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Abstract

Recently, brain-computer interface (BCI) systems developed based on steady-state visual

evoked potential (SSVEP) have attracted much attention due to their high information trans-

fer rate (ITR) and increasing number of targets. However, SSVEP-based methods can be

improved in terms of their accuracy and target detection time. We propose a new method

based on canonical correlation analysis (CCA) to integrate subject-specific models and sub-

ject-independent information and enhance BCI performance. We propose to use training

data of other subjects to optimize hyperparameters for CCA-based model of a specific sub-

ject. An ensemble version of the proposed method is also developed for a fair comparison

with ensemble task-related component analysis (TRCA). The proposed method is compared

with TRCA and extended CCA methods. A publicly available, 35-subject SSVEP benchmark

dataset is used for comparison studies and performance is quantified by classification accu-

racy and ITR. The ITR of the proposed method is higher than those of TRCA and extended

CCA. The proposed method outperforms extended CCA in all conditions and TRCA for time

windows greater than 0.3 s. The proposed method also outperforms TRCA when there are

limited training blocks and electrodes. This study illustrates that adding subject-independent

information to subject-specific models can improve performance of SSVEP-based BCIs.

1. Introduction

Brain-computer interface (BCI) systems provide novel communication channels for the

humans, especially severely disabled individuals [1–3]. A character speller system is a highly

important BCI system which allows disabled individuals to communicate with their surround-

ing environment [2]. Electroencephalography (EEG) is a noninvasive, low cost, and simple

modality, widely used to implement BCI spellers [4]. In recent years, steady-state visual evoked

potential (SSVEP)-based BCI spellers have attracted much more attention compared with

other BCI systems including motor imagery and P300. This is because of their high informa-

tion transfer rate (ITR), less user training, and ability to deal with problems with a large num-

ber of classes [4–7].
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There are many target coding methods in SSVEP-based BCIs, among which frequency cod-

ing is a popular method to encode targets [8, 9]. Several methods have been proposed to com-

bine phase and frequency coding approaches [10–12]. The most discriminative method is

joint frequency-phase modulation (JFPM) method which assigns different frequencies and

phases to two adjacent targets [12]. Target identification is another crucial issue in SSVEP-

based BCIs, for which numerous methods have been proposed. Initially, single-channel meth-

ods were presented based on power spectral density analysis (PDSA) [13–14] and then multi-

ple channel methods were introduced to improve the signal-to-noise ratio (SNR) of the SSVEP

response. In these methods, channels are combined using appropriate spatial filters so that

common noises in the channels are reduced and the quality of SSVEP response is improved.

Some powerful examples of such methods are minimum energy combination (MEC) [15],

maximum contrast combination (MCC) [15], and canonical correlation analysis (CCA) [16].

Although these methods are widely used because of simplicity and no need for training, they

only detect frequency. They are unable to discriminate two different phases [11] and their per-

formance degrades in short time windows due to background noise of EEG. To solve these

problems, calibration data has been used [12, 17–20].

Extended CCA was introduced to combine CCA coefficients with the Pearson correlation

coefficients of the test and training data [12]. Multiway CCA (MwayCCA) [17], L1-regularized

MwayCCA [18], and multiset CCA (MsetCCA) [19] were proposed to optimize artificial sine-

cosine reference signals embedded in CCA using training trials of each subject. Also, task-

related component analysis (TRCA) was suggested to enhance the SNR of the SSVEP response

using optimized spatial filters [20]. TRCA extracts task-related components by maximizing the

reproducibility during the task period [21]. Comparison studies have shown that extended

CCA and TRCA methods are superior to other methods in terms of classification accuracy

and ITR, especially in short time windows [20, 22]. Thus, we compare our proposed method

with these two methods.

From training point of view, target identification methods can be classified into three main

categories [23]: 1) training-free methods such as PSDA and CCA, which do not need any cali-

bration data; 2) subject-specific training methods such as extended CCA and TRCA, for which

calibration data are collected for each subject and the parameters of the algorithm are opti-

mized individually; and 3) subject-independent training methods like transfer template-based

CCA (tt-CCA) [24], which use the training data of the existing subjects to create a fixed model

for a new subject.

In this paper, we propose a new CCA-based method which exploits both subject-specific

and subject-independent training methods to enhance performance of a BCI system. A pub-

licly available, 35-subject SSVEP benchmark dataset [25] is used to evaluate the proposed

method. First, the most informative CCA-based correlation coefficients are found using a sub-

ject-independent training method and then, the selected coefficients are used for a new sub-

ject. Also, an ensemble version of the CCA-based method is introduced in which a linear

combination of the correlation coefficients derived from the basic and ensemble spatial filters

are used to construct the final feature for target identification.

