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Abstract: To allow for a broad survey of subtle metabolic shifts in wine caused by rootstock and
irrigation, an integrated metabolomics-based workflow followed by quantitation was developed.
This workflow was particularly useful when applied to a poorly studied red grape variety cv.
Chambourcin. Allowing volatile metabolites that otherwise may have been missed with a targeted
analysis to be included, this approach allowed deeper modeling of treatment differences which then
could be used to identify important compounds. Wines produced on a per vine basis, over two years,
were analyzed using SPME-GC-MS/MS. From the 382 and 221 features that differed significantly
among rootstocks in 2017 and 2018, respectively, we tentatively identified 94 compounds by library
search and retention index, with 22 confirmed and quantified using authentic standards. Own-
rooted Chambourcin differed from other root systems for multiple volatile compounds with fewer
differences among grafted vines. For example, the average concentration of β-Damascenone present
in own-rooted vines (9.49 µg/L) was significantly lower in other rootstocks (8.59 µg/L), whereas
mean Linalool was significantly higher in 1103P rootstock compared to own-rooted. β-Damascenone
was higher in regulated deficit irrigation (RDI) than other treatments. The approach outlined not
only was shown to be useful for scientific investigation, but also in creating a protocol for analysis
that would ensure differences of interest to the industry are not missed.

Keywords: rootstocks; untargeted metabolomics; features; grafted; multivariate analysis; aroma compounds

1. Introduction

Volatile composition plays a critical role in grape and wine quality and can capture
information encompassing a year (or more) of vine growth in relation to its environment.
Growing conditions (soil conditions, climate, temperature), vineyard management practices
(irrigation, pruning, sun exposure) and vine genotypes, including both the scion and
rootstock used, can all cause a cascade of metabolic shifts, some of which with direct
impact on volatile compounds and others impacting the non-volatile metabolome which
contributes to aroma precursors [1–3]. The process of wine-making and fermentation
further impact metabolic processes, enhancing volatile metabolic differences in ways that
may be complex and not intuitive [2]. To ensure all analytes of potential interest are
included when studying such a complex system, using a metabolomics-based approach
can have clear advantages by first starting with a bias towards inclusivity of more analytes
rather than limiting characterization to just a few [4,5]. However, when relating metabolic
shifts to bioactivity parameters (e.g., aroma perception), it is not enough to demonstrate
a difference—it is also necessary to characterize the number of compounds present and
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the difference observed [6,7]. Additionally, in some metabolomic investigations, focus is
first placed on those compounds that show the largest concentration difference as this
indicates metabolic importance in aroma chemistry; this may miss critical changes in quality
(Figure 1) [8,9]. This is why often, in flavor work, a quantitative, targeted approach is taken
to ensure perception threshold and other elements where actual concentration can be used
to interpret the data.

About 80% of all Vitis vinifera grapevines planted are grafted to rootstocks to protect
against phylloxera [10,11], tolerance to biotic stresses such as nematodes [12] as well as
tolerance to abiotic stress such as drought [13,14] and salinity. Grafting to rootstocks
has been shown to impact the concentration of volatile compounds including esters,
2,3-butanediol [15], norisoprenoids and higher alcohols when compared to wines produced
from own-rooted vines as well as across different rootstocks [16,17]. Water availability
also can impact fruit and wine composition [18–21]. Moderate water stress mediated
through deficit irrigation leads to reduced water uptake and reduced shoot growth and
yield, leading to smaller berries with a higher concentration of aroma compounds in grapes
and wine volatiles [17,19,22] and thus correlating with positive wine sensory attributes
(more fruity and less vegetal) [23]. Rootstocks can alter plants’ ability to tolerate water
stress, and the interaction between different irrigation and rootstocks may also impact the
volatile profile of grapes and wines as water stress has been known to impact the wine
volatiles [19,20,24,25].

Traditionally, the studies of the impact of rootstocks, irrigation and other viticultural
management on the complex wine aroma and flavor were focused on a few important
compounds including norisoprenoids and esters [17,20,22,25]. Recently, non-targeted
metabolomics has been used in grape and wine studies to understand grapevine berry
development, fungal pathogen in juice, comparison between wild and vinifera volatiles,
wine classification, wine volatiles, non-volatiles, and unspecified compounds that are
present in the wine as possible [4,5,26–30]. This approach was also used to study rootstock
modulation of grape and wine aroma in Shiraz grapes, leading to the tentative identification
of 152 impacted compounds [16]. This approach has particular value in uncharacterized
and understudied cultivars as it can characterize complex general differences between
populations and enable the identification of unknown compounds, or those not normally
deemed as impertinent in wine aroma. Further, the volatile metabolome has value beyond
just aroma compounds but also in understanding overall treatment effects.

Grapes with some non-vinifera parentage are known to have unique aroma charac-
teristics. One such example is V. labrusca grapes, and hybrids of this species have methyl
anthranilate and o-aminoacetophenone compounds, impacting odorants for these varieties
that cause the characteristic foxy taste of these grapes which were not found to be present
in V. vinifera grapes [31]. However, in many cases these clear impact odorants are not
present, with it being hypothesized that what constitutes hybrid grape character is the sum
of its complex aroma chemistry [32]. Given the great genetic diversity and unique odorants
that can be found in North American species, it is clear that a targeted approach based
on V. vinifera is likely to miss important compounds in hybrid grapes. On the other hand,
an untargeted approach alone aiming at identifying the tentative compounds will not be
sufficient as it lacks the ability to relate compounds to bioactivity and often overstates the
influence of compounds at high concentrations.

