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Acute myeloid leukemia (AML) is a heterogeneous disease characterized by

malignant proliferation of myeloid hematopoietic stem/progenitor cells. NPM1

represents themost frequently mutated gene in AML and approximately 30% of

AML cases carry NPM1 mutations. Mutated NPM1 result in the cytoplasmic

localization of NPM1 (NPM1c). NPM1c interacts with other proteins to block

myeloid differentiation, promote cell proliferation and impair DNA damage

repair. NPM1 is a good prognostic marker, but some patients ultimately relapse

or fail to respond to therapy. It is urgent for us to find optimal therapies for

NPM1-mutated AML. Efficacy of multiple drugs is under investigation in NPM1-

mutated AML, and several clinical trials have been registered. In this review, we

summarize the present knowledge of therapy and focus on the possible

therapeutic interventions for NPM1-mutated AML.

KEYWORDS

NPM1, AML, targeted therapy, venetoclax, menin inhibitors, XPO1 inhibitors
Introduction

Nucleophosmin (NPM1) is the most common mutated gene in acute myeloid

leukemia (AML). AML with NPM1 mutations accounts for approximately 30% of

adult AML, which is characterized by the cytoplasmic localization of NPM1 (NPM1c)

(1). NPM1-mutated AML was recognized as a distinct entity in the World Health

Organization classification of myeloid neoplasms.

NPM1, shuttling between the nucleus and cytoplasm, is predominantly located in the

nucleus (2, 3). NPM1 protein contains three structural domains including N terminal,

central and C terminal domain. Nuclear export signals (NESs), located in N terminal

domain, promote the translocation of NPM1 from the nucleus to the cytoplasm (3, 4).
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Nucleolar localization signals (NoLS), formed in highly

conserved aromatic region of C terminal domain, is critical for

the localization of NPM1 to the nucleus (5). The nuclear export

of NPM1 is mediated by the interaction of two NESs and the

nuclear exporter exportin 1 (XPO1) (3). NPM1 is a

multifunctional protein involved in diverse cellular functions

such as ribosome synthesis, genomic stability, cellular growth

and stress response (6–9).

NPM1 mutations result in the generation of a new C-

terminal NES and the loss of tryptophan residues 288 and 290,

which endow mutated-NPM1 stronger nuclear export ability

and ultimately lead to the cytoplasmic localization of NPM1 (10,

11). NPM1c mediates cytoplasmic dislocation of promyelocytic

leukemia (PML) nuclear bodies (NB) (12). Researchers found

that NPM1c interacts and delocalizes PU.1, FBW7g and APE1,

which block myeloid differentiation, promote cell proliferation

and impair DNA damage repair, respectively (13–15).

NPM1-mutated AML is a kind of AML with favorable

prognosis. The overall survival rate was about 40% and

complete remission (CR) rate was about 80% (16). However,

approximately 50% of patients will eventually relapse (17). The

standard therapy of NPM1-mutated AML patients includes

“3+7” induction chemotherapy and consolidation therapy.

NPM1 often co-exists with fms-like receptor tyrosine kinase-3

internal tandem duplication (FLT3-ITD), which results in poor

survival and high relapse rates. Allogeneic hematopoietic stem

cell transplantation (allo-HSCT) and FLT3 inhibitors may be

considered as important choices for these high-risk patients. It

should be underscored that despite the favorable outcome of

NPM1-mutated AML patients, disease-free survival (DFS) and

overall survival (OS) of older NPM1-mutated patients remain

disappointing and worse than those in younger NPM1-mutated

patients (18). This may be partly due to treatment options,

disease biology and age-related factors.

It has been about 15 years since NPM1-mutated AML was

first discovered. However, there is no consensus over how to

treat this type of AML, especially relapsed NPM1-mutated AML.