The remainder of the paper is organized as follows. Section 2 introduces benchmark dataset

and data preprocessing applied to all methods and reviews standard CCA, extended CCA, and

TRCA methods. Then, the basic and ensemble version of the proposed algorithm is described

in details, and finally, filter bank analysis is explained. Section 3 presents the experimental

results. In section 4, the difference between the proposed algorithm and the extended CCA

method is discussed, and the advantages of our method over other methods are described. Sec-

tion 5 concludes the paper.
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2. Methods

2.1. Benchmark dataset

In this study, the benchmark dataset introduced in [25] has been used. This dataset is freely

available to the BCI community to facilitate comparison of the SSVEP response detection

algorithms. The dataset has been collected from 35 subjects (17 females, 18 males, a mean

age of 22 years, 27 naïve, and 8 experienced). The experiment includes a 40-target speller sys-

tem which uses the JFPM method to encode characters with 0.2 Hz frequency difference and

0.5π phase difference between the two neighboring targets. Also, the frequency interval used

in this task is in the range of [8, 15.8] Hz. It has been shown that the phase interval of 0.35π
leads to the best performance of the BCI system [12]. Thus, the method proposed in [12, 25]

is used to shift the EEG data circularly such that the phase difference is 0.35π. For each sub-

ject, the task consists of six blocks and each block includes 40 trials, one trial for each target

randomly presented through the LCD to the subjects. In each trial, a visual cue (red square)

is shown on the screen for 0.5 s and the subjects are asked to follow the cue target on the

screen using their eyes. As the cue disappears, all 40 targets start flickering simultaneously

for 5 s. When the stimuli is finished, the screen becomes blank for 0.5 s before the next trial

starts. Therefore, each trial lasts 6 s. In every block, the subjects are asked to avoid blinking

during stimulus presentation. To avoid eye fatigue, there are several minutes of rest between

the two successive blocks.

The EEG data were acquired from 64 channels using Synamps2 system (Neuroscan Com-

pany) with a sampling rate of 1000 Hz. The electrodes were placed according to the interna-

tional 10–20 system. The ground electrode was placed between Fz and FPz and the reference

electrode was placed at the vertex. The passband of the amplifier was between 0.15 Hz and 200

Hz, and the electrode impedances were kept less than 10 kΩ. Also, during data recording, a

notch filter was used to remove the 50 Hz power line noise. The synchronous signal generated

by the stimulus program was sent to the amplifier and recorded on an event channel synchro-

nized to the visual cue onset. To reduce the data size, all EEG epochs were down-sampled to

250 Hz. Further details of the dataset are given in [25].

2.2. Data preprocessing

The first step of the EEG data preprocessing is channel selection. The SSVEP topographic

scalp maps show high activity over the parietal and visual areas [26, 27]. Based on the previous

studies [12, 25], nine electrodes located in these areas (O1, O2, Oz, PO3, PO4, PO5, PO6, POz,

and Pz) are selected. By taking into account the 140 ms latency of the visual system [12, 28],

for a time window with length Tw s, all epochs are extracted in the interval [0.14 s 0.14+Tw s]

in which the time 0 indicates the stimulus onset. Then, all segmented epochs are band-pass fil-

tered from 6 Hz to 90 Hz using a zero-phase Chebyshev Type II infinite impulse response

(IIR) filter. The filtfilt() function in MATLAB is used to implement zero-phase forward and

reverse filtering.

2.3. Reference methods

2.3.1. Standard CCA method. CCA is a statistical multivariate method to maximize the

correlation between two sets of variables and has been widely used in SSVEP-based BCI for

frequency detection [16, 29]. Let fK, Fs, Nt, M, K, and Nh denote the k-th stimulus frequency,

the sampling rate, the number of time points, the EEG channels, the targets, and the harmonic

frequencies considered, respectively. The multichannel EEG data is represented by X 2 RM�Nt
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and the reference signals Yk 2 R
2Nh�Nt are sinusoidal and defined as:

Yk ¼ ½yðt1Þyðt2Þ . . . yðtNt
Þ�;

yðtÞ ¼

sinð2pfKtÞ

cosð2pfKtÞ

..

.

sinð2pNhfKtÞ

cosð2pNhfKtÞ
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; t ¼
1

Fs
;

2

Fs
; . . . ;

Nt

Fs

ð1Þ

CCA finds the weight vectors wx and wy so that the correlation between two canonical vari-

ables x = XTwx and y ¼ YT
kwy (which are linear combinations of X and Yk respectively) is max-

imized by solving the following optimization problem [16]:

rk ¼ max
wx ;wy

rðx; yÞ ¼
E½xTy�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½xTx�E½yTy�

p ¼
E½wT

xXY
T
kwy�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½wT

xXX
Twx�E½wT

yYkY
T
kwy�

q ð2Þ

where ρ(x,y) is the Pearson’s correlation coefficient between x and y and ρk is the maximum of

ρ with respect to wx and wy. To recognize the frequency of SSVEP, ρk is calculated for all targets

(k = 1,2,. . .,K) and the target with the maximal ρk is selected as:

k� ¼ arg max
k

rk; k ¼ 1; 2; . . . ;K ð3Þ

2.3.2. Extended CCA-based method. The standard CCA method is an unsupervised

method, meaning that it does not use any calibration data for target identification. This

method has been originally developed for frequency detection. Since phase detection requires

training data, CCA cannot be used to distinguish different phases [7]. Incorporating training

data in target identification methods can capture the temporal features of SSVEP response

more effectively and enhance the performance of the CCA-based approaches [12, 22].