Targeted analysis of specific metabolites has been traditionally used to understand
wine aroma and to decouple the effect of different factors on fruit and wine quality. This
approach involves identifying a selection of compounds from the chromatogram and
quantifying those compounds in order to perform comparative analysis of the metabolic
phenotypes using multivariate statistics (Figure 1). The advantage of this approach is
that by designing analysis around those compounds to be identified and quantified, you
can assure the overall method measures compounds in the ranges that have biological
significance. The complexity of plant samples, including wine, presents multiple challenges
such as coelution of metabolites and high variability in metabolic quantity within samples
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which results in reliable quantification due to method optimization for compounds of
interest. However, this is done for only a limited number of metabolites [8]. Despite these
limitations, it could be argued that this practice may be suitable in V. vinifera cultivars where
important odorants have generally been identified. However, in understudied beverages,
such as wines made from interspecific Vitis hybrid cultivars, a more all-encompassing
approach such as untargeted metabolomics is essential to avoid missing important but
not yet identified volatiles that could be critical to a wine’s overall character. This is
all the more the case when considering that compounds are not perceived in isolation
but rather components of the volatile metabolome may interact to impact perception. For
example, recent work by Poivet et al. [33] demonstrates the interactions between odor active
compounds, which would make measurements of a handful of compounds insufficient in
characterizing aroma differences. The volatile metabolome is also not just of interest due
to odor activity, but also demonstrates the impacts of all the factors outlined above, with
grapes and other fruits acting as a “black box” whose information is released following
fermentation.
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An untargeted or metabolomics-based approach is comprehensive and unbiased. In
this approach, spectral information from chromatograms is automatically transformed
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into coordinates based on mass, retention time, and associated signal intensity, which are
then aligned across all samples to detect features or putative compounds without prior
identification of the compounds. Various univariate and multivariate statistics are used
to identify the metabolic features (m/z at the definite retention time) (Figure 1) [29,34,35].
However, this method also suffers from the limitations that it aims at identification of as
many compounds as possible but often obtains relative differences without the quantitative
data needed to relate to bioactivity or flavor. Similarly, unknown compounds makes the
biological interpretation of the data even more challenging [8]. Both these approaches have
benefits, however, due to complexity of plant systems; both of these approaches can also
fall short especially in systems where subtle differences in trace compounds are important.
This is often the case when investigating flavor as small differences in compounds below
ng/mL level may have dramatic differences in quality or plant metabolic regulation,
where organisms work to remain healthy and productive through pathways promoting
equilibrium rather than dramatic shifts in chemistry [8].

To overcome the limitations of both the targeted and untargeted method, we developed
an integrated metabolomics workflow that encompasses the benefits of both the approaches.
Our workflow aims at untargeted data processing of the spectral data followed by various
univariate and multivariate analyses to unbiasedly identify the compounds that are truly
important in the experimental design. Our workflow then goes forward to integrate the
components of the targeted approach where the significant compounds are confirmed
with the authentic standards and then quantified so that the data is meaningful and
interpretative in the real field situations (Figure 1).

2. Results and Discussion

An integrated metabolomics workflow was successfully used to find subtle differences
in volatiles within rootstocks and irrigation treatments that would otherwise have been
missed using traditional approaches. Targeted analysis of volatiles has been the standard
for decades as it allows predictable quantification of selected compounds of interest, which
in turn can be related to odor thresholds and can theoretically explain treatment impacts on
aroma (Figure 1) [20,22,36–40]. This, however, assumes that all compounds of importance
have been identified, as well as that odor thresholds are accurate (and immobile) [8]. More-
over, the complexity of plant samples poses problems such as compound coelution despite
effective prior chromatographic separation that complicates their discrimination. While
these assumptions may be accurate in well-studied plants and foods such as V. vinifera-
based wines, poorly studied food such as wines made from interspecific hybrids benefit
from a more holistic approach to data collection to avoid missing key analytes [29,41].
As such, it is appropriate to adopt inclusive initial analysis to avoid missing differences
induced by the treatments, before deciding what compounds are of interest (Figure 1). The
untargeted approach avoids the time-consuming need for the prior assignment of chemical
information to the molecular structure for hundreds of datasets, which makes it faster
and more unbiased [8]. This approach has proved invaluable in situations where stark
differences are expected, such as comparing mutant and wild-type populations or infected
and healthy individuals [5]. However, this type of analysis has not been widely used to
characterize subtle differences that are inherent in a biological system, with researchers
focusing on analytes with a 2-fold or higher change to ensure metabolic influence [41,42].
Usually, the variations in the metabolic phenotype in field conditions due to natural vari-
ability are not very contrasting in comparison to lab or greenhouse studies where all factors
are controlled except the factor in study. Such phenotypes show subtle differences that
need to be analyzed so that they are not overlooked. When dealing with a genetically
identical grapevine scion (cv. Chambourcin in this case) grafted to genetically different
root systems with three different irrigations, a hybrid integrated metabolomics approach
that encompasses both the benefits of targeted and untargeted data analysis was used to
allow inclusive characterization of even subtle differences on wine volatiles (Figure 1). This
allowed for the comprehensive characterization of wine volatiles, prior to the laborious step



Molecules 2021, 26, 6010 5 of 20

of chemical identification, with quantitation and identification using authentic standards
for only those compounds that are relevant to explaining treatment variation.

2.1. Untargeted Metabolomics Results

Data processing transforms the raw chromatographic data files into a format that is
useable for further analysis which includes measurement of m/z, retention time of the ion,
and ion intensity from each raw data file, which and are mostly done by softwares. Data
processing includes removing noise, feature detection, alignment, retention time correction,
and normalization. Using XCMS online, we identified a total of 682 and 877 metabolite
features in 2017 and 2018, respectively (Figure 1), which is within the expected range of
the number of features to be found in similar metabolomics studies [5,43]. While in many
cases one compound can result in several features due to multiple ions making up its mass
spectra, this still demonstrates a great increase in potential analytes over similar targeted
studies of wine volatiles, with minimal front-end effort [44]. This step can be accomplished
using other platforms such as PARADISe, MZmine 2, and OpenChrom; however, after
extensive testing, we opted for XCMS online due to the wide array of chromatogram
normalization and feature detection options, which facilitated including features at low
concentrations for further statistical analysis.

