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A mini-review of the e�ects of
inhalational and intravenous
anesthetics on oxidative stress in
dogs

Katerina Tomsič and Alenka Nemec Svete*

Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia

General anesthesia increases the production of reactive oxygen species

(ROS), which can exacerbate or increase oxidative stress and thus a�ect the

prognosis of surgical procedures. Oxidative stress has been implicated in the

development of cardiovascular, dermatologic, oncologic, and other diseases

in dogs, as well as ischemia and reperfusion injury. Some anesthetics, such

as halogenated anesthetics, have been shown to stimulate the production of

ROS, while others, such as propofol, have antioxidant properties. However, the

antioxidant e�ects of these anesthetics may not be su�cient to counteract

oxidative damage at the doses used clinically. Nevertheless, the e�ects

of anesthetics should be considered to minimize oxidative damage during

anesthesia in dogs to improve the outcome of procedures requiring general

anesthesia. This mini-review addresses the current knowledge on oxidative

stress during inhalational and intravenous anesthesia in dogs. There is still a

lack of information on the management of anesthesia in dogs with respect

to oxidative stress. Further research, including comprehensive clinical studies

is needed to better understand oxidative injury mechanisms and improve

perioperative protocols during anesthesia in dogs.

KEYWORDS

anesthesia, dogs, inhalational anesthetics, intravenous anesthetics, reactive oxygen
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Introduction

Anesthetic metabolism, changes in tissue perfusion and oxygenation during

anesthesia, and surgical trauma increase the generation of reactive oxygen species (ROS),

which can aggravate oxidative stress in humans (1–5) and dogs (6–9). Oxidative stress

has been associated with ischemia and reperfusion injury, as well as cardiovascular,

dermatologic, oncologic, and other diseases in dogs (10). In the perioperative setting,

oxidative stress may be a determining factor in the outcome of surgical procedures

(1, 3, 5). Therefore, the choice of an anesthetic protocol is important because some

anesthetics may stimulate the production of ROS, whereas others have antioxidant

properties (3, 4).
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The purpose of this mini-review is to summarize the

current literature on the effects of inhalational and intravenous

anesthetics on oxidative stress in dogs. Relevant literature was

selected using the Pubmed database and the Google Scholar

search engine. The search terms were “oxidative stress anesthesia

dogs.” In the section on individual anesthetics, the search terms

were the anesthetic sought with the words: “oxidative stress”;

“antioxidant”; “oxidative dogs” (i.e., ketamine oxidative stress;

ketamine antioxidant; ketamine oxidative dogs).

Oxidative stress, reactive oxygen
species and antioxidants

The most recent definition of oxidative stress states

that oxidative stress is “an imbalance between oxidants and

antioxidants in favor of oxidants, resulting in disruption of redox

signaling and control and/or molecular damage” (11).

Reactive oxygen species include oxygen free radicals

[superoxide (O•

2), hydroxyl radical (•OH), peroxyl radical

(ROO•)] and reactive nonradical species [singlet oxygen (1O2),

hydrogen peroxide (H2O2), hypochlorous acid (HOCl)] (12,

13). Endogenous sources of ROS include metabolic processes in

mitochondria and peroxisomes, inflammatory cellular reactions,

and the catalytic action of cytochrome P450. External sources

of ROS include radiation (ultraviolet, X-ray, and gamma rays),

cigarette smoke, ultraviolet light, drugs, chemical reagents,

industrial solvents, and other environmental pollutants (14, 15).

Reactive oxygen species are involved in biological processes,

such as cellular signal transduction, adaptation to stress (16), and

cellular defense (17). Under pathological conditions, excessive

amounts of ROS damage biologically important molecules such

as lipids, proteins, and DNA and trigger reactions that can

destroy the cell membrane, block the action of important

enzymes, prevent normal cell division, destroy DNA, and block

energy production (12, 18).

An antioxidant is any substance that delays, prevents,

or eliminates oxidative damage to a target molecule (19).