Extended CCA which combines standard CCA and individual training-based methods has

been proposed in several studies [5, 7, 12, 30] and its superiority over other CCA-based train-

ing methods has been shown in [22]. In this method, individual SSVEP template signals X̂k are

derived by averaging multiple training trials related to the k-th target. Then, projections of a

test data X and an individual template X̂k are computed using the CCA-based spatial filters,

and finally, the correlation coefficients between some pairs of the projections are used as

features to identify the target. Specifically, in the extended CCA, four additional features are

used:

rk ¼

rkð1Þ

rkð2Þ

rkð3Þ

rkð4Þ

rkð5Þ

0
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@
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T
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ð4Þ

Here, wA(AB) represents the spatial filter derived from CCA between two multidimensional

variables A and B and related to variable A. Then, the sum of these five correlation values is
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used as the final feature for target identification:

rk ¼
X5

i¼1

rkðiÞ ; k ¼ 1; 2; . . . ;K ð5Þ

Eq (5) also captures the discriminative information from negative correlation coefficients

(all except rk(1) can be negative). Although the original method uses the sum of the squares of

the coefficients along with their signs, in this study, Eq (5) is used due to its superior perfor-

mance. Finally, the stimulus target is identified by Eq (3).

2.3.3. TRCA-based method. TRCA was originally proposed in functional neuroimaging

[21] and then used in SSVEP-based BCI to obtain optimized spatial filters to improve SNR of

SSVEP response [20]. The method recovers the task-related components (here SSVEP) using a

linear, weighted sum of the observed signals (here, multichannel EEG signals):

yðtÞ ¼
XM

j¼1

wjxjðtÞ ¼ wTxðtÞ ð6Þ

where j is the index of the channels, yðtÞ 2 R is the recovered signal, xðtÞ 2 RM
is the multi-

channel EEG signal, and w 2 RM
is the optimized spatial filter derived from the TRCA

method. This problem can be formulated by maximizing inter-trial covariance [21]. Let

x(h)(t), y(h)(t), and H denote the h-th trial of x(t), the h-th trial of y(t), and the number of

training trials, respectively. The covariance between the h1-th and h2-th trials of y(t) is

defined by:

Ch1h2
¼ Covðyðh1ÞðtÞ; yðh2ÞðtÞÞ ¼

XM

j1 ;j2¼1

wj1
wj2

Covðxðh1Þ

j1 ðtÞ; x
ðh2Þ

j2 ðtÞÞ ð7Þ

Then, the sum over all possible combinations of the inter-trial covariance is considered as

the objective function:

XH

h1 ;h2¼1

h1 6¼h2

Ch1h2
¼
XH

h1 ;h2¼1

h1 6¼h2

XM

j1 ;j2¼1

wj1
wj2

Covðxðh1Þ

j1 ðtÞ; x
ðh2Þ

j2 ðtÞÞ ¼ wTSw ð8Þ

To limit the weight vector in Eq (8), the variance of y is normalized to one:

varðyðtÞÞ ¼
XM

j1 ;j2¼1

wj1
wj2

Covðxj1ðtÞ; xj2ðtÞÞ ¼ wTQw ¼ 1 ð9Þ

The constrained optimization problem then becomes a Rayleigh quotient maximization:

ŵ ¼ arg max
w

wTSw
wTQw

ð10Þ

The optimal weight vector ŵ is equivalent to the eigenvector corresponding to the largest

eigenvalue of the matrix Q-1S. Then, the following correlation coefficient is computed:

rk ¼ rðX
Twk; X̂

T
kwkÞ ð11Þ

where similar to Subsection 2.3.2, X and X̂k are the single-trial test data and the SSVEP tem-

plate signal computed by averaging across trials of the k-th target, respectively. Also, wk is the
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spatial filter derived from applying TRCA algorithm on the training data for the k-th visual

stimulus. In the end, the target can be recognized by the rule provided in Eq (3).