Up to now, several studies targeting NPM1-mutated AML are

undergoing, including inhibiting NPM1c functions, interfering

with abnormal transport of NPM1c protein, promoting NPM1c

degradation and immunotherapy such as monoclonal

antibodies. Herein, we summarize available data (Table 1) and

ongoing clinical trials (Table 2) and focus on the potential

targeted therapy (Figure 1) of NPM1-mutated AML.
Venetoclax-based therapies

B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, is

overexpressed in AML. High Bcl-2 expression is associated

with survival of AML cells and chemotherapy resistance (19,

20). Venetoclax is a potent and selective small molecule inhibitor

of Bcl-2, has shown efficacy in preclinical and clinical practice
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(21, 22). Recently, safety and efficacy of venetoclax-based

therapies, in combination with hypomethylating agents

(HMAs) or low-dose cytarabine (LDAC), has been confirmed

in several AML clinical studies. To figure out the effect of

venetoclax-based therapies on NPM1-mutated AML, we

summarize the data from recent prospective clinical studies,

real-world reports and the latest ASH abstracts (Table 1).
Venetoclax + HMA/LDAC/IC

The phase 1 clinical trial of venetoclax with decitabine or

azacitidine (NCT02203773) enrolled 145 AML patients and

NPM1-mutated AML accounts for 16% (N = 23) (23). CR and

CR with incomplete count recovery (CRi) (CR + CRi) was

observed in 21 NPM1-mutated patients. In the phase 3 clinical

trial of venetoclax plus azacitidine, 66.7% of NPM1-mutated

AML patients achieved CR + CRi (NCT02993523) (24). The

phase 1/2, phase 3 clinical trials of venetoclax and LDAC were

successively conducted in AML patients (NCT02287233,

NCT03069352). Patients with NPM1 mutations represented

11% and 9% of the study cohort and experienced CR + CRi at

89% and 78%, respectively (25, 26). In the clinical trials of

venetoclax in combination with intensive chemotherapy (IC),

patients with NPM1 mutations also had good responses. NPM1-

mutated AML patients attained CR and CRi at 80% and 100% in

the venetoclax combined with 5 + 2 (cytarabine + idarubicin)

study and venetoclax combined with FLAG + IDA (fludarabine,

cytarabine, granulocyte colony-stimulating factor, and

idarubicin) study, respectively (ACTRN12616000445471,

NCT03214562) (27, 28).

In real-world settings, venetoclax combined with HMA also

gained good outcomes in NPM1-mutated AML patients. CR and

CRi were achieved at 100%, 71.4% and 66.7% in three reports,

respectively (29–31). We also collect venetoclax-based regimens data

from the latest ASH abstracts, CR and CRi rates were high in NPM1-

mutated AML patients ranging from 76.6% to 100% (32–39).

Furthermore, venetoclax was recently identified as a selective

agent for NPM1-mutated AML through clinical drugs screening

(40). A retrospective analysis compared outcomes of NPM1-

mutated AML patients treated with 3 approaches including

venetoclax plus HMA, HMA and intensive chemotherapy (IC).

This analysis demonstrated that venetoclax plus HMAs

significantly reduced the risk of death and achieved a higher

CR rate when compared with standard IC or HMAs (41).

Venetoclax plus LDAC showed encouraging activity in

eradicating persistent or relapsing mutated NPM1 measurable

residual disease (MRD) (42). The multicenter and prospective

clinical trials of venetoclax-based regimens are required to

confirm its safety and efficacy in NPM1-mutated AML. A

phase 2, multicenter trial evaluating the efficacy of venetoclax

plus azacitidine in molecular relapse/progression has been

registered (NCT04867928).
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Venetoclax + ATO

In addition to the most common combinations between

venetoclax and HMA, LDAC or IC, there are several new

combinations under investigation, such as the ones with

arsenic trioxide (ATO). ATO, as an ancient drug, has exerted

its function in several malignancies. Both ATO and venetoclax

can downregulate Bcl-2 expression to induce apoptosis (43).

Myeloid cell leukemia sequence 1 (MCL-1) is critical for the

survival of AML cells and plays an essential role in venetoclax

resistance (44, 45). ATO was reported to attenuate MCL-1

upregulation induce by venetoclax (46). The synergistic

antileukemic activity of ATO and venetoclax was also
Frontiers in Oncology 03
confirmed in primary leukemia stem cells from AML patients

(46). Therefore, this combination might represent an alternative

option for NPM1-mutated AML. ATO and venetoclax

synergistically induces the apoptosis of NPM1-mutated OCI-

AML3 cells in vitro and showed anti-leukemia activity in two

relapsed and/or refractory (R/R) NPM1-mutated AML

patients (47).

