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Age-associated changes in amyloid-§ and
formaldehyde concentrations in cerebrospinal

fluid of rhesus monkeys

DEAR EDITOR,

Rhesus monkeys (Macaca mulatta) are valuable experimental
animals for studies on neurodegenerative diseases due to
their evolutionarily close relationship to humans (Zhang et al.,
2014). Rhesus monkeys also display similar hallmarks of
aging and neurodegeneration as humans, including formation
of senile plaques in the brain (Beckman et al., 2019; Paspalas
et al,, 2018). However, changes in formaldehyde (FA) levels in
the cerebrospinal fluid (CSF) of rhesus monkeys with aging
have not been reported. Additionally, whether changes in CSF
FA are correlated with changes in amyloid-B (AB)
concentrations have not yet been explored. Here, the CSF
levels of AB4p, AB4y, and FA were measured in 56 rhesus
monkeys of different ages, ranging from 4 to 26 years old.
Results revealed significant declines in AR, and ARy, and an
increase in FA with age. Interestingly, the increase in FA
levels was negatively correlated with AR, and ARy
concentrations in aged rhesus monkeys but not in young and
middle-aged monkeys. These results appear to parallel
changes seen within human aging, i.e., decreased levels of
CSF AB and increased levels of FA in normal aged adults and
Alzheimer's disease (AD) patients. These findings further
indicate that rhesus monkeys are a reliable model for studying
age-related neurological disorders such as AD and suggest
that FA is an important factor in AD development and may be
used as a diagnostic indicator of such disease.

AB is a secreted peptide of unknown physiological function
that is produced by sequential cleavage of B-amyloid
precursor protein (APP) by [-secretase and y-secretase
(Vassar, 2005). Most AB is produced in the brain, but it also
effluxes into the CSF and plasma, appearing in relatively high
and low concentrations, respectively. AB occurs in multiple
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forms ranging from 38 to 43 amino acids in length (Perrin et
al., 2009). Among these, AR, is the most abundant species,
but AB4, is essential for initiating AR aggregation and is
considered central to the amyloid cascade hypothesis of AD
(Hardy and Selkoe, 2002). Soluble AB (including monomers
and a few oligomers and protofibrils) in CSF can be used as a
diagnostic indicator for certain neurological diseases. For
example, AD patients exhibit a significant decrease in soluble
AB in their CSF, indicating a portion of soluble AB is deposited
in brain tissue to form senile plaques (Fagan et al., 2006; Irie,
2020; Lana et al., 2019; Mattsson et al., 2009; Shaw et al.,
2009).

There is compelling evidence that suggests FA is related to
AD pathology, both in vivo and in vitro. Several studies have
found that FA concentration in the human body increases with
age, and concentrations of FA in urine, blood, CSF, and brain
tissue of AD patients are significantly higher than those in the
control group at the same age (He et al., 2010; Tong et al.,
2013). In addition, FA concentration in the urine of AD patients
is negatively correlated with cognitive level (Tong et al., 2017;
Tong et al., 2011). Therefore, FA is considered to be closely
related to the occurrence and development of AD (Tulpule and
Dringen, 2013; Wang et al., 2019). In rodent studies, elevated
FA can lead to memory impairment, Tau protein
hyperphosphorylation, and neuronal loss; rodent animal
models of AD also show an imbalance in FA metabolism and
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elevated FA in vivo (Qiang et al., 2014; Tong et al., 2013;
Yang et al., 2014a). In non-human primate (NHP) studies,
elevated FA levels not only lead to impaired memory, but also
to the occurrence of all the pathological hallmarks of human
AD in the brain, including senile plaques, neurofibrillary
tangles, neuronal loss, and glial proliferation (Yang et al.,
2014b; Zhai et al., 2018). Studies have shown that very low
concentrations of FA can promote the aggregation of AR and
the formation of structures similar to senile plaques in vitro
(Chen et al., 2006; Rizak et al., 2014). Co-incubation of FA
and Tau protein can increase the diameter of Tau protein
particles, and the increase in participle size is positively
correlated with FA concentration and incubation time
extension (Nie et al., 2005). FA can also induce the formation
of hyperphosphorylated Tau protein and neurofibrillary tangles
in vitro (He et al., 2017).