An ensemble TRCA method was proposed in [20] in which the spatial filters derived for

different visual stimulus were integrated to construct an ensemble of the spatial filters

W 2 RM�K :

W ¼ ½w1w2 . . .wK � ð12Þ

Since the mixing coefficients from the SSVEP source to the scalp recordings are approxi-

mately similar for the utilized frequency range, the K different spatial filters can be considered

similar, and this is the reason for the effectiveness of the ensemble TRCA method [20]. In this

method, Eq (11) is extended to:

rk ¼ cðX
TW; X̂T

kWÞ ð13Þ

where ψ(A,B) indicates the two-dimensional correlation coefficient between A and B. Finally,

Eq (3) is used for target identification.

2.4. Proposed method

The extended CCA method has shortcomings. First, there are numerous ways to project the

training data or the test data on the CCA-based spatial filters and compute the correlation

between each pair of these projections. Extended CCA uses only five of such correlation coeffi-

cients in Eq (4). Also, it is unclear how these five features are selected and the others ignored.

Second, there is no ensemble extension for this or any other CCA-based methods. Therefore,

these methods cannot compete with ensemble TRCA which has the best performance among

the current methods. To mitigate these limitations, in this study, a new method is proposed in

which the best CCA-based features are selected. Moreover, to enhance the performance of the

method, its ensemble version is also proposed. The structures of the proposed algorithms are

illustrated in Fig 1 and their details presented below.

2.4.1. Basic algorithm. In the first step, all possible canonical variables (CVs) derived

from the CCA-based spatial filters are constructed. In the CCA-based methods, there are three

types of data including: 1) the test data X; 2) the template signal X̂k derived from averaging

across the training blocks of the k-th target; and 3) the sinusoidal signals Yk. By computing

CCA between each pair of these three data types, six spatial filters are generated: 1) WXðXX̂kÞ;

2) WX̂k
ðXX̂kÞ; 3) WX(XYk); 4) WX̂k

ðX̂kYkÞ; 5) WYk
ðXYkÞ; and 6) WYk

ðX̂kYkÞ. Projections of X

and X̂k on the first four spatial filters and Yk on the 5th and 6th spatial filters generate a total of

10 CVs. These CVs are listed in Table 1.

In the second step, the best correlation features derived from the correlation between each

pair of the CVs are found. Since there are 10 CVs, 45 correlation features can be computed

(
10

2

 !

¼ 45). Fig 2 shows the block diagram of the proposed method for generating the

45 correlation features. Most of these features can be used for target identification.

The correlation coefficients between the projections of X̂k and the projections of Yk

(including 8 features) have no capability of detecting SSVEPs even if the test data is used to

construct the spatial filters. Also, the correlation between CV9 and CV10 is not useful.

Therefore, a combination of the remaining 36 features can be selected for the subject-spe-

cific training.

There are a variety of feature selection algorithms in the literature [31, 32]. In this paper, a

simple feature selection algorithm called forward selection (FS) [32] is used to find the best set
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of correlation features. In this algorithm, the feature which maximizes the average classifica-

tion accuracy among the 36 features is selected. The classification measure is the same as the

one presented in Eq (3). Then, the second feature is selected such that the features selected in

the previous and present steps lead to best performance. Similar to Eq (5), the sum of the fea-

tures is used to combine features for classification. The process of adding features continues

until there is no improvement in the average classification accuracy. Finally, the feature set in

the last step is considered as the best feature set.

The subject independent training is employed to create the 45 features and apply the FS

algorithm on them. After applying the FS algorithm on the seven folds described in Subsection

2.4.3, seven feature sets that contain the best features for each fold are obtained. The interesting

point is that in all these feature sets, the maximum performance is provided by the six features

that are the same across different folds, although the order in which these features are selected

is not the same. Further information regarding features selected in each fold can be found in

Fig 1. Structure of the proposed method and its ensemble version. Green and purple backgrounds represent

subject-independent and subject-specific training, respectively.

https://doi.org/10.1371/journal.pone.0226048.g001

Table 1. Mathematical description of the 10 CVs depicted in Fig 2.

Canonical Variable Formula Canonical Variable Formula

CV1 XTWXðXX̂kÞ CV6 X̂T
kWXðXYkÞ

CV2 X̂T
kWXðXX̂kÞ CV7 XTWX̂k

ðX̂kYkÞ

CV3 XTWX̂k
ðXX̂kÞ CV8 X̂T

kWX̂k
ðX̂kYkÞ

CV4 X̂T
kWX̂k

ðXX̂kÞ CV9 YT
kWYk

ðXYkÞ

CV5 XTWX(XYk) CV10 YT
kWYk

ðX̂kYkÞ

https://doi.org/10.1371/journal.pone.0226048.t001
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the Supporting information. These six best features are:

rk ¼

rkð1Þ

rkð2Þ

rkð3Þ

rkð4Þ

rkð5Þ

rkð6Þ

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

¼

rðXTWXðXYkÞ;Y
T
kWYk

ðXYkÞÞ

rðXTWXðXX̂kÞ; X̂T
kWX̂k

ðXX̂kÞÞ

rðXTWXðXX̂kÞ; X̂T
kWXðXX̂kÞÞ

rðXTWXðXYkÞ; X̂T
kWXðXYkÞÞ

rðXTWX̂k
ðX̂kYkÞ; X̂T

kWX̂k
ðX̂kYkÞÞ

rðXTWX̂k
ðX̂kYkÞ;Y

T
kWYk

ðX̂kYkÞÞ

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

ð14Þ

The coefficients rk(1), rk(3), rk(4), and rk(5) are present in both of the extended CCA and

the proposed method while the coefficients rk(2) and rk(6) are exclusively present in our

method. These coefficients are used for subject-specific training in the basic algorithm. Similar

to Eq (5), the following relation is used to build the final feature for classification:

rk ¼
X6

i¼1

rkðiÞ ; k ¼ 1; 2; . . . ;K ð15Þ

2.4.2. Ensemble algorithm. Ensemble TRCA showed that an integration of spatial filters

derived from calibration data of different classes enhanced performance of the SSVEP BCI

[20]. In fact, using both between and within class information in pattern classification methods

can boost classifier performance [32]. According to Eq (13), to exploit an ensemble of the spa-

tial filters for a correlation-based feature between two sets, two conditions must be satisfied.

First, these two sets should be projected on the same group of spatial filters. Second, the group

must contain the spatial filters of all classes. By evaluating these two conditions for the six

Fig 2. Block diagram for generating all possible CCA-based correlation features.

https://doi.org/10.1371/journal.pone.0226048.g002
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features in Eq (14), only rk(3), rk(4), and rk(5) satisfy the first condition and only rk(5) satisfies

the second condition. Consequently, the six features rk in Eq (14) can be converted to the six

features r̂k in which all features are the same as rk except for r̂kð5Þ. This feature is constructed

using the two-dimensional correlation between two projections on the ensemble of the spatial

filters derived from CCA between the template signals X̂k and the sinusoidal signals Yk. Since

r̂kð5Þ is the best discriminative feature relative to the other coefficients, a uniform combination

of the six coefficients similar to Eq (15) will not be the best solution. To take feature differences

into account, a linear weighted sum of the coefficients r̂kðiÞ is proposed:

rk ¼
X6

i¼1

aðiÞ:r̂kðiÞ ; k ¼ 1; 2; . . . ;K ð16Þ

The mixing weights α(i) are estimated using the subject independent data (see Subsection

2.4.3). The objective is to maximize the average classification accuracy, computed based on

Eqs (3) and (16). Since the objective function is a complex nonlinear function of α(i), the gra-

dient-based optimization methods cannot be easily applied. Considering the limited parameter

space of the problem, the metaheuristic optimization methods including the genetic algorithm

(GA) or particle swarm optimization (PSO) can be used [33]. We use GA to estimate α(i) coef-

ficients such that the objective function is maximized. GA is implemented using the ga func-

tion in MATLAB. For the sake of simplicity and limiting the search space, the coefficients are

confined in the [0 1] interval. The estimation process will assign the largest weight (α(5)) to

r̂kð5Þ due to its highest level of discrimination. Finally, it should be noted that the estimated

weights α(i) may be different in different folds.

2.4.3. Cross-validation. As mentioned before, both of the subject-independent and the

subject-specific trainings are used in the proposed method. Cross-validation is performed on

the subjects and the six blocks of a specific subject data for the first and second training tech-

niques, respectively. Further information about cross-validation techniques is presented

below.

Subject-independent training: The parts related to this training technique are shown in

green in Fig 1. In this approach, the K-fold (K = 7) approach is used and the data of 30 subjects

is utilized to obtain the best hyperparameters for the remaining 5 subjects. Then, the obtained

hyperparameters are used to create the subject-specific models. Specifically, in the basic algo-

rithm, for each fold, 45 CCA-based features are constructed for the 30 subjects and then, the

features that maximize the average recognition accuracy for the mentioned subjects are

selected (Subsection 2.4.1). Finally, the subject-specific models are created for the remaining 5

subjects using the selected features. Similarly, in the ensemble algorithm, the weights (Subsec-

tion 2.4.2) that maximize the average accuracy for the 30 subjects of the corresponding fold are

used to build the subject-specific models of the remaining subjects. Therefore, the selected fea-

tures in the basic algorithm and the weights α(i) in the ensemble algorithm are considered as

the hyperparameters.