The aforesaid results highlight the promising efficacy of

venetoclax-based regimens, providing a rationale for further

trials in NPM1-mutated AML. Current venetoclax-based

regimens are mainly applied in elderly patients who are unfit

for chemotherapy or young patients who are ineligible for

standard induction therapy. More studies are required to
TABLE 1 Summary of venetoclax-based therapies in NPM1-mutated AML.

Basic information Interventions Settings Numbers of NPM1-mutated
AML patients

Clinical outcomes
(CR/CRi)

Prospective clinical studies

NCT02203773 (phase 1) Venetoclax + Decitabine/Azacitidine ND AML N = 23 CR + CRi = 21/23 =
91.5%

NCT02287233 (phase 1/2) Venetoclax + LDAC ND AML N = 9 CR + CRi = 8/9 = 89%

NCT03069352 (phase 3) Venetoclax + LDAC ND AML N = 18 CR + CRi = 14/18 = 78%

NCT02993523 (phase 3) Venetoclax + Azacitidine ND AML N = 27 CR + CRi = 18/27 =
66.7%

ACTRN12616000445471 (phase
1b)

Venetoclax + 5 plus 2 (cytarabine +
idarubicin)

ND AML N = 10 CR + CRi = 8/10 = 80%

NCT03214562 (phase 1b/2) Venetoclax + FLAG+IDA ND AML and R/
R AML

N = 8 CR + CRi = 8/8 = 100%

Real-world experience

2019 Venetoclax + Azacitidine ND AML N = 8 CR + CRi = 8/8 = 100%

2021 Venetoclax + Decitabine R/R AML N = 7 CR + CRi = 5/7 = 71.4%

2021 Venetoclax + HMA R/R AML N = 3 CR + CRi = 2/3 = 66.7%

ASH abstracts

2019, NCT03586609, phase 2 Venetoclax + Cladribine +LDAC/
Azacitidine

ND AML N = 6 CR + CRi = 6/6 = 100%

2019, retrospective study Venetoclax + Decitabine/Azacitidine/
LDAC/Mylotarg

ND AML and R/
R AML

N = 2 CR + CRi = 2/2 = 100%

2020, real-world outcomes Venetoclax + HMA/LDAC/IC ND AML and R/
R AML

N = 7 CR + CRi = 6/7 = 86%

2020, retrospective study Venetoclax + Decitabine/Azacitidine ND AML and R/
R AML

N = 21 CR + CRi = 18/21 = 86%

2020, retrospective study Venetoclax + HMA ND AML and R/
R AML

N = 18 CR + CRi = 16/18 =
88.9%

2021, R/R AML patients with
NPM1 mutation

Venetoclax + IC (cytarabine/idarubicin ±
nucleoside analog)
or Venentoclax + LIC (HMA/LDAC)

R/R AML N = 12 CR + CRi = 10/12 = 83%

2021, NCT03404193, phase 2 Venetoclax + Decitabine ND AML and R/
R AML

N = 47 CR + CRi = 36/47 =
76.6%

2021, retrospective study Venetoclax + Azacitidine ND AML and R/
R AML

N = 18 CR + CRi = 14/18 =
77.8%

Summary

N =244 CR + CRi = 200/244 =
82%
ND, newly diagnosed. LDAC, low-dose cytarabine. FLAG+IDA, fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin. HMA, hypomethylating agents. IC, intensive
chemotherapy (cytarabine/idarubicin ± nucleoside analog). LIC, low intensity chemotherapy (HMA/LDAC).
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expand the application of this approach, for example, to achieve

greater overall survival in young patients. Furthermore, future

researches should concentrate on optimizing the venetoclax-

based therapies and overcoming venetoclax resistance.
Frontiers in Oncology 04
Menin inhibitors

NPM1-mutated AML cells are characterized by high

expression of HOXA and HOXB clusters, which are necessary
TABLE 2 Summary of ongoing or completed clinical trials in NPM1-mutated AML.

