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Electrocardiogram (ECG) signal is critical to the classification of cardiac arrhythmia using some machine learning methods. In
practice, the ECG datasets are usually with multiple missing values due to faults or distortion. Unfortunately, many established
algorithms for classification require a fully complete matrix as input. Thus it is necessary to impute the missing data to increase
the effectiveness of classification for datasets with a few missing values. In this paper, we compare the main methods for
estimating the missing values in electrocardiogram data, e.g., the “Zero method”, “Mean method”, “PCA-based method”, and
“RPCA-based method” and then propose a novel KNN-based classification algorithm, i.e., a modified kernel Difference-
Weighted KNN classifier (MKDF-WKNN), which is fit for the classification of imbalance datasets. The experimental results on
the UCI database indicate that the “RPCA-based method” can successfully handle missing values in arrhythmia dataset no
matter how many values in it are missing and our proposed classification algorithm, MKDF-WKNN, is superior to other state-
of-the-art algorithms like KNN, DS-WKNN, DF-WKNN, and KDF-WKNN for uneven datasets which impacts the accuracy of
classification.

1. Introduction

In the present scenario, heart disease is one of the major
problems that threaten human health worldwide. Some of
them may be indicated by disorders of cardiac rhythm called
cardiac arrhythmias. The cardiac arrhythmias can be divided
into different types, some kinds of which can cause irrepara-
ble long-term damage to the heart, even sudden death [1].
Thus, it is crucial to detect and classify these fatal arrhyth-
mias early, which makes it possible to choose proper antiar-
rhythmic drugs and give urgent medical treatment.

As being noninvasive and easy to record, electrocardio-
gram (ECG) becomes a preferred diagnostic tool for the

detection of arrhythmias and has been broadly used in med-
ical institutes and hospitals. The bioelectrical activity gener-
ated by the heart can be recorded and displayed in a graph
called the electrocardiograph [2]. One ECG cardiac cycle
contains P wave, QRS Complex, and T wave components,
which are represented by P, Q, R, S, and T. The main param-
eters of ECG cardiac cycle for examination of patients with
heart disease are amplitude and duration measured accord-
ing to some characteristics of ECG, i.e., the peak (P, Q, R, S,
T, and U), intervals (PR, RR, QRS, ST, and QT), and seg-
ments (PR and ST) [3]. Figure 1 shows a classic ECG signal
sample that contains the most important features which
explore the activity in the heart.
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The medical practitioners can interpret the morphology
of such an ECG waveform and then detect some irregular
changes which are called arrhythmia. However, due to the
huge number of patients, the visual checks for arrhythmia
are tedious and time-consuming. In addition to it, the con-
ventional manual analysis methods are also usually subjec-
tive, which may cause the inaccuracies of the diagnosis
results. It is therefore important to apply an automated com-
puting aided approach to detect and classify the arrhythmia
more efficiently and precisely. For the last few decades, vari-
ous techniques have been proposed to assist with the physi-
cians hoping to improve the arrhythmia therapy. In the
literature, these processing techniques contain signal pro-
cessing [4], pattern recognition [5, 6], and machine learning
[7–9] methods. This paper is concerned with the imputation
methods of the missing values in ECG and the machine
learning methods suit for arrhythmia classification.

The remainder of this paper is organized as follows. In
Section 2, we briefly discuss the studied problems in the field
of arrhythmia classification and review the previous work.
Section 3 describes the arrhythmia dataset, different missing
value imputation methods, and our modified algorithm, i.e.,
MKDF-WKNN. Section 4 gives the experimental results on
the UCI datasets. Finally, the conclusion and future work
are drawn in Section 5.

2. Problem Statement

By far, numerous arrhythmia databases processed by the
above techniques have been used as the benchmark by
researchers to compare the performance of their research
methods with others. Generally, the arrhythmia databases
can be classed into two types: signal (e.g., MIT-BIH) and
numeric (e.g., UCI). In this paper, we research on the
arrhythmia databases that consist of numeric, which have
been preprocessed to multidimensional feature vectors by
some signal processing and pattern recognition techniques
like digital filters and peak analysis [10]. However, some