Subject-specific training: In both of the basic and ensemble algorithms, the subject-specific

models are built using the hyperparameters derived from the other subjects’ data. For each

subject, the leave-one-out technique is used on the six blocks. In other words, the data samples

from five of the six blocks are used as the training data to construct a reference signal for each

target while the left-out (sixth) block is used for validation. This procedure is repeated six

times such that every block is considered as validation data once. Finally, the average recogni-

tion accuracy across these six blocks are computed. It is worthwhile to note that the classifica-

tion accuracies reported in the Result Section are from this type of training.
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2.5. Filter bank analysis

Higher harmonics of the SSVEP stimulus frequency contain useful information which can

improve the recognition accuracy. To extract this information, filter bank analysis has been

proposed as a practical solution in which a signal is decomposed to multiple frequency sub-

bands [29, 34]. Filter bank analysis can reduce the detection error due to the background EEG

activities. X. Chen, et al. [29] applied the filter bank technique to the SSVEP-based BCI,

enhancing the performance of the standard CCA method significantly. This technique is

applied to all methods presented here and its effect is reported. To design the filter bank, a pro-

cedure similar to [12, 29] is utilized. In this method, the EEG data is decomposed into N sub-

bands using the N band-pass filters and a feature extraction algorithm is applied to each sub-

band separately. The lower and upper cut-off frequencies of the n-th sub-band are set to n×8

Hz and 70 Hz, respectively. The zero-phase Chebyshev Type II IIR band-pass filter is used to

extract every sub-band signals. The features computed from the sub-bands are combined as

follows:

~rk ¼
XN

n¼1

wSBðnÞr
ðnÞ
k ð17Þ

where r
ðnÞ
k , ~rk, and wSB(n) are the feature value for the n-th sub-band and the k-th target, the

final feature for classification, and the weights for the sub-band components, respectively.

Based on the previous studies, when the response frequency increased, the SNR of SSVEP

decreased [29]. Therefore, the sub-band weights are determined using:

wSBðnÞ ¼ n� a þ b; n 2 ½1 N� ð18Þ

Following [12], a and b are set to 1 and 0, respectively. As mentioned before, the target is

selected by Eq (3) and substituting ρk with ~rk.

3. Results

Classification accuracy and ITR were used as the evaluation metrics to compare the perfor-

mance of the methods. These two metrics were calculated with various data lengths from 0.2 s

to 1 s with a step of 0.1 s. The 0.5 s gaze shifting duration was considered to compute the simu-

lated ITR in the offline analysis. Also, the number of harmonics in Eq (1) was set to 3. Fig 3

shows the average accuracies and ITRs across subjects for three basic methods at different time

windows, with and without the filter bank. For the filter bank, the number of sub-bands was set

to 4. In all possible cases, TRCA showed a superior performance over the other methods for the

time windows shorter than 0.3 s. For the 0.3 s time window, the one-way repeated measures

analysis of variance (ANOVA) showed no significant difference between the accuracy (F(2,68)

= 1.35, p = 0.26) and ITR (F(2,68) = 1.09, p = 0.33) of the three methods without the filter bank.

When filter bank was applied in the 0.3 s time window, ANOVA revealed significant difference

in the accuracy (F(2,68) = 17.79, p<0.001) and ITR (F(2,68) = 18.45, p<0.001) of the three

methods. The post-hoc paired t-tests showed that there was no significant difference in accuracy

(p = 0.67) and ITR (p = 0.62) between the TRCA method and the proposed method while both

methods outperformed the extended CCA method (p<0.001). For time windows greater than

0.3 s, ANOVA indicated significant difference (p<0.01) between the three methods in all condi-

tions. Post-hoc paired t-tests confirmed superior performance of the proposed method relative

to TRCA and extended CCA (p<0.01). In Fig 3B, the time windows corresponding to the high-

est ITR are different for each method (extended CCA: 0.8 s; TRCA: 0.8 s; the proposed method:

0.7 s) while in Fig 3D, all methods reached their highest ITR in 0.7 s.
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The ensemble version of the proposed method is compared with the ensemble TRCA

method in Fig 4. To estimate the weights (α(i)) in Eq (16) using the procedure described in

Subsection 2.4.2, the time window was set to 0.5 s. Similar to the basic methods, the ensemble

TRCA method performed better than the proposed ensemble method in all cases when the

data length was less than 0.3 s. For 0.3 s, paired t-tests showed no significant difference

between the two methods, with and without filter bank (Fig 4A: p = 0.62; Fig 4B: p = 0.50; Fig

4C: p = 0.12; Fig 4D: p = 0.35). For the data lengths greater than 0.3 s, the proposed ensemble

Fig 3. Average accuracies, (a) and (c), and ITRs, (b) and (d), across subjects for three basic methods at different time windows. Results in the first and

second rows are derived without and with the filter bank, respectively. Number of sub-bands is set to 4. Asterisks represent significant difference between the

three methods, using ANOVA at time windows greater than 0.3 (�p<0.01, ��p<0.001). Error bars show standard errors.

https://doi.org/10.1371/journal.pone.0226048.g003
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method led to significantly (p<0.001) higher accuracy and ITR than the ensemble TRCA

method for both cases. Both methods reached their highest ITRs at 0.6 s in Fig 4B and 0.5 s in

Fig 4D.