Antioxidants are endogenous or exogenous molecules that

mitigate any form of oxidative/nitrosative stress or its

consequences. The endogenous antioxidant system consists

of enzymatic and non–enzymatic antioxidants. Antioxidant

enzymes such as superoxide dismutase (SOD), glutathione

peroxidase (GPX) and catalase (CAT) accelerate the transition

from ROS to more stable products. Non-enzymatic antioxidants

such as melatonin, thiol antioxidants (glutathione, thioredoxin,

and lipoic acid), ubiquinone (coenzyme Q10), and uric acid

act as free radical scavengers (12, 18, 20). Plasma albumin is

a very abundant circulating antioxidant that acts either as a

radical scavenger or a chelator of metal ions, heme, and other

molecules (21, 22). Exogenous antioxidants supplied to the

body through diet and supplements include ROS scavengers

such as alpha-tocopherol (vitamin E), ascorbic acid (vitamin C),

and carotenoids, as well as dietary components that enhance

endogenous antioxidant activity (12, 14, 18).

The antioxidant capacity (TAC) of plasma or other

body fluids represents the redox status of the organism,

which is influenced by environmental and metabolic factors,

physiological or pathological conditions, and dietary antioxidant

intake (23–26). However, the TAC provides only a general

insight into antioxidant status (27). Water-soluble antioxidants

such as uric acid, ascorbic acid, proteins, and other low-

molecular-weight antioxidants are retained in aqueous plasma

compartments, whereas fat-soluble antioxidants (e.g., vitamin

E, coenzyme Q10 and carotenoids) are hidden in lipoproteins

(24). Determination of the antioxidant capacity of water-

(ACW) and lipid-soluble (ACL) antioxidants is an accurate

method for assessing the antioxidant capacity of plasma

(28, 29).

Studies on the effects of anesthesia on oxidative stress

in humans (3, 4, 30–33) and dogs (9, 34–46) are based on

the determination of changes in antioxidant (and oxidative)

capacity, activities of antioxidant enzymes, and markers of

oxidative damage to DNA, proteins, and lipids.

Studies on oxidative stress during anesthesia in dogs

are summarized in Table 1. A brief presentation of some of

the oxidative stress parameters mentioned in the review is

summarized in Table 2.

Intravenous anesthetics

Thiopental

Thiopental is a barbiturate which exert antioxidant

properties in vitro, either by scavenging ROS (48, 49) or

by inhibiting the oxidative function of neutrophils (50, 51).

However, these properties have been shown to be poor

compared with propofol in vitro (49, 52) and in human (53)

and animal (3, 40, 54) studies. Lee (40) compared the effect

of propofol and thiopental at induction doses on oxidative

stress parameters in dogs anesthetized with isoflurane during

laparotomy and gastrotomy. Oxidative stress was assessed by

total plasma oxidation status (TOS), TAC and oxidative stress

index (OSI). The change ratio of each value was calculated

and compared between the two groups. The TOS and OSI

change ratio was lower in the propofol group. Propofol was

more effective in maintaining TAC compared with thiopental at

induction doses, although there was a time-dependent increase

in TOS and OSI and a decrease in TAC during isoflurane

anesthesia in both groups (40).

Ketamine

Ketamine, a non–competitive antagonist of N-methyl-D-

aspartate receptors, has been shown to promote the formation
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TABLE 1 Clinical studies and results on oxidative stress during anesthesia in dogs.

Anesthetics Animals Surgical

procedure

Parameters of

oxidative stress

Significant findings Reference

G1 (control) - thiopentone

G2 - thiopentone and hypoxia

G3 - halothane

G4 - halothane and hypoxia

24 mongrel dogs Liver biopsy

(experimental)

Plasma and liver vitamin

E, GSH, MDA.

Vitamin C and SOD in

liver biopsies.

In G2, G3, G4 time dependent

depletion of vitamin E and reduced

glutathione in liver and plasma,

and vitamin C in liver.

Increased plasma and liver MDA.

Hypoxia inhibited liver SOD

activity.

(34)

Enflurane 10 kangal dogs / Serum vitamin E, A, beta

carotene, GPX, MDA.

Decreased vitamin E and beta

carotene, increased vitamin A and

MDA.

(35)

G1 - halothane (2.5–3 vol %)

G2 - halothane (0.5 vol %)+

fentanyl, pancuronium

bromide and controlled

ventilation

G3 - lumbosacral epidural

with lidocaine

G4 (control) - only blood

sampling

24 mixed breed dogs / Plasma MDA Increased blood MDA

concentrations in G1 compared to

baseline and other groups.