Clinical trials
identifier

Trial phase Status Intervention Comments

NCT00893399 3 Completed Gemtuzumab Ozogamicin (Mylotarg)
Standard chemotherapy
(Idarubicin, Etoposide, Cytarabine, ATRA,
Pegfilgrastim)

Evaluating efficacy

NCT01237808 3 Completed Cytarabine, Etoposide, All-trans retinoic acid Evaluating efficacy

NCT03031249 1/2 Recruiting Cytarabine, All-trans retinoic acid, Arsenic Trioxide Evaluating safety and efficacy

NCT03769532 2 Recruiting Pembrolizumab, Azacitidine Evaluating safety and efficacy

NCT04689815 2 Recruiting Oral Arsenic Trioxide Formulation Evaluating efficacy

NCT04867928 2 Recruiting Venetoclax, Azacitidine Evaluating efficacy

NCT05020665 3 Recruiting Entospletinib, Placebo, Cytarabine, Anthracycline Evaluating efficacy

NCT04067336 1/2 Recruiting KO-539 Two NPM1-mutated AML patients obtained CR

NCT04065399 1/2 Recruiting SNDX-5613, Cobicistat The overall response rate of NPM1-mutated AML: 38% (5/
13)

NCT04811560 1 Recruiting JNJ-75276617 Evaluating safety and tolerability of JNJ-75276617

NCT04988555 1/2 Recruiting DSP-5336 Evaluating safety, tolerability and clinical activity
of DSP-5336

NCT04752163 1/2 Recruiting DS-1594b, Azacitidine, Venetoclax Evaluating safety, toxicity and efficacy of DS-1594b

2014-000693-18 2 Completed Dactinomycin Evaluating anti-tumor activity and safety

2014-003490-41 2 Recruiting Dactinomycin Evaluating anti-tumor activity and safety
FIGURE 1

Schematic diagram describing the function of multiple agents in NPM1-mutated AML.
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for the maintenance of the leukemic state (48). Histone

modifiers MLL1 and DOT1L control HOX and FLT3

expression and differentiation in NPM1-mutated AML (49).

Combinatorial inhibition of menin-MLL1 and DOT1L showed

synergistic activity against primary AML cells in this study.

Another preclinical result also indicated that inhibition of

menin-MLL1 reversed leukemic development of NPM1-

mutated AML mice models (50). It was reported that menin-

MLL1 inhibition combined with venetoclax demonstrated anti-

leukemia activity in primary NPM1-mutated AML samples (51).

It seems that targeting menin could be a therapeutic strategy in

NPM1-mutated AML.

FLT3-ITD often co-exists with mutated NPM1, accounting

for approximately 40% of NPM1-mutated AML. Combining

menin inhibitors with FLT3 inhibitors induced synergistic

inhibition of proliferation and enhanced apoptosis in AML

blasts (52). The combination of menin and FLT3 inhibitors

significantly reduced leukemia burden and induced the long-

term remissions in a PDX model with both NPM1 and FLT3-

ITD mutations (53). Since XPO1 inhibition potently

downregulate HOX expression in NPM1-mutated AML, the

combination of menin and XPO1 inhibitors appeals as a

rational therapeutic option in NPM1-mutated AML (48).

Several clinical studies are recruiting to assess the safety and

efficacy of menin inhibitors such as SNDX-5613 and KO-539 on

leukemia with MLL-rearrangement or NPM1 mutation

(NCT04067336, NCT04065399, NCT04811560, NCT04752163,

Table 2). Early results demonstrated tolerance and biologic

activity of KO-539 (54). This phase 1/2A study evaluated

clinical activity in 6 R/R AML patients and KO-539 induced

CR in two patients. One patient achieved MRD-negative CR,

who had AML with NPM1, DNMT3A, and KMT2D mutations

and received KO-539 at 200 mg daily as the eighth line of

treatment. SNDX-5613 exhibited safety and promising

antileukemic activity in R/R MLL-rearrangement and NPM1-

mutated AML in preliminary results (55). As of data cutoff on

October 18, 2021, the overall response rate in 13 NPM1-mutated

AML patients was 38%. The most common side effects included

prolonged QTc, nausea, vomiting and differentiation syndrome.
XPO1 inhibitors

Exportin 1 (XPO1) is a nuclear exporter implicated in the

export of proteins and RNAs (56). NPM1 mutation results in the

increased nuclear export ability of mutated NPM1 (10, 11).