Animal models play a major role in defining critical disease-
related mechanisms and exploring potential therapeutic
approaches in neurodegenerative diseases such as AD
(Heuer et al, 2012). Due to their evolutionarily close
relationship to humans, NHPs are essential for the study of
age-associated changes in the brain and other central nerve
system diseases (Chu et al., 2014; Feng et al., 2019; Qin et
al., 2013; Zhang et al., 2014). Studies have indicated that CSF
levels of AR,y and AB,, decrease significantly with age in
cynomolgus and vervet monkeys (Chen et al., 2018; Yue et
al., 2014). However, no study has investigated the relationship
of FA concentrations in CSF samples from different aged
rhesus monkeys or the correlation between FA and AR levels
in CSF samples. In this study, FA and AB levels in CSF
samples were measured in different aged rhesus monkeys,
and the correlations between FA and AB in different age
groups were investigated.

Fifty-six rhesus monkeys (Macaca mulatta) were selected
for CSF collection based on restrictive conditions (age: 4-26
years old; healthy and without any prior experimental
operations). The monkeys were divided into three groups
depending on age: i.e., young (47 years old, n=15), middle-
aged (10-15 years old, n=22), and aged (19-26 years old,
n=19) group (Supplementary Materials and Methods). For
CSF collection, the monkeys were anesthetized with 10 mg/kg
body weight of ketamine by intramuscular injection. A 22-
gauge spinal needle was inserted into the lumbar interspace
at the same level as the palpated iliac crest, and
approximately 1.5 mL of CSF (divided into three 0.5 mL
fractions) was withdrawn through a lumbar puncture
(Supplementary Materials and Methods). The CSF samples
were then immediately frozen in liquid nitrogen and stored in a
-80°C freezer until analysis.

The levels of AB4y and AB4, in CSF were measured using
commercial ELISA kits (ABs, and AR,y Assay Kits, Cat. No.
KHB3441 and KHB3481, respectively, Life Technologies,
USA) according to the manufacturer’s instructions. Each
sample was tested in duplicate. For measurement of FA
levels, after centrifugation (20 000 g, 4 °C, 15 min), the
resulting supernatant fractions were used for analysis of FA by
high-performance liquid chromatography with fluorescence

detection (Fluo-HPLC), as described in previous study
(Supplementary Materials and Methods) (Tong et al., 2011).
For statistical analysis, intergroup differences were evaluated
by one-factor analysis of variance followed by Least Square
Difference (LSD) tests. The relationships between FA and AB
concentrations were subsequently analyzed by linear
regression. A value of P<0.05 was considered significant in all
analyses. All statistical analyses were conducted using
GraphPad Prism 8 (San Diego, USA).

The concentrations of AB,o (P=0.011, Figure 1A) and ARy,
(P=0.044, Figure 1B) in the CSF of aged monkeys were
markedly decreased compared to that in middle-aged
subjects. These results are in agreement with prior studies,
which report a significant decrease in soluble AB in the CSF of
AD patients and aged monkeys, indicating a portion of soluble
AB is deposited in brain tissue to form senile plaques (Fagan
et al., 2006; Yue et al., 2014). APP, which can be cleaved into
AB by B-secretase and y-secretase, is completely homologous
between humans and rhesus monkeys (Podlisny et al., 1991).
B-amyloid cleaving enzyme-1 (B-secretase, or BACE-1)
activity increases significantly with age in mouse, monkey, and
human brains (Fukumoto et al., 2004). This causes the
production of AB to increase with age. However, during the
onset of AD in old age, AB is deposited in the brain to form
senile plaques, and CSF A levels are significantly reduced
(Fagan et al., 2006). Soluble AR in the CSF of young monkeys
should account for all AB, as there should be no AB deposition
in the brain tissue (Kimura et al., 2003). Furthermore, the
production of AB should also increase with the increase in
age. However, after brain tissue deposition or receptor
interaction increases (Lustbader et al., 2004), soluble AR in
CSF decreases instead. That is probably why significant age-
associated declines in CSF AR, (Figure 1A) and APy
(Figure 1B) were found between the middle-aged and aged
monkeys, but not between the young monkeys and other
groups.

