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Peak‑at‑end rule: adaptive 
mechanism predicts 
time‑dependent decision weighting
Ryuto Yashiro & Isamu Motoyoshi*

Humans make decisions under various natural circumstances, integrating multiple pieces of 
information that are distributed over space and time. Although psychophysical and physiological 
studies have investigated temporal dynamics underlying perceptual decision making, weighting 
profiles for inliers and outliers during temporal integration have yet to be fully investigated in most 
studies. Here, we examined the temporal weighting profile of a computational model characterized 
by a leaky integrator of sensory evidence. As a corollary of its leaky nature, the model predicts 
the recency effect and overweights outlying elements around the end of the stream. Moreover, 
we found that the model underweights outlying values occurring earlier in the stream (i.e., robust 
averaging). We also show that human observers exhibit exactly the same weighting profile in an 
average estimation task. These findings suggest that the adaptive decision process in the brain results 
in the time-dependent decision weighting, the “peak-at-end” rule, rather than the peak-end rule in 
behavioral economics.

We humans make decisions ranging from purchasing a product that fits our preferences to choosing the best 
career in the face of future uncertainty. These behaviors can be reduced to a decision-making framework in 
which we choose one specific option among many. Classical and behavioral economics studies have provided 
detailed descriptions of optimal and irrational decisions1–5. One typical example is the peak-end rule whereby 
humans’ retrospective judgments on their experience are disproportionately influenced by its most emotionally 
or physically intense moments and its end6–8. However, the computational process that gives rise to such cogni-
tive biases has been overlooked for decades.

In contrast, a number of psychophysical and physiological studies have determined the computational 
mechanisms underlying perceptual decision making in simple laboratory settings9–11. Despite the differences in 
experimental paradigms among those studies, they have commonly uncovered a basic mechanism of integrating 
multiple pieces of information during perceptual decision making. Importantly, most studies have argued that 
humans integrate sensory evidence for decisions in an adaptive manner.

Researchers have been working on determining the characteristics of spatial integration independently from 
temporal integration. For instance, when humans integrate sensory signals from multimodal sources, they adopt 
the maximum likelihood estimation (MLE) rule, assigning optimal weights to multiple stimuli according to their 
different reliability levels12,13. Similarly, studies on texture perception have suggested a mechanism of limited sam-
pling for estimation of average orientation, rather than simultaneous averaging of all elements across space14–16. 
In line with these findings, recent studies of estimation of average color and orientation have shown that humans 
exhibit a robust averaging strategy by which outliers are excluded, and in turn, greater weight is given to trust-
worthy inliers17,18. This strategy is consistent with perception and sensorimotor control, which follow optimal 
Bayesian theory19,20, and it seems adaptive, as it paradoxically enhances the performance of perceptual decision 
making even with a large amount of internal noise18.

On the other hand, a number of psychophysical studies have constructed various computational models for 
temporal integration21–26, most of which are virtually equivalent to the Drift Diffusion Model (DDM)27. The 
typical version of DDM is comprised of a random-walk process that accumulates sensory evidence over time 
and two bounds that set a quantitative criterion for a decision. It successfully accounts for skewed reaction time 
distributions and the speed/accuracy tradeoff28,29. Additionally, physiological studies have identified neural activi-
ties that correspond to the temporal dynamics of DDM30–32.

However, such computational models (including DDM) are far from complete because they assume the 
accumulation of absolute signal values regardless of the temporal span. One possible alternative to such 
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time-independent models is the integration of decision variables with leakage over time24,33. Also, recent work 
offers a computational account for temporal integration: sensory inputs are encoded relative to the local context 
by adjusting the gain of the inputs along with linear integration34. The core mechanism of these time-dependent 
models is leaky integration, in which a decision depends on the sum of successive sensory signals multiplied 
by decision weights that exponentially decay over time. It should be noted that leaky integration replicates the 
recency effect widely observed in studies of perceptual decision making, whereby samples presented later wield 
greater influence over decisions9,24,34–37, providing further support for the time-dependent leaky decision process.

In view of these findings on weighting profiles (robust averaging and the recency effect) accompanying the 
computational mechanisms, it can be hypothesized that inlying and later information has a greater influence 
on human decisions during temporal integration. However, no study has directly corroborated this hypothesis 
because of the lack of corresponding analyses between the spatial and temporal domains. More importantly, this 
hypothesis contrasts with the peak-end rule in behavioral economics studies in terms of the amount of weight 
given to outliers. The question thus arises of how humans give weight to inliers and outliers during temporal 
integration for perceptual decisions.