XPO1 inhibitors can relocate mutated NPM1 to the nucleus.

However, XPO1 inhibitors are not NPM1-specific and also

inhibit nuclear export of other proteins such as TP53 and P21.

Considering the relationship between XPO1 and NPM1,

XPO1 inhibitors might be a promising approach for NPM1-

mutated AML. The combination of selinexor and venetoclax

showed a synergistic effect on the anti-leukemic activity of AML
Frontiers in Oncology 05
cells (57). Current studies mainly focus on the effects of XPO1

inhibitors in AML, not specifically in NPM1-mutated AML. To

date, the combinations of selinexor and traditional

chemotherapy, such as decitabine, cytarabine, mitoxantrone

and idarubicin, are under study (58–60). However, systemic

toxicities of selinexor, such as nausea and anorexia, limit its

clinical usage to twice per week. Eltanexor, a second-generation

XPO1 inhibitor, exhibits lower blood-brain penetration,

improved tolerability and better anti-leukemic efficacy when

compared with selinexor (61, 62). The combination of eltanexor

and venetoclax reduce cell viability and induce apoptosis of

AML cell lines (63). This combination therapy also enhanced

anti-leukemia effect in AML cell-derived and patient-derived

xenograft models. Eltanexor seems to be a prospective drug and

further investigations are needed to validate the clinical activity

in NPM1-mutated AML.

XPO1 is widely expressed in normal cells and interacts with

hundreds of proteins, inhibition of XPO1 might generate some side-

effects such as hematologic adverse events. Future efforts should focus

on combining XPO1 inhibitors with either traditional chemotherapy

or novel agents to enhance efficacy and safety.
ATO plus ATRA

Arsenic trioxide (ATO) plus all-trans retinoic acid (ATRA)

had been proved a successful strategy in acute promyelocytic

leukemia (APL), a unique AML subtype characterized by the

fusion protein of promyelocytic leukemia (PML)–retinoic acid

receptor ɑ (RARɑ). The combination has been proved to induce

the degradation of PML-RARɑ fusion protein to cure APL (64).

NPM1-mutated AML cells are more sensitive to ATO

because the presence of C-terminal cysteine 288 of NPM1c

protein makes cells sensitize to oxidative stress induced by

ATO (65). The anti-leukemia ability of ATO and ATRA

support the further application in NPM1-mutated AML. Thus,

two groups simultaneously demonstrated that the combination

of ATO and ATRA induced the degradation of mutated NPM1

protein and apoptosis in both NPM1-mutated AML cell lines

and primary cells (66, 67). Furthermore, ATO plus ATRA

activated p53 signaling and restored nuclear organization of

PML bodies. The combined treatment also significantly reduced

bone marrow blasts in 3 NPM1-mutated AML patients and

recovered the abnormal localization of both NPM1 and PML

(67). ATRA was reported to induce mutated NPM1 degradation

through the Pin1/PML/P53 axis, thereby promoting the

response of blasts to chemotherapy or ATO (68). It is reported

that ATRA improved survival of elderly NPM1-mutated AML

patients without FLT3-ITD mutations when added to traditional

chemotherapy (69). These findings provide convincing evidence

for further clinical application of ATO and ATRA in NPM1-

mutated AML. Relevant research are undergoing in NPM1-

mutated AML (NCT03031249, NCT04689815, Table 1).
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Dactinomycin

Dactinomycin, a famous antibiotic, exhibits potent

antibacteria l and anticancer act ivi ty by inhibit ing

topoisomerases and RNA polymerases (70). Investigators

found that low dose dactinomycin can efficiently generate

stress response in NPM1-mutated cells, illustrating NPM1-

mutated AML might be sensitive to nucleolar stress (71).