(36)

G1 - induction with

midazolam and thiopental

G2 - induction with

midazolam and ketamine

Desflurane

16 crossbreed dogs / Blood CAT and SOD Time dependent increase in SOD

in G1 and increase in CAT in G2.

(37)

G1 and G2 Induction with

thiopental

G1 - halothane

G2 - isoflurane

14 mongrel dogs Various procedures

under anesthesia

Plasma MDA None. (38)

G1 - intramuscular anesthesia

with medetomidine-

tiletamine/zolazepam

combination

G2 - volatile anesthesia with

isoflurane (2 vol % isoflurane

in 100% oxygen).

10 beagle dogs / Plasma SOD, CAT, GPX Decreased SOD, CAT and GPX

compared to baseline in G1 and

G2.

Decreased CAT and GPX in G1

compared to G2.

(39)

G1 - thiopental induction

G2 - propofol induction

Isoflurane anesthesia

18 mongrel dogs Laparotomy and

gastrotomy

Plasma TOS, TAC, OSI Increased TOS and OSI in G1

compared to baseline.

Decreased TAC levels in G2

compared to baseline.

TOS and OSI change ratio

significantly lower in G2 compared

to G1.

(40)

G1 - isoflurane

G2 - propofol+ isoflurane

G3 - propofol TIVA

9 beagle dogs / Blood GPX, SOD, CAT Decreased SOD and CAT activities

in G1 and G2 compared to

baseline.

Increased CAT activity in G3

compared to baseline and to G1.

(41)

(Continued)
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TABLE 1 (Continued)

Anesthetics Animals Surgical

procedure

Parameters of

oxidative stress

Significant findings Reference

Isoflurane induction (4 vol %)

G1 - 1 x MAC isoflurane

G2 - 2 x MAC isoflurane

12 beagle dogs / Plasma TOS, TAC, OSI Dose and time—dependent

increase in TOS and OSI and

decrease in TAC in G1 and G2

compared to baseline. TOS higher

in G2 compared to G1; TAC and

OSI higher in G2 compared to G1.

(42)

G1 - Propofol—mech vent

G2 - Propofol—spont vent

G3 - Isoflurane—mech vent

G4 - Isoflurane—spont vent

20 mixed breed dogs Pneumoperitoneum

15mmHg, 40min

Serum TAC, MDA Increased MDA in propofol

groups. compared to isoflurane

groups.

(43)

G1 - propofol

G2 - sevoflurane

16 client owned dogs

MMVD ACVIM B2

Periodontal treatment Plasma Vitamin E, MDA,

blood SOD, GPX

Decrease in vitamin E compared to

baseline in G1 and G2.

Increased GPX activity in G2

60min after induction compared

to baseline.

(9)

G1 - propofol

G2 - sevoflurane

G3 - healthy control,

sevoflurane

30 client owned dogs

MMVD ACVIM B2

Periodontal treatment Plasma ACL, ACW ACL elevated in G2 compared to

G3 at all sampling points.

Increased ACL at 60min after

induction in G1 compared to

baseline.

Increased ACW at 60min in all

groups, and in G1 at 6 h after

induction compared to baseline.

Increased ACW in G1 compared to

G3 at 60min after induction.

(44)

G1 - ketamine induction

G2 - propofol induction

Isoflurane anesthesia

24 client owned dogs Osteosynthesis or

Soft tissue surgery

SerumMDA, SOD, CAT,

GPX

MDA decreased 30min after

induction in G1.

(46)

ACL, antioxidant capacity of lipid-soluble antioxidants; ACVIM, American College of Veterinary Internal Medicine; ACW, antioxidant capacity of water-soluble antioxidants; CAT,

catalase; G, group; GPX, glutathione peroxidase; GSH, reduced glutathione; MAC, minimal alveolar concentration; MDA, Malondialdehyde; MMVD, myxomatous mitral valve

degeneration; mech vent, mechanical ventilation; OSI, oxidative stress index; SOD, superoxide dismutase; spont vent, spontaneous ventilation; TOS, total oxidant status; TAC, total

antioxidant capacity; 8-OHdG, 8-hydroxydeoxyguanosine.