In this paper, we used theoretical and experimental examinations to elucidate a temporal weighting profile 
for outliers, a matter that has been overlooked in previous studies. We simulated the weighting profiles of the 
simple leaky integration model applied to a typical perceptual decision task. We also conducted the same task 
with human observers and compared the human weighting profiles with those of the model. The results show 
that humans underweighted outliers presented earlier in a stimulus stream (i.e., robust averaging), but over-
weighted those presented later in the stream. These findings manifest the time-dependent decision weighting 
profile (“peak-at-end” rule) in humans, as predicted by the leaky integration model.

Results
Analysis of weighting profiles.  To examine a weighting profile generated by the decision model, we 
simulated response data for a simple psychophysical task in which an observer is presented with a sequence of 
eight Gabor patterns and decides whether the temporal average of the orientation is tilted clockwise or counter-
clockwise. We first generated stimulus values for 10,000 trials according to the actual distribution used in our 
psychophysical experiment, namely a normal distribution with a randomly set mean (− 3 to 3 deg, in steps of 
0.5 deg) and SD (8 deg) for each trial.

Different aspects of the weighting profile for the simulated data can be revealed by means of two distinct 
analyses. One of the analyses was logistic reverse correlation, in which a multiple logistic regression model was 
created with orientation values in eight temporal frames and responses as independent and dependent variables, 
and logistic regression coefficients were calculated. The coefficients reflect how much impact the orientation 
in each temporal frame has on the observer’s response. This analysis thus reveals the temporal weighting bias 
caused by the decision mechanism (e.g., recency effect).

Because the present study sought to determine how the model assigns weights to inliers and outliers during 
temporal integration, we also conducted the following analysis. First, the orientation values across all temporal 
frames and trials were ranked into four categories according to how much they were tilted. The least tilted 25% 
were classified as rank 1, the next 25% as rank 2, the next 25% as rank 3, and the most tilted 25% as rank 4. Fig-
ure 1 shows the criterion for this ranking, which ensures that the same number of samples is included in each 
rank. Then, we extracted orientations with a particular rank and temporal frame to calculate how consistent 
the sign of the orientations and the responses were across all trials, which we call the consistency rate. A higher 
consistency rate for elements with a particular rank and temporal frame corresponds to overweighting of those 
elements. We calculated the consistency rates for orientations across four ranks and eight temporal frames, and 
obtained 32 consistency rates in total, allowing us to produce a weighting profile for inliers and outliers in the 
stimulus stream.

An ideal observer.  We first assumed an ideal observer model that integrates information evenly across all 
temporal frames. In this model, a decision is made based on the sign of the summed orientations over all tempo-
ral frames (Eq. 1). We obtained the weighting profiles of the model using the above analyses.
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Figure 1.   The criterion for the ranking. Each rank (1, 2, 3, and 4) represented by differently colored area 
comprises an equal amount of the probability mass (25% for each).
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As expected, the model predicted almost the same regression coefficients across all temporal frames (Fig. 2a), 
confirming that each element of information has an equal impact on the response. Figure 2b shows the consist-
ency rates for each rank and temporal frame. Different colors represent different results for each temporal frame, 
but they overlap with each other. The model appears to assign greater weight to outliers (i.e., elements with a 
higher rank) than to inliers, as the consistency rate was higher for elements with higher ranks — a somewhat 
unexpected result for the unbiased ideal observer. However, this tendency is simply an artifact of the higher 
correlation between higher-ranked stimulus values and the temporal average. Henceforth, to reveal the sheer 
weighting profile for outliers, we thus calculate the difference in consistency rates between the ideal observer 
and the model (or human data) rather than relying on single consistency rates.

A leaky integration model.  Next, we applied the two analyses to the response data of the leaky integra-
tion model. In the model, a final decision is made based on the sign of the summation of orientation signals 
multiplied by a weight that exponentially decays over time with additive internal noise ε (Eq. 2). As mentioned 
earlier, this simple decay model captures the essence of prevailing models of perceptual decision making9,24,33–37.