The concentrations of FA in CSF samples of aged monkeys
showed a marked elevation compared with that in young
(P=0.001) and middle-aged (P<0.001) monkeys (Figure 1C).
The significant increase in FA concentration in the CSF of
monkeys with age is consistent with results from human
studies (Tong et al.,, 2015). There are multiple factors that
contribute to the endogenous accumulation of FA, including
environmental pollution (Clejan and Cederbaum, 1993;
Takeuchi et al., 2007), FA-generating enzyme disorders (del
Mar Hernandez et al., 2005; Ferrer et al.,, 2002), and FA-
degrading enzyme deficiencies (Ohta and Ohsawa, 2006;
Wang et al., 2008). Rhesus monkeys and humans show the
same FA metabolism pathway; thus, aging in rhesus monkeys
and humans may produce abnormal FA metabolism, leading
to an increase in FA in the body, and possibly to an increase
in pathology (Liesivuori and Savolainen, 1991; Tulpule and
Dringen, 2013; Zhai et al., 2016). Furthermore, a strong
causative connection between FA and AD-like pathology and
cognitive impairment has been proposed based on our
previous studies. Elevated FA not only causes the aggregation
of AB peptides, Tau hyperphosphorylation, and Tau protein
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Figure 1 Intergroup analyses of AB4y, AB4y, and FA concentrations in CSF, and correlations between CSF A and FA concentrations in

young, middle-aged, and aged rhesus monkeys

A: Intergroup analyses of AR,y concentrations. B: Intergroup analyses of AR, concentrations. C: Intergroup analyses of FA concentrations.
D: Correlation between CSF AB4, and FA concentrations in young group (R=-0.3385, P=0.2172). E: Correlation between CSF AR, and FA
concentrations in middle-aged group (R=0.02914, P=0.8976). F: Correlation between CSF AB,4, and FA concentrations in aged group (R=-0.5318,
P=0.0158). G: Correlation between CSF AB,4, and FA concentrations in young group (R=-0.379, P=0.1635). H: Correlation between CSF AB,, and
FA concentrations in middle-aged group (R=0.4296, P=0.046). I: Correlation between CSF AB,, and FA concentrations in aged group (R=—0.5344,
P=0.0184). Error bars indicate meant standard deviation (SD). *: P<0.05, **: P<0.01, ***: P<0.001. AB: B-amyloid; CSF: Cerebrospinal fluid.

polymerization in vitro (Lu et al., 2013; Rizak et al., 2014), but
also causes pathological and cognitive impairment similar to
AD in laboratory animals (Yang et al., 2014a, 2014b; Zhai et
al., 2018).

To determine the relationship between AB and FA levels in
CSF, we explored the correlations among CSF AR, and ARy,
concentrations with FA levels (Figure 1D-l). At a nominal
significance threshold (P=0.05), AB,4, was correlated with FA
concentration in the aged group (P=0.0158, Figure 1F), and
AB4, was correlated with FA concentration in the middle-aged
(P=0.046, Figure 1H) and aged groups (P=0.0184, Figure 1I).
Each regression coefficient was negative in the aged group
(Figure 1F, 1); that is, higher concentrations of A4y and ARy,
were associated with lower FA levels. However, each
regression coefficient was positive in the middle-aged group
(Figure 1H); that is, higher concentrations of AB,, were
associated with higher FA levels. AB-binding alcohol
dehydrogenase (ABAD) is the main alcohol dehydrogenase in
mitochondria and is also one of the metabolic enzymes of FA.
Combining AB with ABAD will inhibit ABAD activity, resulting in
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mitochondrial dysfunction, which may be one of the reasons
for the decrease in FA removal rate in AD patients and in
middle-aged monkeys here (Lustbader et al., 2004; Yao et al.,
2011). Therefore, to some extent, the increase in AB led to FA
elevation (Figure 1H). Thus, the significant negative
correlation between FA increase and AB decrease in the CSF
of the aged group only, the time when AD typically develops,
indicates that the increase in FA in the brain may also be
related to the onset of AD. Such correlations were not
observed in the young or middle-aged groups, again
suggesting that the increase in endogenic FA is likely related
to the development of AD.

In conclusion, for the first time, we described an increase in
FA in the CSF of rhesus monkeys with aging and a negative
correlation between FA and AB concentrations in aged rhesus
monkeys. These results not only indicate that rhesus monkeys
are good model animals for studying AD but also suggest that
FA is an important factor in AD development and may be a
diagnostic indicator of such disease.
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