The performance of the training methods depends on the number of sub-bands, electrodes,

and training blocks. Therefore, the effects of varying these parameters on the classification

accuracy for all cases including the basic and ensemble TRCA, and the basic and ensemble

Fig 4. Average accuracies, (a) and (c), and ITRs, (b) and (d), across subjects for ensemble TRCA and ensemble version of the proposed method at

different time windows. Results in the first and second rows are derived without and with the filter bank, respectively. Number of sub-bands is set to 4.

Asterisks represent significant difference between the two methods by paired t-tests at time windows greater than 0.3 (�p<0.001). Error bars show standard

errors.

https://doi.org/10.1371/journal.pone.0226048.g004
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version of the proposed method are investigated in Figs 5 and 6. Time window was set at 0.5 s

to perform the analysis. In Fig 5, the number of the training blocks and the electrodes were

fixed at 5 and 9 and the effect of the number of sub-bands was explored. The proposed method

represents significantly (p<0.001) higher classification accuracies than TRCA in all cases. For

both of the basic and the ensemble versions of the two methods, the highest accuracy is

achieved by 4 sub-bands. According to this fact, the number of sub-bands was fixed at 4 and

the variations of the average accuracies corresponding to different numbers of the electrodes

and the training blocks were examined in Fig 6. The results illustrate that for both of the basic

and ensemble cases, the proposed method outperforms TRCA, especially for low numbers of

the training blocks and the electrodes (p<0.001). Furthermore, TRCA needs at least two train-

ing blocks to obtain optimal spatial filters while the proposed method can deliver an acceptable

performance even with a single training block (see Fig 6B and 6D). This characteristic can be

one of the major advantages of our method compared with TRCA. Typically, in SSVEP BCI, it

is necessary to collect the training data at the beginning of each session which could be time-

consuming; our method reduces the training time considerably.

4. Discussion

Classification accuracy and ITR are the most important factors for practical development of

SSVEP-based BCI spellers and thus must be improved as much as possible. In this study, an

ensemble CCA-based training method was proposed for the first time, which improved the

performance of the extended CCA and TRCA methods. The proposed method outperformed

extended CCA in all conditions. Furthermore, it outperformed TRCA in terms of both accu-

racy and ITR for data lengths greater than 0.3 s. The lower performance of our method for

short time durations could be related to inaccurate estimation of the spatial filters by the CCA

algorithm from a small number of samples. However, when the data length increases, on one

hand, the spatial filters are estimated more accurately and on the other hand, the combination

of various coefficients which exploit CCA-based spatial filters improve the performance of the

proposed method compared with TRCA.

In practical applications, for majority of the subjects, the maximum speed (highest ITR) is

reached at time windows greater than 0.3 s, justifying the application of the proposed method

Fig 5. Average accuracies across subjects for different number of sub-bands. (a) Basic TRCA and the proposed method; and (b) ensemble TRCA and the

proposed ensemble method. Asterisks show significant differences between the two methods by paired t-tests (�p<0.001). Error bars show standard errors.

https://doi.org/10.1371/journal.pone.0226048.g005
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for such subjects. All in all, only when the numbers of the blocks and the electrodes are large

and the subject reaches his/her highest ITR in 0.3 s or less, the TRCA method is preferable to

the proposed method. Otherwise, the proposed method is recommended. Also, in this paper,

due to the limited number of training blocks per subject, the subject-independent training

technique was used to find the best CCA-based features and estimate the mixing weights in Eq

(16). For a new subject, Eqs (14), (15) and (16), and one set of weights α(i) are sufficient for tar-

get detection.

For further investigation of the performance of the proposed method relative to TRCA, fea-

ture values can be compared for the two methods. Since the scales of the final features obtained

by the two methods are different, feature vectors derived from each trial are linearly normal-

ized into [-1, +1] and then compared. Fig 7A and 7B represent normalized feature values for a

sample frequency derived from two basic and two ensemble methods, respectively. The num-

ber of sub-bands, electrodes, and training blocks were 4, 9, and 5, respectively. A short data

Fig 6. Average accuracies across subjects obtained by different number of electrodes, (a) and (c), and training blocks, (b) and (d). The first row compares

two basic methods and the second row compares two ensemble methods. Asterisks show significant differences between the two methods by paired t-tests

(�p<0.001). Error bars show standard errors.

https://doi.org/10.1371/journal.pone.0226048.g006
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length (0.6 s) was selected to carry out comparisons. In both figures, the feature values of the

two methods decline with a similar trend in the neighborhood of the true frequency. However,

as we move away from the true frequency, feature values of the proposed method become sig-

nificantly (p<0.001) lower than those of the TRCA method. Therefore, the probability of a

false detection in our method is lower than that of TRCA, leading to its superiority over

TRCA.