In line with previous studies34,35, reverse correlation analysis showed a clear recency effect: the regression 
coefficient was higher for later inputs, and this effect became more pronounced at decreased α values (Fig. 3a). 
We also calculated the difference in consistency rates between the model and the ideal observer for each rank 
and temporal frame, to probe how the model weights outlying elements (Fig. 3b). The model predicted lower 
consistency rates for elements with higher ranks that occur earlier in the stimulus stream. However, we found the 
opposite result for elements that occur later in the stream: their consistency rate increased in proportion to their 
rank. That is, the model downweights outlying elements that occur earlier in the sequence (i.e., robust averaging), 
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Figure 2.   Simulated weighting profiles of the ideal observer model. (a) Regression coefficients across temporal 
frames for the ideal observer. (b) Consistency rates of the ideal observer for each rank and temporal frame. The 
eight lines representing different results for each temporal frame overlap each other.
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Figure 3.   Simulated weighting profiles of the leaky integration model. (a) Regression coefficients across 
temporal frames for the leaky integration model. Different colors represent the results for different α values. (b) 
Consistency rates of the model for each rank and temporal frame. Results for different α values are shown in 
each panel.
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but in turn overweights those occurring later in the sequence. These results lead to the critical notion that the 
model predicts a time-dependent weighting profile for outliers as a corollary of its leaky nature.

A psychophysical experiment with human observers.  In the previous section, we found that the 
leaky integration model exhibits a time-dependent weighting profile for outliers and a recency effect during 
temporal average estimation. To test whether this is also the case for humans, we probed human observers’ 
weighting profiles for outlying elements at different temporal locations by means of a psychophysical task and 
analyses identical to those used in the simulation.

One of the authors and nine naïve observers participated in the task, viewing eight successive Gabor patterns 
(Fig. 4). The orientation of these patterns was determined according to a normal distribution with a random mean 
(− 3 to 3 deg, in steps of 0.5 deg) and SD (8 or 16 deg) for every trial. Observers reported whether the temporally 
averaged orientation of the patterns was tilted clockwise or counterclockwise by button press (see Methods for 
details). Using the stimulus and response data, we performed the same analyses as we did on the simulation data 
to examine human observers’ weighting profiles during the task.

We first performed reverse correlation analysis to elucidate how the observers assigned weights to informa-
tion presented at each temporal frame. A clear recency effect was observed regardless of the SD of the normal 
distribution that generated the stimulus values (Fig. 5a,c). A two-tailed t test showed a significant difference 
between the average of regression coefficients for earlier (1st–4th frames) inputs and later (5th–8th frames) inputs 
(t(9) = 6.69, p < 0.001 [SD = 8 deg]; t(9) = 8.78, p < 0.001 [SD = 16 deg]). Then, we fitted the leaky integration model 
to the observed regression coefficients by optimizing the two free parameters α and ε (SD of the additive internal 
noise) so that the mean squared error between the observed and predicted regression coefficients was minimized 
for each observer, and in this manner obtained the best-fitting parameters ( α=0.75 [s.e. = 0.04 across observers], 
ε=2.81 [0.19] when SD = 8 deg; α=0.80 [0.04], ε=4.76 [0.12] when SD = 16 deg). The simulated regression coef-
ficients were almost identical to those of the human observers (dashed lines in Fig. 5a,c).

We also ranked orientations across all trials and temporal frames in accordance with the criterion introduced 
in the simulation section (Fig. 1), and we calculated consistency rates for each rank and temporal frame. The left 
panels in Fig. 5b,d show the differences in consistency rates between human observers and the ideal observer. 
The observed human consistency rates bore a qualitative resemblance to those of the model with the best-fitting 
parameters (right panels in Fig. 5b,d). This suggests that humans discounted outliers occurring earlier in the 
stream (robust averaging) but overweighted those occurring later in the stream, as predicted by the leaky inte-
gration model. A significant interaction was revealed by a two-way repeated measures ANOVA with rank and 
temporal frame as factors (F(21, 189) = 2.00, p = 0.007 [SD = 8 deg]; F(21, 189) = 2.62, p < 0.001 [SD = 16 deg]). 
These results suggest that humans exhibit a time-dependent weighting profile to outliers as well as a recency 
effect, both of which are traced to the leaky integration mechanism.