Following feature identification, the next step in our integrated metabolomics work-
flow is statistical analysis of the detected features to identify features of interest, specifi-
cally finding those features impacted by the treatment. Data analysis for each year was
performed separately as the analyses were conducted in different years, adding an instru-
mental effect to the raw data, and because vintage difference has been widely reported in
previous studies as the largest influence in aroma variation [45–47]. Using ANOVA, 221
and 328 features were found to be significantly impacted by the root system (pvalue < 0.05)
(Figure 1, Supplemental Tables S1 and S3), and 380 and 85 features were found to be signif-
icantly impacted by various irrigation regimes in 2017 and 2018, respectively (pvalue < 0.05)
(Figure 1, Supplemental Tables S2 and S4). The root system and irrigation influence on
wine features in both years is visualized using heatmaps, where the top 25 most significant
features are shown as mean values within treatments (Figure 2). Both root system and
irrigation had yearly differences in metabolites, feature grouping between treatments. In
2017, the top 25 wine features were similarly expressed in ‘RDI’ and ‘None’, whereas in
2018, wine metabolite features were similar between ‘Full’ and ‘RDI’ (Figure 2A). Between
root systems, own-rooted vines had the strongest differences of the root systems for the top
25 metabolic features, contrasting them from all grafted vines (Figure 2C,D).

As the initial analysis was conducted separately for individual years to avoid instru-
mental impacts and to focus on treatment variation, the overlap between features was
compared. We found 45 significant features that were common in 2017 and 2018 between
root systems, as demonstrated by the Venn diagram (Figure 3A). This overlap was im-
portant to note as one of the limitations of untargeted analysis is the value in running all
samples to be compared in one continuous set to avoid changes with the instrumentation
driving the difference [29]. Despite the instrument being used at different times, a subset
of features significantly explaining treatment effect were shared between years when the
initial analysis was first grouped by analysis period (year) and then untargeted results
compared across years. In an initial analysis of treatment effects, it was observed that a total
of 170 and 16 features were common in 2017 and 2018, respectively, between root system
and irrigation treatments (Figure 3B,C). This demonstrates that some shared metabolites
were being significantly impacted both by irrigation and root system, whereas others were
impacted solely by one or the other.
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Figure 2. Heatmaps of the top 25 most influential features for differentiating wine volatiles by (A) irrigation regime in 
2017, (B) irrigation regime in 2018, (C) root system in 2017, and (D) root system in 2018. While only the top contributors 
are shown, the heatmaps were generated using all features. The rows in the heatmap represent features (M(m/z)). T (time 
in minutes) and the columns indicate sample categories. The colors of the heatmap cells indicate the abundance of com-
pounds across different samples. The color gradient, ranging from dark blue through white to dark red, represents low, 
middle, and high abundance of a compound.
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Figure 2. Heatmaps of the top 25 most influential features for differentiating wine volatiles by (A) irrigation regime in 2017,
(B) irrigation regime in 2018, (C) root system in 2017, and (D) root system in 2018. While only the top contributors are
shown, the heatmaps were generated using all features. The rows in the heatmap represent features (M(m/z)). T (time in
minutes) and the columns indicate sample categories. The colors of the heatmap cells indicate the abundance of compounds
across different samples. The color gradient, ranging from dark blue through white to dark red, represents low, middle, and
high abundance of a compound.
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were common in both years showing yearly differences in metabolites. (B) Venn diagram showing common and unique
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treatments in wines in 2018. Few features were similar between root system and irrigation treatments.

2.2. Identification of Significant Features

Only those features found to be significantly influenced by treatment were included
moving forward, as the ultimate goal was to identify those compounds impacted by
treatments. Unsupervised principal components analysis (PCA) was performed to model
significant features most important to treatment differences to determine patterns between
multivariate samples. The impact of root systems on wine features can be observed in
the PCA scores plot in which 38.4% and 10.6% of the total variance was explained by PC1
and PC2, respectively, in 2017 (Figure 4A). In 2018, PC1 explained 37.6% of the variance,
and PC2 captured about 10% of the variance (Figure 4B). The PCs were also found to be
significantly different from each other based on the ANOVA followed by Tukey’s honest
significant difference (HSD) (pvalue < 0.05). While there is not complete separation between
root systems or irrigation treatments in both years, this partial separation suggests distinct
patterns in at least some metabolite concentrations that may differentiate between the
groups. However, further analysis was conducted to investigate this observation below.
Such patterns may be weak due to the confounding effect of metabolites with strong
variations due to other factors. This is often the case when modeling wine chemical
differences; where even when including measurement shown to have some treatment
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influence, similarities across treatments will also be apparent in all but the most extreme
cases [9,23,48,49]. A subtle but significant impact was also observed between rootstocks
grafted to the same scion for many fruit composition and quality traits by [44], which
reiterates the need for a careful holistic investigation when exploring subtle differences.
Unlike in certain untargeted research, minute differences in chemistry can have large
sensory and economic impacts despite being made from the same grape variety [50].
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For a better understanding of the metabolic characteristics and interpretation of the
results obtained by the unsupervised analysis model and to highlight the similarities
and differences between treatments, the partial least squares-discriminant analysis (PLS-
DA) method was applied. The PLS-DA analysis revealed the subtle separation between
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treatments. The PLS-DA models obtained were evaluated using leave one out cross-
validation (LOOCV) where the quality of the fit was evaluated with R2 and the predictive
capacity with Q2. In 2017, the PLS-DA model for the separation of root systems was
R2 0.37 and Q2 was 0.24 with two components. Similarly, for irrigation, R2 was 0.39
and Q2 was 0.14. In 2018, the R2 for PLS-DA model was 0.42 and Q2 was 0.11 for the
classification of root systems, and R2 was 0.36 and Q2—0.18 for the PLS-DA model for
classification between irrigation treatments (Supplemental Table S5). We obtained 153
and 125 features that have VIP scores >1 that cause separation between roots systems and
irrigation, respectively, in 2017. In 2018, 150 and 146 features had VIP score >1 which
showed that these features contributed to separation between treatments due to root
systems and irrigations, respectively (Supplemental Table S6). The validation of the models
was also performed through 1000 permutation tests, where the probability that the model
was created by chance was less than 0.0001%, showing a level of confidence that the
subtle separations are caused by the differences in the treatments. PLS-DA has been very
commonly used in metabolomic studies to find the significant features that have treatment
differences [8,42,51].