Dactinomycin targets mitochondria particularly primed by

mutant NPM1, induces ROS production and restore PML NBs

formation. Dactinomycin was initially shown its efficacy on a

NPM1-mutated AML patient without FLT3-ITDmutations. The

patient achieved morphologic and immunohistochemical CR

after two cycles of therapy and showed a molecular CR after the

fourth cycle (72). The clinical safety and efficacy of

dactinomycin in AML patients with NPM1 mutations was

further established (71, 73). Dual targeting of mitochondria

with dactinomycin and venetoclax exerts strong anti-leukemic

activity in NPM1-mutated AML (74). Dactinomycin seems to be

a potential clinical choice for NPM1-mutated AML. Two clinical

trials have been registered to evaluate anti-leukemic activity and

safety of dactinomycin in NPM1-mutated AML (Table 1).
Immunotherapy

CD33 antibody

CD33 is a myeloid differentiation antigen expressed at the

very early stages of myeloid cell development and is absent

outside the hematopoietic system or on pluripotent

hematopoietic stem cells (75). CD33 expression was found in

leukemic blasts in almost all AML patients and associated with

adverse disease features (76, 77). Gemtuzumab ozogamicin (GO)

is CD33-directed immunoconjugate by delivering a DNA-

damaging calicheamicin derivative to exert its function.

CD33 expression was significantly higher in the NPM1-mutated

AML cases compared with the NPM1-unmutated cases (78). The

results support the therapeutic application of CD33 antibodies in

NPM1-mutated AML. A study showed that the addition of GO to

standard chemotherapy improves the event-free survival (EFS) and

OS in de novo AML patients aged 50–70 years (79). Among this

cohort, NPM1-mutated AML patients accounted for 33% of all cases.

One clinical study was registered to evaluate the efficacy of

GO in NPM1-mutated AML (NCT00893399). The study failed

to show significant benefits on EFS when GO was added to

intensive therapy, which might be due to a higher early mortality

in the GO arm. However, patients who achieved CR + CRi after

induction therapy significantly had fewer relapses in the GO arm

than in the standard arm (80). In the following attempts, the

combinations of GO and other treatments are required to be

optimized in NPM1-mutated AML.
Frontiers in Oncology 06
PD-1 and PD-L1 antibody

Programmed cell-death protein PD-1 and its ligands PD-L1

are immune checkpoint molecules that are involved in T-cell

activation and dampen T-cell anti-tumor response. PD-1/PD-L1

pathway plays an essential role in tumor immune evasion, thus

promoting the progression of tumor (81).

NPM1-mutated AML patients have a stronger cytotoxic T-

lymphocyte response against mutated NPM1-derived peptides

compared with healthy volunteers (82). Immune responses

might be a contributing factor for the better prognosis of

NPM1-mutated patients (83). High PD-L1 expression was

detected in NPM1-mutated AML patients and predicted worse

overall survival (84, 85). It should be noted that NPM1 was

identified as a transcriptional regulator of PD-L1 and is

associated with poor prognosis in triple-negative breast cancer

(86). The aforementioned results indicated that PD-L1 might be

a potential therapeutic target in NPM1-mutated AML.

Unfortunately, current study suggested clinical activity of PD-

L1 antibody in AML is limited (87, 88). Thus, more fundamental

research and clinical studies are needed to investigate the exact

role of PD-L1 in NPM1-mutated AML.

Hypomethylating agents, such as azactidine, have a dual

effect against tumor immunity. In addition to enhancing anti-

tumor immune response, HMAs can restrain immune response

by upregulating PD-1 and PD-L1 expression, which can

promote the exhaustion of tumor-specific T cells (89). It seems

necessary to combine HMAs with immune checkpoint

inhibitors such as PD-1 or PD-L1 antibody (90). Recently, a

clinical study to evaluate the safety and efficacy of

pembrolizumab when administered in combination with

azacitidine in NPM1-mutated AML patients with molecular

relapse was recruiting (NCT03769532, Table 1).
CAR-T/TCR-T cell therapy

The adoptive immunotherapy, such as T cell receptor (TCR)

and chimeric antigen receptor (CAR) T cell therapy, is an

important milestone in the development of genetically

modified cell therapies for leukemia. Due to low antigen

expression in healthy tissues, TCR-T and CAR-T targeting

tumor-associated antigens could be accompanied by severe

toxicity. Neoantigens are derived from tumor-specific gene

mutations but most neoantigens are encoded by patient-

specific passenger mutations, which can be lost due to

immunoediting and ultimately result in immune evasion (91).