There are several parameters in this paper which can be further optimized for each method

(or subject) separately, including the filter bank design, the stimulus design, and the electrode

setting. As a representative example, consider different possible sets of n (n<9) electrodes

which can be selected from the nine electrodes introduced in Subsection 2.2. For an n, the

Fig 7. An example of normalized feature values, averaged across subjects and blocks, obtained by: (a) two basic methods; and (b) two ensemble

methods. Red vertical line indicates true frequency. Data length is 0.6 s. Asterisks represent a significant difference between the two methods by paired t-

tests (�p<0.01, ��p<0.001). Error bars show standard errors.

https://doi.org/10.1371/journal.pone.0226048.g007
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optimal electrode layout per method can be found by a grid search, i.e., by calculating average

accuracies across the subjects for each layout and selecting the layout with the highest accu-

racy. This analysis is done on the benchmark dataset with three to six electrodes for the pro-

posed ensemble method and the ensemble TRCA method. Then, the best layout per method

along with the corresponding accuracies are shown in Fig 8A. This figure shows that by select-

ing a suitable subset of four or five electrodes, acceptable accuracies, comparable with those

obtained by nine electrodes, can be achieved. It also illustrates that if we consider a local area

(i.e., visual area), the best layout obtained by a grid search is almost independent of the spatial

filter-based target identification method used.

Another approach for optimizing the electrode setting is the channel selection in an unsu-

pervised manner [35]. The maximum achievable accuracy per subject derived from a grid

search can be used as a reference to compare the performance of the channel selection algo-

rithms in the future studies. For example, Fig 8B shows average accuracies after selecting the

best electrodes per subject. This figure reveals the great potential of an effective channel selec-

tion algorithm to enhance the performance of the methods. Superior performance of the pro-

posed method compared with TRCA is illustrated in both Fig 8A and 8B.

In this study, a method was proposed which uses both of the subject-specific and the sub-

ject-independent training techniques. Since collecting the training data is time-consuming

and may be exhausting for some subjects, the transfer learning methods have been proposed

which use the training data of the other subjects [24] or different sessions of the same subject

[36]. Furthermore, using the benchmark dataset containing a large number of subjects [25],

various training-free algorithms can be devised and evaluated in the future studies to improve

effectiveness of such methods. Since the optimal data length for various trials can be different,

an adaptive selection of the window length using a dynamic stopping criterion can be a

Fig 8. Relation between the maximum achievable accuracy and the layout of the electrodes. (a) the best layout of the electrodes per method, derived from a

grid search for all subjects and the corresponding average accuracies; and (b) the potential average accuracies across the subjects after selecting the best layout

of the electrodes per subject. In both figures, the data length is 0.5 s. Asterisks represent a significant difference between the two methods by paired t-tests

(�p<0.001). Error bars show standard errors.

https://doi.org/10.1371/journal.pone.0226048.g008
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solution for the BCI users [37–38]. Besides, the combination of SSVEP and other modalities,

e.g., the eye-tracking systems [39], can improve the performance compared with using two sin-

gle-modality methods. However, the efficiency of the hybrid methods over the single-modality

methods needs to be investigated.

The advantages of our approach relative to the TRCA and extended CCA methods for tar-

get detection in SSVEP-based BCI can be summarized as the following.

• Our method integrates subject-specific models with subject-independent information and

enhances the BCI performance.

• The classification accuracy and information transfer rate (ITR) of our method are signifi-

cantly higher than those of the extended CCA in all conditions and those of TRCA in time

windows larger than 0.3 s.

• Our method can be easily implemented in online applications of BCI and realize a high-

speed SSVEP based speller.

• Our method outperforms TRCA when the number of the training blocks and the number of

the electrodes are small. Also, for subject-specific training, TRCA needs at least two training

blocks while our method works with a single training block. This facilitates the development

and application of the BCI systems.

• A problem with the SSVEP-based BCI spellers is false detection, due to interference from the

nearest neighbors of the target frequency. The likelihood of this error for our method is

lower than that of the TRCA method.

5. Conclusion

This study proposed a framework to improve traditional CCA-based training methods by

finding the best hyperparameters for each subject using other subjects’ training data. These

hyperparameters were used to construct the basic and ensemble versions of the proposed

method. The offline analysis based on a benchmark dataset was performed and the proposed

method was compared with the extended CCA and TRCA methods. Our method showed sig-

nificantly higher performance than extended CCA in all conditions and TRCA in time win-

dows greater than 0.3 s. All three methods can be implemented in online BCI applications to

realize a high-speed SSVEP-based speller.
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