As PC1 and PC2 could not explain the complete separation between treatments, a
linear regression model was created that included root system (own-rooted, SO4, 1103P,
and 3309C), irrigation (none, RDI, Full), and root system by irrigation interaction effect
using the first 20 PCs. We observed that up to 35% of the variation in the root system was
explained by a single PC (PC1) in 2017 (Figure 5A). Irrigation had a significant effect on
PC2, PC9, PC10, PC11, PC12, PC13, PC14, and PC20, contributing up to 20% of the variation
in wine volatiles (Figure 5A). Similarly, in 2018, root system contributed significantly to
5 PCs, explaining up to 35% of the variation, and irrigation contributing to 8 PCs explained
significant variation up to 15% of variation by irrigation in 2018 (Figure 5B). We also
observed some significant root system by irrigation interaction impact in both years as
explained by PC15 (contributed 15% of variation) in 2017 (Figure 5A) and PC5, PC8, PC9,
and PC12 (contributed up to 16% of variation) in 2018 (Figure 5B).

2.3. Compound Identification and Confirmation

Untargeted metabolomics data is most useful when the analytical signals (features)
are used to identify metabolites or compounds and relate their intensities or concentrations
to knowledge about the biological system. Using significant features from ANOVA and
PCA loadings, identification of the compounds derived from the non-targeted analysis was
conducted by comparing obtained mass spectra, at a definite time, with the NIST library,
as well as by comparing the calculated retention index of tentatively identified compounds
with that published by others. This two-way confirmation was crucial for the correct
assignment of annotation of the compounds [51]. For example, in 2018, we identified m/z
69, 105, 121, 190 at retention time 21.73 to 21.82 min which was identified by the NIST library
as β-Damascenone with 48% match probability. The calculated RI was 1820, which is close
to that of literature (1832) [52]. A subset was further confirmed by comparison to authentic
standards. Alternatively, compound identification can be confirmed using a second column
type; however, this then necessitates duplicating all efforts to this point, including doubling
the number of GC-MS runs [51]. We opted for confirmation via authentic standards as
this would be needed for calibration curve generation. In this way, we first tentatively
identified a total of 94 unique compounds in wines from 2017 and 2018 from the features
that were significantly different due to root system and irrigation using their spectra,
retention index and match score in the NIST library (Supplemental Table S7). There were
many orphaned spectra that showed significance, which could not be identified with the
NIST library. For example, in 2017, 11 spectra could not be definitively related to any
compound. While further efforts could have been taken, we opted to prioritize those
compounds with tentative identification given the large number still remaining.
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2.4. Quantitation of the Compounds

To confirm tentative identification and quantify the compounds identified from the
significant features (non-targeted analysis), we used authentic standards and an internal
standard to generate calibration curves. For all compounds included in quantitative data
linearity was calculated using a 1/x weighted regression, and all values were within the
linear range (R2 0.99 or higher). The spectra and retention time of the tentative compound
were matched with that of the authentic standard that was run using Agilent MassHunter
Qualitative Analysis (Agilent Technologies, Palo Alto, CA, USA). In this way, we were able
to confirm and quantify a subset of 21 and 22 compounds for 2017 and 2018, respectively,
among the 94 compounds identified using features. Many compounds could not be
confirmed due to lack of authentic standards, or several of the top matches in the NIST
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database having an erroneous match when compared with an authentic standard (a critical
error that may not have been avoided with robust confirmation). This step was similar to
traditional targeted analysis where the compounds are quantified or semi-quantified using
a calibration curve of an authentic standard [51]. The benefit of taking the analysis through
to this step was to obtain concentration information, which is critical in understanding
what impact a compound has on the final wine aroma by calculating their odor threshold
values. The approach of quantification after untargeted compound identification was
also successfully adopted by Weingart et al. in 2011, where they were able to identify 63
metabolites and quantify 47 compounds [51].

Using ANOVA (pvalue < 0.05) for each compound followed by Tukey HSD, each com-
pound was analyzed for significance based on both treatments and interaction as factors
to make sure if the identified compounds were causing differences due to rootstocks as
well as irrigation treatments. We found that the rootstock and irrigation interaction ef-
fect was significant for both 2017 and 2018 for several compounds (Table 1). We found
11 volatiles with significant rootstock and irrigation interaction effect in 2017, while Linalool
was the only compound that showed significant rootstock and irrigation interaction effect
in 2018 (Table 1). The compounds which were also significant in rootstock and the irriga-
tion main effect are shown in Supplemental Table S7. Important wine volatiles such as
β-Damascenone, Methyl Octanoate, Ethyl Nonanoate, and Linalool were significantly dif-
ferent between root systems in 2017. The wine volatiles that showed a significant difference
between root systems at a 5% level of significance in 2018 are shown in Table S6. Generally,
grafting Chambourcin vine to different rootstocks caused either an increase or decrease
in volatile compounds in wines in both years. Linalool and Ethyl nonanoate were found
to be higher in concentration in wines in rootstocks than own-rooted Chambourcin wines
in 2018 (Figure 6), while wines from own-rooted vines showed higher concentration for
β-Damascenone and TDN in both 2017 and 2018 (Figure 7).