Psychophysical evidence shows that the neural coding of orientation is uncertain and biased toward the 
cardinal orientations, i.e., vertical in the case of our stimuli38,39. This bias would potentially give rise to robust 
averaging as inliers in our experimental setting correspond to the vertical orientation. We confirmed that this is 
true by using a leaky integration model with orientation inputs biased toward the vertical. However, the model 
failed to replicate the overweighting of outliers in the last few frames, precluding the orientation-dependent 
uncertainty as a main source for the time-dependent weighting policy.

Discussion
Through a model simulation and a psychophysical experiment with human observers, the present study offers 
insights into temporal weighting profiles during evidence accumulation for perceptual decision making. The leaky 
integration mechanism predicts not only the recency effect but also a characteristic time-dependent weighting 
profile: less weight is given to outlying than inlying elements occurring earlier in a stream (i.e., robust averaging), 

Figure 4.   Visual stimulus used in the experiment.
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whereas greater weight is given to outliers occurring later in a stream. Importantly, human observers in the 
typical average estimation task adopted the time-dependent weighting policy predicted by the model. These 
facts corroborate the presence of the leaky integration mechanism in perceptual decision making, in line with 
previous studies24,33.

Although robust averaging is observed while integrating multiple pieces of evidence that are distributed over 
space17,18, the present study indicates that humans also exhibit such a weighting policy while integrating temporal 
evidence. This result implies the commonality of the characteristics underlying evidence integration between 
the spatial and temporal domains, consistent with some studies which have posited sequential sampling even for 
integration of spatially distributed information that is constant over time, rather than parallel processing across 
space40,41. This assumption seems reasonable, as humans in the environment sample different local information 
multiple times per second with saccades, even though the source may remain invariant over time42.

The recency effect and overweighting of outliers we observed in the present study are reminiscent of the 
peak-end rule. It is intriguing that humans use temporal information to make decisions similarly across differ-
ent tasks (perceptual and economic decision making), although those tasks are distinct in many respects. First, 
there is a fundamental difference in terms of decision type: perceptual judgment for sensory stimuli vs. emo-
tional evaluation for an event or experience. Another difference lies in the timescale of temporal integration: an 
observer typically integrates evidence across a few seconds at most in a perceptual decision task, but integration 
can take place over minutes or even a few hours in an economic decision task. Although these differences raise 
the question of why similar weighting profiles are obtained across domains, subjects actually make judgments 
on the basis of memory within a few seconds even in economic decision tasks with long integration periods. 
Further, some studies have proposed the hypothesis that memory retrieval might involve sequential sampling 
of momentary evidence, as with perceptual decisions41,43. Taken together, the recency effect and overweighting 
of outliers might be ubiquitous across different types of judgments that involve sequential sampling of multiple 
pieces of information, whether they derive from sensory stimuli or memory.

It is noteworthy that no behavioral economics study has provided evidence for robust averaging that contrasts 
with the peak-end rule, indicating that robust averaging is uniquely observed in perceptual decision making. 
Here, we raise the possibility that robust averaging could also be observed in economic decision tasks. Previ-
ous behavioral economics studies illustrated the peak-end rule by showing significantly high partial regression 
or correlation coefficients between peak values during events and subjects’ retrospective evaluations of their 
experiences6,7. These observations are insufficient to support the peak-end rule because there is an inherently high 
correlation between a peak value and the overall average of sequential data44, thus hindering reliable conclusions 
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Figure 5.   Weighting profiles for human observers. The upper and lower panels are results for different SDs of 
the stimulus orientation. (a, c) Regression coefficients across temporal frames for human observers. Dashed 
lines represent the simulated coefficients of the model using the best-fitting parameters. (b, d) Differences 
in consistency rates between human observers and the ideal observer for each rank and temporal frame (left 
panels). Simulated consistency rates of the model using the best-fitting parameters (right panels). All the 
conventions are the same as in Figs. 2 and 3.
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about the peak-end rule. In fact, some studies have reported conflicting results that the average score is better 
than the peak score as a predictor of overall evaluations of experiences45,46. In any case, simply calculating the 
correlation between a single value extracted from an overall dataset and a retrospective value is insufficient 
to validate the peak-end rule. If the same analyses as we performed in the present study were conducted in 
behavioral economics studies, the same time-dependent weighting profile, including robust averaging, could 
be observed even in those studies. In other words, humans’ retrospective judgment about their experience may 
be influenced only by peak values that occur later in the course of an event, but not by those occurring earlier 
in the course of an event, which we call “peak-at-end” rule. In sum, more rigorous quantitative analysis has the 
potential to reveal robust averaging, even in economic decisions.