Nevertheless, neoantigens from driver gene mutations are

unlikely to induce immune evasion because leukemic cells

need to express the driver gene to maintain their malignant

phenotype (92). Therefore, neoantigens derived from driver

gene mutations are ideal targets for immunotherapy.
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Mutated NPM1 is an essential driver gene and occurs in

approximately 30% of AML. Besides the primary genetic lesion,

NPM1 mutations also cooperate with other mutations to

contribute to leukemogenesis (93). Moreover, NPM1-mutated

protein does not exist in normal tissues, so it is an ideal

leukemic-specific antigen and a potential target for NPM1-

mutated AML. Recently, TCR-T and CAR-T directed against

NPM1-mutated peptides obtained preliminary success in

NPM1-mutated AML.

Van der Lee et al. transduced CD8+ and CD4+ T cells with

the TCR for NPM1-mutated peptide, which demonstrated

efficient specificity against NPM1-mutated and HLA-A2-

restricted primary leukemic blasts (94). T cells transduced with

TCR for NPM1-mutated protein could efficiently kill AML cells

and prolonged OS of NSG mice engrafted with HLA-A*02:01-

positive NPM1-mutated OCI-AML3 human cells. NPM1-

mutated CAR-T cells showed efficient and specific anti-

leukemia activity against NPM1c+HLA-A2+ leukemia cells

and primary AML blasts (95). CAR-T cells could significantly

reduce leukemia burden and prolonged survival of NSG mice

engrafted with OCI-AML3 cells. Both TCR-T and CAR-T

exhibit strong specificity and cytotoxicity against NPM1-

muated AML without evident side effects. Further studies are

warranted to investigate in clinical application and overcome

potential drawbacks.
Conclusion

NPM1-mutated AML is a clinically heterogeneous group

because it almost always exists in the context of other mutations.

NPM1 mutations often co-occur with FLT3, DNMT3A or other

mutations to contribute to leukemogenesis (96, 97). The latest

report classified NPM1-mutated AML into two novel subtypes,

primitive and committed subtype, based on a stem cell signature

through RNA-seq (98). Interestingly, they found that leukemic

cells in the primitive subtype are more sensitive to certain kinase

inhibitors. The addition of kinase inhibitors to the treatment

might achieve therapeutic benefits in this specific subtype of

NPM1-mutated AML. These results may prompt us to make a

more accurate risk stratification of NPM1-mutated AML based

on multidisciplinary technology, thereby giving a guidance for

clinical treatment. Furthermore, some controversial issues in

diagnosis and treatments of NPM1-mutated AML still exists.

Falini et al. recently summarized how he diagnose and treat

NPM1-mutated AML and he constructively proposed that

NPM1 mutational status, the timing of HSCT, MRD

monitoring and ELN genetic-based risk stratification should be

considered during the therapy (99).

NPM1mutations are ideal targets forMRDmonitoring because

they are AML-specific, frequent, stable at relapse and do not drive

clonal hematopoiesis of indeterminate potential. Investigators

found that MRD, as determined by real-time quantitative PCR
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(RT-qPCR) of NPM1-mutated transcripts, provides important

prognostic information for AML (100). Patients with persistence

of NPM1-mutated transcripts in blood after the second cycle of

chemotherapy was associated with a greater risk of relapse and a

lower rate of survival compared with those without such transcripts.

In multivariate analysis, the presence of MRD was the only

significant prognostic factor for relapse and death. RT-qPCR

remains the standard method for MRD monitoring in NPM1-

mutated AML, the application of highly sensitive digital droplet

PCR and NGS will be expanded in the future.

Considering the above findings, the combination of multiple

agents is the dominant trend in the future treatment of NPM1-

mutated AML, such as venetoclax-based regimens and XPO1

inhibitors combinations. The pathogenesis of NPM1-mutated

AML and diverse drugs combinations need to be further studied.

Joint efforts should be made to overcome the limitation of

currently promising drugs, such as resistance for venetoclax

and toxicity for XPO1 inhibitors. Novel targeted drugs for

NPM1-mutated AML are also urgently developed. We are

looking forward to acquiring the consensus on treatment of

NPM1-mutated AML.
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