of ROS in rats (5, 55, 56). However, according to other studies,

ketamine inhibits the oxidative burst of canine peripheral

blood phagocytes in vitro (57), and exhibits neuroprotective

effects by its anti-inflammatory, antioxidant, and anti-apoptotic

effects in animal models of cognitive disfunction (58). These

properties were partially confirmed in a study on the effects

of ketamine and propofol on cytokines, oxidative status and

neutrophil functions in dogs (46). In a study on Wistar rats

ketamine showed a higher antioxidant potential compared to

etomidate (59). In human patients after the administration of

ketamine and propofol at induction doses, the extent of lipid

peroxidation (assessed by measurement of thiobarbituric acid

reactive substances (TBARS) concentration) and the activity

of GPX and SOD were lower in the propofol group, and

plasma TAC was higher than in the ketamine group (47).

Altug et al. (37) evaluated oxidative stress during desflurane

anesthesia after induction with a combination of thiopental and

midazolam or ketamine and midazolam. Thiopental increased

SOD activity and acted as a better free radical scavenger

by reducing high oxidation states of hemoglobin, whereas

ketamine increased CAT activity and hemoglobin concentration.

In conclusion, the authors emphasized the importance of

induction agents for the antioxidant effect of desflurane

anesthesia (37).

Propofol

Propofol, a short-acting hypnotic, is an alkylphenol (2,6-

diisopropylphenol) that, like vitamin E, contains a phenolic
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TABLE 2 Brief presentation of the oxidative stress parameters mentioned in the review.

Oxidative stress parameter Abbreviation Brief description References

Antioxidant capacity of lipid-soluble

antioxidants

ACL The plasma antioxidant capacity of lipid-soluble antioxidants includes

exogenous and endogenous lipophilic antioxidants hidden in

lipoproteins, such as vitamin E, coenzyme Q10 and carotenoids.

(29, 44)

Antioxidant capacity of water-soluble

antioxidants

ACW The plasma antioxidant capacity of water-soluble antioxidants includes

antioxidants present in aqueous plasma compartments, such as

vitamin C, uric acid, glutathione, proteins, and other low molecular

weight antioxidants.

(28, 44)

Catalase CAT A major intracellular antioxidant enzyme that reduces hydrogen

peroxide to water and molecular oxygen.

(37, 39, 41, 46)

7,8-dihydro-8-oxoguanine 8-oxo-Gua A marker of oxidative DNA damage. (33)

Free sulfhydryl groups -SH -SH groups are important antioxidants, scavengers of peroxides that

help to protect cells from oxidative damage.

(31)

Glutathione peroxidase GPX A major intracellular antioxidant enzyme that catalyzes the reduction

of hydrogen peroxide and lipid peroxides to water and lipid alcohols.

(9, 32, 35, 39, 41, 46,

47)

Glutathione—reduced form GSH A main endogenously synthesized water-soluble antioxidant. (34)

Lipid hydroperoxide LOOH Amarker of oxidative damage to lipids (lipid peroxidation marker). (31)

Malondialdehyde MDA Amarker of oxidative damage to lipids (lipid peroxidation marker);

one of the most investigated secondary products of lipid peroxidation.

(9, 34–36, 38, 43, 46)

Oxidative stress index OSI An indicator of the degree of oxidative stress calculated as the ratio of

the TOS to the TAC.

(31, 32, 40, 42)

Superoxide dismutase SOD A major intracellular antioxidant enzyme that catalyzes the

dismutation of highly reactive superoxide radical to less reactive

hydrogen peroxide that can in turn be destroyed by GPX or CAT

reactions.

(9, 34, 37, 39, 41, 46,

47)

Total antioxidant capacity TAC TAC is the measure of the amount of free radicals scavenged by a test

solution being used to evaluate TAC of a biological sample.

The measure of TAC considers the cumulative action of all the

antioxidants present in plasma and body fluids, thus providing an

integrated parameter rather than the simple sum of measurable

antioxidants. The capacity of known and unknown antioxidants and

their synergistic interaction is therefore assessed, thus giving an insight

into the delicate balance in vivo between oxidants and antioxidants.

Several methods have been developed to measure the TAC of different

biological samples; however, the methods vary greatly, which can result

in incomparable results among studies.