attribute values of the ECG data would inevitably be missing
after the preprocessing. Unfortunately, many algorithms for
classification like K-Nearest Neighbor (KNN) are not robust
to the input matrix with missing values, which may lead to
the loss of effectiveness. Therefore, preprocessing before
analysis of the data is a crucial task to cope with. For missing
values, some studies apply the “case deletion” method
directly, i.e., simply removing those instances with missing
values and only using the observed instances to establish
the classification models, which may lose some information
especially for small sample datasets [11]. To tackle these
shortcomings, in the past decades, several missing value
imputation methods have been proposed in some fields like
DNA microarrays [12–16] and traffic data problems [17,
18]. For example, Troyanskaya et al. present a prevalent
imputation method based on KNN, i.e., KNN impute for
DNAmicroarrays [13]. Tan et al. propose the PPCAmethod,
a matrix completion method dealing with missing traffic flow
problems [18].

The imputation methods have on the whole two divisions
which are interpolation based and inductive learning-based
methods [18]. The former means to fill the vacancies (miss-
ing values) according to the mean or median of the rest
values that belong to the same column, or just simply fill
them with zeros. Different from the interpolation one, the
inductive learning-based methods refer to assign probabilis-
tic values based on the distribution of the known values.
For the abovementioned arrhythmia databases that consist
of numeric, there is not large literature publishing in missing
value imputation. The “case deletion” [19] and “row average”
[20] methods are most commonly implemented on the
numeric arrhythmia datasets regardless of whether the miss-
ing values are significant. These simple approaches are
“blind” to the information of the missing values and underes-
timate the covariance in the data, which may add more
uncertainty and lead to bias. In fact, in the previous work, a
modified PCA method was proposed to address the missing
value problem in the arrhythmia datasets [21]. In this paper,
we want to investigate further on a more sophisticated strat-
egy, i.e., Robust Principle Component Analysis (RPCA), an
advanced approach. The Matrix Completion (MC) problem
can be viewed as a special case of the RPCA problem [22].
The main algorithm of the two ones is the same, and the
only difference between the two problems is that the former
is to recover the matrix that is corrupted, whereas the latter
is to recover the matrix with missing values, so in this paper
we can refer to MC method with RPCA method. In MC
method, we can solve the optimization problem under some
conditions, as in Equation (1), to recover the incomplete
matrix [23]:

minimize rank Xð Þ,
subject to Xij =Mij, i, jð Þ ∈Ω,

ð1Þ

where M is the observed matrix and the set Ω is the indices
of M. And, this approach is capable to recover matrices of
rank about 10 with nearly a billion unknowns from just
about 0.4% of their sampled entries [24]. According to this,
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Figure 1: A classic ECG signal sample.
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we also attempt to handle the missing value problem in
arrhythmia classification by means of solving this optimiza-
tion problem and research on the performance of MC for
the dataset with different proportions of missing values com-
pared with other state-of-the-art methods for value imputa-
tion in arrhythmia classification.

Meanwhile, recent advances in the field of machine learn-
ing (ML) for biomedicine and bioinformatics have received
considerable attention. These studies are concerned with
developing a better and robust automatic algorithm for the
classification and identification of the data. In these works,
there are some classical machine learning classifiers like Sup-
port Vector Machines (SVM), Multilayer Perceptron (MLP),
Artificial Neural Network (ANN), K-Nearest Neighbor
(KNN), and some variants and combinations of them [25–
29], which may make the classification and identification
more accurate. Among them, KNN is one of the most com-
monly used methods for arrhythmia classification for its sim-
plicity and high adaptive behavior [30]. And, some variants
of KNN like Distance-Weighted KNN (DS-WKNN) [31]
that add weight on distance perform even better than the
classical KNN. In our former work, we also propose a kernel
Difference-Weighted KNN classifier (KDF-WKNN) [32].
The proposed method improves the accuracy for classifica-
tion than DS-WKNN.

But for arrhythmia classification or some other multiclass
biomedical classifications, they suffer from the unbalanced
number of training samples. To illustrate better, we take for
example a classification problem in a two-dimensional space
to demonstrate the influence on classification results of the
unbalanced number of training samples (Figure 2).

As shown in Figure 2, when the classical KNN is applied
with the parameter k = 10, the sample xi will be classified into
CLASS A because most cases of the 10 nearest neighbors
belong to CLASS A. However, if the truth is that the sample
xi belongs to CLASS B, the result of KNN will be a misclassi-
fication caused by the unbalance of the number of training
sample. And, it is intuitive that the misjudgment may become
more serious when the parameter k is lager. In order to over-

come this problem shown in Figure 2, we take the imbalance
of the sample into account and modify our KDF-WKNN and
propose a modified kernel Difference-Weighted KNN classi-
fier (MKDF-WKNN). In the method, we first put forward an
improved weighting way that imposes a penalty into the
weight of the class whose number is large to reduce the
impact from the uneven distribution.