A full list of compounds that are also found to be significantly different from irrigation
treatments in 2017 in 2018 are presented in Supplemental Table S8. RDI resulted in a higher
concentration of compounds in 2017 but not in 2018 (Supplemental Table S8). In 2018, not
applying any irrigation led to an increase in the concentration of compounds (Supplemental
Table S8). Deficit irrigation has been previously shown to increase volatile content in apples
and grapes [53–55]. Water deficit activates the hydraulic and chemical signals (such as
ABA) from the drying roots to the shoots that subsequently lead to reduced water use
through decreased stomatal conductance through stomata closure. Deluc, Quilici, Decendit,
Grimplet, Wheatley, Schlauch, Mérillon, Cushman, and Cramer [21], using metabolomics
and transcriptomics, found that water deficit affected the ABA metabolic pathway in
Cabernet Sauvignon and Chardonnay, with a high abundance of 9-cis-epoxycarotenoid
dioxygenase (NCEDI) transcripts. The metabolic responses of grapes to water deficit varied
with the cultivar, showing differences in ABA, isoprenoid, carotenoid, amino acid, and
fatty acid metabolism.

We observed significant differences between own-rooted Chambourcin and Cham-
bourcin grafted to rootstocks in many volatiles, which indicated that grafting is causing
significant changes to the scion (Table 1). Such differences in volatile profiles of wines
between own-rooted and rootstocks were also been observed in Shiraz [16] and Monastrell
grapes [17]. Monastrell grapes grafted to different rootstocks and treated with deficit
irrigation showed significant differences in aroma profile between rootstocks and irriga-
tion. Being a vigorous rootstock, 1103P wines showed a higher concentration of aromatic
compounds including alcohols, esters, and acetic acid than wines from other rootstocks.
However, in that study, own-rooted Monastrell grapes were not included in the study.
No significant interaction between rootstock and irrigation was observed. Wang, Chen,
Gao, He, Yang, He, Duan, and Wang [38] found a higher concentration of total esters on
own-rooted vines than on grafted vines in Cabernet Sauvignon.

The quantitative (and semi-quantitative) data from 2017 and 2018 differed from each
other in concentrations (Supplemental Table S8). This is likely due to differences in grow-
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ing conditions and environmental factors in both years that can significantly impact the
aroma profile of grapes and wines. Analysis of the quantitative data of 2017 and 2018
showed a significant increase in concentrations of isoamyl acetate in wines regardless of
treatments (Table 1). Fermentation results in many compounds in wine that are not seen
in berries, created from berry precursors. Isoamyl acetate is an important ester derived
during fermentation by Saccharomyces cerevisiae [56]. In 2017 Chambourcin wines, isoamyl
acetate is present at a concentration of 495 µg/L, which is 16.5 times higher than the odor
threshold, thereby showing the significance of this compound in the aroma of Chambourcin
wines. This concentration was found to decrease in 2018 with an average concentration of
298.5 µg/L, which is about 10-fold higher than the odor threshold. Isoamyl acetate was
found to be the compound responsible for the characteristic fermentation bouquet in Pino-
tage wine (average concentration 15.6 mg/L) and found to vary significantly from one
vintage to another [56]. The synthesis of isoamyl acetate by S. cerevisiae during fermentation
of wine had been found to be due to the activity of isoamyl alcohol acetyltransferases from
the precursors present in the grapes, especially fatty acids [57].

By using the untargeted workflow, new compounds as well as compounds that were
not known to have a significant impact due to treatments based on only targeted studies can
be identified [51]. For example, in our study, isoamyl acetate was identified as one of the
significant compounds contributing to Chambourcin aroma which was impacted by both
irrigation and rootstocks. Generally, this compound was not identified and quantified as
an important compound in irrigation and rootstock studies. Thus, our metabolomics-based
approach was able to identify a compound that was known to be a fermentation compound
but not usually studied as an important grape precursor-derived compound of signifi-
cance in studies. Weingart, Kluger, Forneck, Krska, and Schuhmacher [51] also identified
19 metabolites that were not known in grape leaves using an approach that combined both
untargeted and targeted approaches.

Some of the compounds that were known to be important to wine aroma and mostly
included in targeted wine studies were also found using this metabolomics-based approach,
for example, β-Damascenone. β-Damascenone is an important wine volatile, a C13-
norisoprenoid formed from the degradation of carotenoids, and is known to increase
with shading. This volatile was found higher in own-rooted vines (mean of 9.49 ug/L)
than grafted vines (mean of 8.59 µg/L) in both years (Supplemental Table S8, Figure 7A,B).
The decrease in vigor using low to medium vigor rootstocks (1103P, 3309C, and SO4)
might have contributed to the lower concentration of this compound in vines grafted
with rootstocks than high vigor own-rooted Chambourcin (Figure 7). Studies have also
found an increase in β-Damascenone with the water stress which is consistent with the
results of higher β-Damascenone concentration in wines from vines treated with RDI and
None. The presence of this compound in all wines above the threshold (4–5 ug/L in wine
matrix) demonstrated that this compound is a key aroma component in Chambourcin
wines. Although this compound has honey, rose, and baked apple aroma, it has been
known to impact the wine aroma by interacting with other aroma components. Thus, this
metabolomics-based approach was useful to identify compounds that are significant for
wine, including those that are known as well as unknown compounds.