The present study indicates that robust averaging and the peak-at-end rule are natural consequences of the 
leaky temporal integration process where sensory evidence in each temporal frame is multiplied by an exponen-
tially decaying weight. However, this mathematical description of the decision process does not tell us anything 
about the computational mechanisms in the brain that elicit the characteristic biases. One possible mechanism is 
integration with gain control, where sensory inputs are encoded relative to the local context by adjusting the gain 
of the inputs34,47. This decision mechanism is consistent with the fact that neurons in lower-level visual systems 
adjust their sensitivity to a wide range of light intensities48,49 and modulate their responses depending on the 
summed activity of pools of neurons50,51. If we adopt this framework, the observed biases can be qualitatively 
explained as follows: the process involves adaptation to a sudden change, protecting decisions from noise (i.e., 
outliers) that might cause false judgments34,35. However, this process does not hold true when a sudden change 
occurs around the end of the integration, because the observer ends up making a decision before the effects 
of the outliers are fully attenuated, thereby resulting in outliers occurring around the stimulus offset having a 
greater influence on a decision. Temporal integration with gain control thus predicts not only robust averaging, 
which is an optimal policy in the presence of heavy internal noise18, but also the suboptimal peak-at-end rule 
as a tradeoff for its adaptive property.

While the leaky integration model captures all aspects of the present study’s human data, it remains unknown 
whether it also underlies decision making for other attributes such as color and shape or tasks with various 
timescales of evidence accumulation. Nevertheless, as the model naturally predicts tendencies that have been 
widely observed in distinct research domains from psychophysics to behavioral economics, the present find-
ings underline the possibility that leaky temporal integration (or possibly, integration with gain control) is a 
general computational mechanism for decision making. Our study opens the path for further investigation of 
the computational mechanisms that commonly underlie both weighting policies in perceptual decision making 
and cognitive biases in economic decision making.

Methods: psychophysical experiment
Observers.  One of the authors and nine naïve paid volunteers with corrected-to-normal vision, participated 
in the experiment. All experiments were conducted with a permission from the Ethics Committee of the Uni-
versity of Tokyo with written informed consent taken from all the participants, and the Declaration of Helsinki 
guidelines were followed.

Apparatus.  Visual stimuli were generated by a graphics card controlled by a PC and displayed on a LCD 
monitor (BenQ XL2430T) which had a pixel resolution of 0.02 deg/pixel at a viewing distance of 100 cm we 
used35. The refresh rate was 60 Hz. The mean luminance of the uniform background was 69.0 cd/m2. All experi-
ments were conducted in a dark room.

Stimuli.  Stimulus was eight frames of Gabor patterns that were presented one after the other in the center of 
the screen (Fig. 4). Each frame was presented for 200 ms followed by a uniform blank of 100 ms. Gabor pattern 
had a carrier spatial frequency of 1.56 c/deg and a Gaussian window with a SD of 5.12 deg. The Michelson con-
trast was 0.4. The mean luminance was equal with the uniform background. The orientation of Gabor pattern at 
each frame was determined according to a normal distribution with a specific mean and SD35. The mean across 
frames was randomly decided from − 3 to + 3 deg with an equal step of 0.5 deg, and the SD was 8 or 16 deg. A 
black fixation dot was presented in the center of the screen throughout the experiment.

Procedure.  On each trial, observers viewed the stimulus binocularly and indicated whether the temporal 
average of the Gabor orientation was tilted left or right by button press35. Observers were instructed to fixate 
on the fixation point and to respond within 0.5 s after the stimulus offset. If the observers’ response exceeded 
the deadline, auditory feedback was given, and the data on those trials were excluded from the analyses35. Each 
observer completed at least three sessions for a total of 270 trials.

Data analysis.  For the data of each observer, the same set of analyses, i.e., the reverse correlation analysis 
and rank analysis that were performed on the models’ data (see Results section in detail), were conducted to 
obtain the weighting profile. The weighting data were averaged across observers. A two-tailed t test was con-
ducted as a significant proof of the recency effect. To see if weighting profiles for outliers are significantly dif-
ferent across temporal frames, we also performed a two-way repeated measures ANOVA with the rank and 
temporal frame as factors.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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