(23–25, 31, 32, 40,

42, 43, 47)

Total antioxidant performance TAP The TAP is the measure of the TAC of plasma antioxidants localized in

both aqueous and lipid compartments, including their

cooperation/synergistic interaction by the use of fluorescence assay

that measure the oxidizability of the lipid compartment of

unfractionated plasma and is affected by lipid antioxidants as well as by

hydrophilic antioxidants acting through a synergistic/cooperative

mechanism.

(33)

Thiobarbituric acid reactive substances TBARS A marker of oxidative damage to lipids (lipid peroxidation marker). (47)

Total oxidant status TOS The measurement of TOS indicates the measurement of cumulative

contribution of various oxidant species in plasma.

(31, 32, 40, 42)
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hydroxyl group (OH). It reacts with free radicals to form

a phenoxyl radical (60, 61). Like vitamin E, propofol acts

synergistically with ascorbic acid, a water-soluble antioxidant

that converts the propofol radical to the phenolic form

(62). Due to its lipophilic nature, propofol may increase

fluidity and strengthen the cell membrane against physical and

hemodynamic stressors (62–64). In addition, propofol could

substitute for vitamin E, especially when vitamin E stores are

acutely depleted and need to be replaced rapidly (65, 66). The

protective antioxidant effect of propofol has been demonstrated

in experimental models of brain, liver, and heart injury (52, 67–

71), isolated microsomes (65), neuroblastoma cell lines (72), and

human clinical trials (47, 52, 73–77). It is manifested either by

reaction with peroxyl radicals and the formation of less harmful

phenoxyl radicals or by reaction with peroxynitrite (78, 79).

Acquaviva et al. (80) demonstrated the neuroprotective effect

of propofol on astroglial cells in vitro through its anti-apoptotic

effect, reduction of cytotoxicity, and prevention of DNA damage

by peroxynitrite (80).

Braz et al. (33) investigated the effects of anesthesia

maintained with isoflurane or propofol on antioxidant status

in healthy adults undergoing minor surgery. The study

design assessed the antioxidant capacity of the aqueous

plasma compartment (hydrophilic antioxidant capacity), total

antioxidant performance (TAP) and individual antioxidants.

Lipid-soluble antioxidants were represented by carotenoids,

retinol (vitamin A), tocopherols, lycopenes, and others,

whereas uric acid represented the hydrophilic antioxidants.

The oxidized purine form, 7,8-dihydro-8-oxoguanine (8-oxo-

Gua), in lymphocytes was examined to assess genetic oxidative

damage. The results showed a decrease in alpha-tocopherol

in both groups, whereas there was an increase in gamma-

tocopherol in the propofol group compared with baseline

values and compared with the isoflurane group after 2 h of

anesthesia. The hydrophilic antioxidant capacity and TAP were

increased in both groups compared with baseline, with no

differences between the two groups. The antioxidant effect was

dose dependent. The authors concluded that both anesthetic

regimens increased hydrophilic antioxidant capacity and TAP

and did not cause oxidative DNA damage (33).

Lee and Kim (41) demonstrated the effect of propofol at

induction doses and as total intravenous anesthesia (TIVA) on

the activity of SOD, GPX, and CAT in dogs. The three treatments

were: Group 1, 2% isoflurane; Group 2, anesthesia induced

with propofol and maintained with 1.5–2% isoflurane; Group

3, TIVA with propofol. Anesthesia was maintained for 60min.

The activity of SOD decreased from baseline to the end of

anesthesia in the isoflurane groups. Catalase activity decreased

from baseline to the end of anesthesia and 24 h after anesthesia in

the isoflurane groups. In the propofol-TIVA group, CAT activity

increased at the end and 24 h after anesthesia and was higher

than in the group of dogs in which isoflurane was used to induce

and maintain anesthesia (41).

Tomsič et al. (9, 44) examined the effects of propofol

on oxidative stress in dogs with early-stage myxomatous

mitral valve degeneration (MMVD) undergoing periodontal

treatment. In one study, the authors compared the effects of

TIVA with propofol to anesthesia induced with propofol and

maintained with sevoflurane on vitamin E, SOD, GPX, and lipid

peroxidation marker malondialdehyde (MDA) (9). The authors

found no significant differences between the two anesthetic

protocols for any of the oxidative status parameters measured.