Using a metabolomics-based approach followed by quantitation, we were able to
identify subtle differences between rootstocks and irrigation in a hybrid cultivar Cham-
bourcin grafted to three different rootstocks and own-rooted. This approach helped us
to narrow down 800 features to 94 unique compounds using multivariate analysis. We
confirmed and quantified 24 compounds in 2017 and 2018. In 2017, 12 compounds showed
significant rootstock and irrigation interaction effect, whereas only one compound had a
significant interaction effect between rootstock and irrigation in 2018. Rootstocks caused
either increase or decrease of volatile compounds in wines in both years. In irrigation,
RDI resulted in a higher concentration of compounds; however, yearly variation exists.
Understanding the impact of rootstocks and irrigation on wine volatiles will prove useful in
developing viticulture practices to manipulate grape aroma to produce wine with desired
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aroma quality. This metabolomics-based approach not only helps to identify and quantify
compounds that are known to be important in wine but also those that are lesser-known
but significant.
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Table 1. Mean concentrations of wine volatiles in 2017 and 2018 between rootstocks and irrigation.

2017

Compounds
Full Full Full Full RDI RDI RDI RDI None None None None

1103P 3309C SO4 Own 1103P 3309C SO4 Own 1103P 3309C SO4 Own p-Value

Isoamyl
acetate 407.1 b 1,2 1080.8 a 391.2 b 381.8 b 559.5 b 553.2 b 431.5 b 244.9 b 449.2 b 573.5 b 483.4 b 386.0 b 0.0203

Ethyl
heptanoate 397.7 c 295.1 cd 422.7 c 589.5 ab 203.1 d 443.0 bc 367.9 c 640.7 a 363.8 c 352.7 c 366.3 c 583.2 ab 0.030

Ethyl
octanoate 38.3 c 26.7 cd 44.7 bc 67.1 a 15.6 d 44.3 bc 38.0 c 76.6 a 37.9 c 35.1 cd 37.3 c 61.1 ab 0.040

1-Octanol 15.8 cd 15.7 cd 14.5 cd 14.3 cd 19.4 a 15.9 cd 16.3 bcd 13.6 d 14.9 cd 16.7 bc 18.7 ab 14.0 cd 0.000
1-Nonanol 12.3 ab 13.2 ab 12.6 ab 12.3 ab 14.5 a 12.3 ab 14.7 a 11.0 b 12.7 ab 15.2 a 12.9 ab 12.5 ab 0.100
Ethyl hy-

drocinnamate 3.0 bc 2.5 bcde 1.9 cdef 1.6 def 4.7 a 2.6 bcde 2.7 bcd 1.4 f 2.7 bcd 2.2 bcdef 3.2 b 1.5 ef 0.000

1-Dodecanol 0.4 abcd 0.3 bcd 0.4 abc 0.5 ab 0.3 d 0.4 abcd 0.3 bcd 0.4 abc 0.5 a 0.3 d 0.4 abcd 0.5 ab 0.030
Ethyl-

tetradecenoate 42.6 bc 46.6 bc 46.6 bc 52.2 bc 56.8 ab 69.3 a 48.3 bc 36.9 c 55.2 ab 44.7 bc 55.9 ab 40.8 bc 0.000

Ethyl hexade-
canoate 192.4 bc 168.6 bc 186.5 bc 234.1 abc 249.0 ab 317.9 a 222.5 bc 153.1 bc 249.5 ab 145.2 c 238.8

abc 185.2 bc 0.000

Isoamyl
hexanoate 1.6 bc 1.5 bc 1.4 cd 1.3 cd 2.3 a 1.8 b 1.6 bc 1.0 d 1.5 bc 1.9 b 1.8 b 1.24cd 0.000

2-Phenylethyl
acetate 1.6 bc 35.2 bcd 28.6 cde 28.2 cde 60.4 a 41.8 bc 39.8 bcd 15.7 e 35.2 bcd 46.70 b 39.1 bcd 24.9 de 0.000

2018
Linalool 15.6 a 11.5 bcd 9.7 cd 8.4 de 16.1 a 10.6 bcd 11.4 bcd 5.6 e 11.5 bcd 12.1 bc 13.4 ab 6.1 e 0.005

1 Values represent µg/L concentration generated by comparing the peak area relative to the internal standard (2-Octanol) and comparing
to calibration curve generated with an authentic standard. 2 Different letters within a row indicate significant differences for Duncan’s
Multiple Range test at p < 0.05 among the rootstock irrigation interaction effect. Analysis of variance was used to compare data with
Rootstocks, Irrigation and Rootstock × Irrigation as factors.

3. Materials and Methods
3.1. Study Design and Sampling

The samples were collected from an experimental vineyard at The University of Mis-
souri Southwest Center, Mount Vernon, Missouri in 2017 and 2018. The experimental
vineyard consisted of cv. Chambourcin (a red-skinned interspecific hybrid) scions grafted
onto three different commercial rootstocks: 1103P, 3309C, S04 as well as non-grafted, own-
rooted Chambourcin (‘3309C’- V. riparia x V. rupestris; ‘1103P’-V. berlandieri x V. rupestris;
‘SO4′- V. berlandieri x V. riparia). In addition to the four different root systems, three ir-
rigation regimes were implemented in a full factorial design with irrigation treatments
including full irrigation, regulated deficit irrigation (RDI), and no irrigation (full com-
pensation of evapotranspiration losses (ET), 50% compensation of ET, and non-irrigated,
respectively). Among the nine rows used in the study, each row had a different randomly
assigned irrigation treatment and consisted of four 4-vine rootstock blocks randomly or-
dered with two guard vines at either end of a study row. For this study, only the middle
two vines (vine 2 and 3) were sampled from each block. Irrigation treatments were initiated
when water stress was observed, usually several weeks before veraison as the site has
ample spring precipitation. The fruit was harvested in 2017 and 2018 from the 71 plants
(9 rows*4 blocks*2 vines) individually into separate bins. Vine 2 in row 10 reverted to its
SO4 rootstock, so this rootstock vine was not included in the analysis. More information
about the vineyard design can be found at [58,59].

