., 2007; Stadelmann et al., 2008; Gudi et 
al., 2009). Although these observations pertain to an adult 
pathology, they further the idea that regional specificities 
exist within the oligodendrocyte population. 

Conclusion
The diversity of neuronal subtypes throughout the many 
brain regions is well defined regarding function, morphol-
ogy, and susceptibility to injury. Only recently, has there 
been significant investigation into different aspects of glial 
diversity despite their critical role in brain physiology and 
pathology. Diversity within the three classes of glia is only 
just coming into perspective (Tomassy and Fossati, 2014; 
Grabert et al., 2016; Ben Haim and Rowitch, 2017). New 
research supports that oligodendrocytes are far more di-
verse than previously held. The importance of dissecting the 
oligodendrocyte lineage into subtypes will help our under-
standing of oligodendrocyte biology and will inform our 
clinical approach to neuropathologies. Perinatal brain injury 
often involves oligodendrocyte dysregulation. As described 
in this review, emerging evidence indicates that ontogenetic 
origin, maturational stage, and regional location determine 
functional differences between populations of oligodendro-
cytes. These three factors also influence oligodendrocyte 
susceptibility to perinatal injury. Thus, oligodendrocyte het-
erogeneity must be considered in future research aimed at 
developing appropriate therapeutic options. 
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