Compared with baseline values, vitamin E concentration

decreased during anesthesia in both groups, and GPX activity

increased 60min after induction of anesthesia in the sevoflurane

group. In another study, the authors examined the effect of TIVA

with propofol and sevoflurane anesthesia after induction with

propofol on plasma ACL and ACW levels in dogs with early-

stage MMVD. Dogs without signs of MMVD (control group)

were induced to anesthesia with propofol and maintained with

sevoflurane. Anesthesia increased ACW values in all groups,

although they were higher than baseline only in the propofol

group after anesthesia. Additionally, 60min after induction

to anesthesia, ACW was higher in the MMVD/Propofol

group compared to the MMVD/Propofol + Sevoflurane group.

Furthermore, only propofol anesthesia increased ACL levels in

dogs with MMVD compared with basal levels. This could be

attributed to the antioxidant properties of propofol. The authors

concluded that propofol may be more suitable than sevoflurane

for anesthesia of dogs with early-stage MMVD in terms of

antioxidant capacity (44).

Alipour et al. (43) investigated the effects of anesthesia

with propofol and isoflurane on endocrine and oxidative

variables during pneumoperitoneum in dogs. The authors found

that TIVA with propofol, either with or without mechanical

ventilation, can increase MDA production at the end of

pneumoperitoneum, whereas none of the anesthetic techniques

affected thyroid and cortisol levels (43).

Inhalational anesthetics

Inhalational anesthetics include the halogenated ethers

(isoflurane, sevoflurane, desflurane, and enflurane), the alkane

halothane, and the inorganic gaseous anesthetics (nitrous oxide

and xenon) (3). Sevoflurane and isoflurane are the most used

volatile anesthetics in veterinary practice.

Halogenated anesthetics trigger the phenomenon of

ischemic preconditioning (81), an adaptive response to

brief episodes of ischemia that allows protection of the

myocardium from subsequent life-threatening ischemia and

acts through the cellular signaling pathway. The volatile

anesthetics cause the formation of ROS, initiating the

signaling cascade that reduces the production of ROS in

mitochondria during ischemia. Reactive oxygen species activate

mitochondrial potassium-dependent ATP channels, presumably
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by activating a protein kinase C isoform. This results in less

depolarization of the mitochondrial membrane potential

and a lower electrochemical gradient for calcium ions. The

reduced accumulation of calcium ions in mitochondria and

the opening of mitochondrial pores protect mitochondria

from damage (81). In addition, the bioavailability of ATP

increases and the formation of ROS in the ischemic phase

decreases (82).

Isoflurane

Isoflurane is a commonly used halogenated ether with

a low metabolization rate and solubility (83). The effects of

isoflurane on oxidative stress have not been fully elucidated

and remain controversial. In an experimental model using

human neuroglioma cells and mouse brain tissue, Ni et al.

(84) sought to elucidate the mechanisms of oxidative

damage to DNA by isoflurane. The phosphorylated form

of histone protein H2A variant X at Ser139 (γH2A.X)

was selected as a marker of oxidative DNA damage. The

results of the study showed that isoflurane induced DNA

damage at clinically relevant concentrations as determined

by the increase in γH2A.X in human neuroglioma cells

(84). In contrast, in the clinical study by Braz et al.

(33) isoflurane anesthesia did not induce DNA damage

assessed by determination of 8-oxo-Gua in healthy

adults (33).

In dogs, isoflurane increases oxidative stress in a dose- and

time-dependent manner, as shown by Lee (42). Beagle dogs were

anesthetized with different minimum alveolar concentrations

(MAC) of isoflurane. Dogs in group 1 received 1.28% (1 x

MAC) isoflurane, whereas dogs in group 2 received 2 × MAC.

The oxidant and antioxidant status of the dogs was determined

by TOS, TAC, and OSI. The levels of TOS and OSI increased

significantly, while the levels of TAC decreased in both groups

after anesthesia. Changes were observed in group 1 60min,

and in group 2 30 and 60min after induction of anesthesia.

The levels of TOS were higher in group 2 than in group 1 at

30 and 60min after induction of anesthesia, while TAC and

OSI were significantly higher in group 2 than in group 1 at

60min after induction to anesthesia (42). Yarsan et al. (38)

compared the effects of halothane and isoflurane on plasma

MDA concentrations in dogs. Changes were not significant;

however, the MDA concentration was lower under halothane

anesthesia, and levels returned to baseline within 24 hours (38).