3.2. Winemaking

The wine was made on a per vine basis. Grapes were harvested in relatively similar
time post veraison and with similar brix rate in both years (average of 22.79 and 20.6 in
2017 and 2018, respectively, with standard deviation of 0.92 and 0.63). Grapes from all
vines were harvested on the same day, irrespective of the maturity stage of the vines. Fruit
from each vine was separately harvested and transported to the winery at the University
of Missouri. The grapes were stored in a cold room at 4 ◦C overnight and processed
the day following harvest. The grapes were crushed and destemmed using Enoitalia
destemmer-crusher (Cerreto Guidi, Italy). Sulfur dioxide (50 mg/L total) was added to
each fermenter immediately after the crush, with inoculation occurring approximately 12 h
later. The fermentations were carried out in 1-gallon fermentation vessels equipped with
airlocks. Must was inoculated with GRE yeast (Lallemand, Petaluma, CA, USA) at the rate
of 1 g/L on day 2 and rehydrated with Go-Ferm yeast nutrient (Lallemand) according to
the manufacturer’s rehydration protocol. Go-Ferm was added to confirm healthy yeast
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hydration, and no other additions were made in the winemaking process. The ferments
were punched down twice a day for 10 days, at which point they were pressed based on the
clinitest. Malolactic fermentation was not initiated. The wines were racked approximately
21 days after pressing. To decrease the headspace, marbles were added to containers as
needed as well as any headspace purged with nitrogen gas. The wines were filtered and
bottled in 355 mL amber bottles. Following bottling, all wines were stored at 4 ◦C until
analysis. Wines from 2017 were analyzed two years after bottling, whereas in 2018, wines
were analyzed one year after bottling.

3.3. Reagents and Chemicals

All aroma standards other than 1,1,6-trimethyl-1,2-dihydronapthalene (TDN) were
purchased from Sigma-Aldrich (St. Louis, MO, USA) at >98.8%. TDN was donated from Dr.
Gavin Sack’s lab at Cornell University, which had been synthesized from α-ionone (Sigma-
Aldrich, 99%) via ionene [60]. A C7-C30 hydrocarbon mixture, used for the determination
of Kovat’s retention indices, was obtained from Sigma-Aldrich. Sodium chloride was
purchased from Fisher Chemicals (Fair Lawn, NJ, USA). Ultrapure water (Type 1 water)
was prepared using the ELGA Lab Water PURELAB Classic (High Wycombe, UK). L-
Tartaric acid (99%) was obtained from Sigma-Aldrich.

3.4. Extraction of Wine Volatiles

In a 15 mL amber glass vial with screw cap, 5 mL wines were spiked with 50 µL
of the internal standard solution to yield a final internal concentration of 0.05 mg/L
(50 ppb) 2-Octanol, 0.1 mg/L (100 ppb) of 4-methyl-2-pentanol, and 0.05 mg/L (50 ppb)
3-Octanone. These compounds are not found naturally in wine and are chemically similar
to compounds that are present in wine. While 2-Octanol was used to standardize response
for initial metabolomic analysis, the other two internal standards were used for quality
control. To the sample vials, 2 g of NaCl was added to inactivate the enzymes to improve
headspace partitioning [37]. The glass vials were sealed and then loaded into the GC-
MS/MS where the samples were processed for volatile aroma compounds using the
HS-SPME-GC-MS/MS method outlined below. All 71 samples were run in duplicate in
randomized order in two sequential orders, and internal standards were added for both
metabolomic and quantitative analyses to ensure all conditions remained comparable
throughout the experiments. Blanks were run after every 5–6 runs to prevent sample
carryover.

3.5. HS-SPME-GC-MS/MS

In 2017 and 2018, semi-quantitative analyses were conducted using the triple quadrupole
in a scan or using MRM mode for some compounds as needed. A 65 µm PDMS/DVB
1 cm SPME fiber, 23 gauge, coated with Polydimethylsiloxane-divinylbenzene-carboxen
(PDMS/DVB 65 µm; Supelco) was used for sampling and extraction [61]. Fibers were con-
ditioned before use according to the manufacturer’s recommendations. Wine samples in
15 mL sample vials were pre-incubated for 15 min at 45 ◦C. The fiber was exposed for
45 min at 45 ◦C in the headspace for volatile extraction. Samples were agitated in autosam-
pler incubator at 500 rpm during extraction.