Sevoflurane

Sevoflurane is metabolized in the liver by the isoform

of the cytochrome P450 enzyme CYP2E1 (85, 86), and its

metabolism has been shown to accelerate the formation of ROS

(85) and impair energy metabolism in mitochondria (87, 88).

Yalcin et al. (31) investigated the effects of desflurane and

sevoflurane on selected oxidative stress parameters [TOS, TAC,

lipid hydroperoxide (LOOH), total free sulfhydryl groups (-

SH), and OSI] in mothers and neonates after elective cesarean

section. Compared with baseline values, TOS and OSI were

decreased in both groups. However, LOOH, TOS, and OSI

were higher in maternal serum and umbilical artery blood in

the desflurane group compared with the sevoflurane group. In

addition, LOOH and -SH values were lower in the sevoflurane

group compared with preoperative values, and there was no

difference between groups in umbilical artery -SH and TAC

values. The authors concluded that anesthetics could alter

oxidative stress indices, and sevoflurane showed more favorable

effects compared with desflurane (31). Similarly, Erbas et al. (32)

compared the effects of sevoflurane, desflurane, and propofol

on the oxidant and antioxidant systems of patients undergoing

laparoscopic cholecystectomy. The oxidative stress parameters

selected were TOS, TAC, and GPX. Compared with preoperative

levels, there was an increase in postoperative TAC levels in

the propofol and sevoflurane groups, and in postoperative TOS

levels in the desflurane group. Glutathione peroxidase activity

remained unchanged in both groups (32). These results are in

general agreement with clinical studies investigating oxidative

stress in dogs with early-stage MMVD during propofol and

sevoflurane anesthesia (9, 44).

Other halogenated anesthetics

Naziroglu and Günay (35) investigated the effect of

enflurane on serum concentrations of vitamins A, E, beta-

carotene, GPX, lipid peroxidation, and biochemical and

hematological parameters in healthy dogs. The results showed a

decrease in serum vitamin E and beta-carotene concentrations,

while serumMDA and vitamin A concentrations were increased

during enflurane anesthesia. The authors pointed out that

administration of antioxidant compounds such as vitamin

C, vitamin E, and selenium may be beneficial in anesthetic

complications (35).

El-Bassiouni et al. (34) studied the involvement of ROS

and antioxidant defense mechanisms in liver tissue and plasma

under different hypoxic conditions during halothane anesthesia.

In liver tissue and plasma, there was an increase in MDA and

a decrease in the free radical scavengers reduced glutathione

(GSH), ascorbic acid, and especially vitamin E, with hypoxia

being a major contributing factor. In addition, hypoxia and

halothane inhibited hepatic SOD activity (34). Simeonova et al.

(36) compared the effects of three anesthetic protocols on lipid

peroxidation in dogs. Halothane anesthesia increased plasma

MDA concentrations in dogs compared with the fentanyl and

halothane groups and with dogs treated with lumbosacral

epidural anesthesia (36).
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Discussion

Intravenous and inhalational anesthetics can cause

dose- and time-dependent cardiovascular and respiratory

depression (59, 60) that may lead to hypoperfusion and

hypoxia. In contrast, ketamine increases myocardial work

and cardiac output, maintaining arterial pressure and heart

rate (59). It has a mild effect on the respiratory system

but can cause respiratory depression when used with other

central nervous depressants (46). Anesthetic procedures

in clinical trials include various agents for sedation, gentle

induction of anesthesia, and analgesia. The metabolism of

these agents and the stress response to pain during surgical

procedures may aggravate the oxidative status of animals

under anesthesia (7). The variability of anesthetic protocols

and procedures may explain the conflicting results of the

studies included in the present review. The preanalytical

procedures and the wide variability in the methods used to

measure oxidative stress parameters render some of the results

incomparable between studies and may also be the reason for

the conflicting results.

Conclusion

The effect of general anesthetics on oxidative stress is

variable and not yet fully understood. Comprehensive studies

are needed to investigate the effect of an anesthetic on oxidative

status in dogs. These studies should include larger numbers

of animals and measurement of a broader range of oxidative

status parameters, including markers of oxidative damage

to all biologically important molecules (lipids, proteins, and

DNA), concentrations of antioxidants and activity of antioxidant

enzymes, and measurement of the oxidative and/or reductive

potency of a biological fluid.
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