The HS-SPME GC-MS/MS system consisted of a MicroCal autosampler (MicroCal,
LLC, Northampton, MA, USA) mounted on an Agilent 7890A gas chromatograph (Santa
Clara, CA, USA) coupled with an Agilent 7000 Triple Quadrupole detector. The 65 µm
PDMS/DVB SPME fiber was desorbed in the inlet at 250 ◦C for 2 min in splitless mode
(inlet glass liner/SPME direct, 0.75, I.D., Supelco), after which the split flow was turned on
(50 mL/min) for the remainder of the GC-MS run; the SPME fiber was conditioned in the
inlet for 14.7 min before it was inserted into the next sample. No carry-over was observed
between samples. Seventy-one wine samples, in duplicate, were analyzed in random order
in two sequential orders with the features averaged. To prevent carry over of samples, a
blank was run after every 4 or 5 samples. A DB-WAXetr column (30 m × 0.25 mm ID.,
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0.25 µm film thickness; Agilent Santa Clara, CA, USA) and helium carrier gas (flow rate:
1.2 mL/min) were used for all analyses. The GC oven temperature program was as follows:
the initial temperature was 40 ◦C for 1.0 min then was increased to 200 ◦C at 5 ◦C/min
followed by a second increase at 12 ◦C/min to the final temperature of 240 ◦C, which was
held for 10 min [61]. For GC-MS/MS, the temperature of the transfer line was 240 ◦C,
and nitrogen (1.5 mL/min) was used as the collision gas. The mass spectrometer was
operated in electron ionization mode at 70 eV with multiple reaction monitoring (MRM)
for quantification, with the monitored transitions (β-Damascenone 190–121 m/z; p-Cymene
134–119 m/z; Terpinolene 136–121 m/z; β-Linalool 136–93 m/z; TDN 157–142 m/z; Methyl
Salicylate 152–120 m/z; α-Terpineol 136–121 m/z; Caryophyllene 201–189 m/z; β-Ionone
192–177 m/z; Ethyl dihydrocinnamate 178–104 m/z). Data acquisition and qualitative
analyses were performed using the MassHunter Workstation software version B.07.00
(Agilent Technologies).

3.6. Data Processing Using Untargeted Metabolomics Analysis

Data collected by scan mode were processed using XCMS Online [35,62] The raw
chromatographic data files (.D format) acquired by MassLynx from GC-MS were converted
to .mzML data using the msconvert tool from ProteoWizard [63]. The data files (.mzML
files) were uploaded to XCMS online, and each year’s data was processed as a single
job for peak detection, retention time correction, chromatogram alignment, metabolite
feature annotation, statistical analysis, and putative identification using the default pa-
rameters (feature detection: centWave method, min. and max. peak width = 5 and 20,
S/N thresholds = 6, mzdiff = 0.01, integration method = 1, prefilter peaks = 3, prefilter
intensity = 100, noise filter = 0, retention time correction: OBI-Warp method, profStep = 1;
alignment: mzwid = 0.015, minfrac = 0.5, bw = 5, max = 100, minsamp = 1) [35,62]. Results
were downloaded from the XCMS online on June 11–12, 2019. The extracted features
(intensity of a given m/z at a certain time) were used for further analysis in defining treat-
ment differences. The features that are significant for rootstock or irrigation using ANOVA
(FDR adjusted pvalue < 0.05) [64] were filtered and used for further analysis. Principal
component analysis (PCA) applied after unit variance (UV) was evaluated for sample
discrimination. Ellipses were used to represent 95% confidence interval. PLS_DA analysis
was also performed using MetaboAnalyst 4.0 (Montreal, Canada) [65].

3.7. Identification and Confirmation of the Compounds

After identification of significant features using ANOVA and PCA loadings, the sig-
nificant features were grouped based on their retention time. The compounds represented
by the features were tentatively identified using the NIST MS Search v2.2, NIST 14 Mass
Spectral Library database (Scientific Instrument Services, Ringoes, NJ, USA) by matching
the mass spectral data with that of the compound. Only the compounds that had high
match score (over 700) to the NIST database were considered. Additionally, linear retention
indices (RI) were calculated using Kovats’ equation from a sequence of linear hydrocarbons
from C7 to C30 to verify the NIST match with that of literature. Thus, two-step identifi-
cation was made for the volatile compounds as possible matches were first identified by
comparison of the mass spectral data within the NIST library and then verified as a valid
prospect based on RI data.

The confirmation and quantitation of volatile compounds were achieved using calibra-
tion curves for each standard at five different concentration levels in cases where standards
were available. For compounds whose standards were not available, semi-quantitative
analysis was done by assuming a response factor equal to 1- to 2-Octanol IS equivalents.
Agilent MassHunter Quantitative Analysis (for QQQ) B.07.01 (Agilent Technologies) was
used. Each standard was prepared in model wine solution (8 g/L of tartaric acid, dissolved
in 13% ethanol solution (v/v), at pH 3.2, adjusted with NaOH). Due to a large number of
features and potential compounds (Supplemental Tables S1–S3), a further level of filtering
was needed to keep authentic standard costs to a reasonable level. Odor activity value was
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chosen as a way to ensure priority was given to compounds likely to impact wine quality
rather than just metabolic shifts of unknown importance. Odor thresholds of compounds
found in the literature were used to calculate their odor activity values which show the
relative contribution of each volatile compound to the final aroma of the wine.

Supplementary Materials: The following are available online, Table S1: List of the metabolic features
(M/z, RI) identified from XCMS online that are significantly different between rootstocks in wines
in 2017, Table S2: List of the metabolic features identified from XCMS online that are significantly
different due to irrigation treatments in wines in 2017, Table S3: List of the metabolic features that
are significantly different between rootstocks in 2018, Table S4: List of the metabolic features that
are significantly different due to irrigation treatments in 2018, Table S5: Features with VIP scores >1
showing differences due to root systems in 2018, Table S6: Cross-validation details for the PLS-DA
analysis for the root system differences in 2018, Table S7: Compounds tentatively identified by
spectral comparison and retention index in wines 2017 and 2018 that had significant differences
by area because of irrigation and rootstock treatments, Table S8: Concentrations of wine volatiles
quantified (µg/L(ppb)) in 2017 and 2018 using GC-MS/MS; the p-values for significance for rootstocks
and irrigations are also shown.
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