As for arrhythmia classification, this paper not only
attempt to figure out the missing value problem under differ-
ent conditions, but consider the uneven sample number of
training data in arrhythmia datasets. The main contributions
of our work are summarized as follows:

(1) For dataset with variant missing values portions (e.g.,
10%~70%), the influence of different missing value
imputation methods on the accuracy of selected clas-
sifiers is discussed

(2) We also modify the previous KDF-WKNN by adding
a weight with respect to the sample number, which
improves the accuracy for the arrhythmia
classification

(3) The experimental results on the UCI database indi-
cate that the MC method is fit for the imputation of
the missing values in cardiac arrhythmia classifica-
tion especially when the missing data volume is larger
compared with other methods and our proposed
MKDF-WKNN algorithm is superior to the previous
one for uneven datasets in terms of classification
accuracy.

3. Materials and Methods

3.1. Description of Data Set. The standard multivariate ECG
dataset taken here is chosen from the Irvine (UCI) cardiac
arrhythmias database of the University of California [33].

This database contains 452 instances of samples with 279
attributes, of which the first to 4 attributes refer to the general
information of a patient like age and sex, whereas the rest 275
attributes are the numeric features selected from the ECG
signal waveform by some signal or pattern process tech-
niques. These 452 participants can be divided into 16 classes
according to the ECG data. The first class is “Normal”, and
the other 15 classes are “Abnormal”, corresponding to 15
kinds of arrhythmia. A brief description of the 16 classes is
given in Table 1. For more details of the data set, please refer
to the download website [33].

The UCI cardiac arrhythmia database contains two sig-
nificant characteristics. First, there are several missing attri-
bute values (about 0.33%). Second, the distribution of class
labels is imbalanced. As shown in Table 1, the “Normal” class
has 245 instances of samples whereas one of the abnormal
classes “Supraventricular Premature Contraction” has only
2 cases. For the first, second, and third-degree atrioventricu-
lar block cardiac arrhythmia class, there is even none
instance of sample due to the insufficient of the data sample.
Note that, certain class with no samples in the training data-
set is not in our consideration. We focus on the imbalance of
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Figure 2: An example of classification in uneven sample.
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training data rather than solving the missing sample belong-
ing to a certain class.

In this paper, we conduct our research based on these two
characteristics and the specific methods will then be intro-
duced in the next section.

3.2. PCA Based and RPCA Based Estimation Methods for
Missing Values. In this subsection, we give a brief description
of the main formulation of the modified PCA and RPCA
method for missing value imputation, respectively.

3.2.1. PCA Based Method. In this subsection, we give a brief
description of the modified PCA method for missing value
imputation. Denote by a training set X = fx1, x2,⋯, xNg,
where X j = ½Xð1Þ

j ,⋯,XðdÞ
j �T is a d-dimensional vector. The

covariance matrix of classical PCA is then defined as:

St =
1
N
〠
N

j=1
x j − �x
� �

x j − �x
� �T = 1

N
〠
N

j=1
x jx jT − �x�xT , ð2Þ

where �x is the mean vector. To mark the missing attribute

values in the training set, we use a variable ZðiÞ
j to denote

whether the value is missing:

z ið Þ
j = 0, if x ið Þ

j is missing
1, else

(
: ð3Þ

Then, the scattering matrix of the training set can be

modified by ZðiÞ
j as:

St k, lð Þ = 1
N
〠
N

j=1
x kð Þ
j x lð Þ

j z kð Þ
j z lð Þ

j − �x kð Þ�x lð Þ, ð4Þ

where the corresponding mean vector is defined as �xðiÞ = 1/
N∑N

j=1x
ðiÞ
j zðiÞj :.

LetW be the projector obtained by calculating the eigen-
vector of the above scatter matrix St , then the reconstructed
sample is:

X′ =WY, ð5Þ

in which Y can be obtained by the least square method utiliz-
ing X, Z, and W. Please refer to [21] for the details. The
reconstructed matrix is the final data with complete values.

3.2.2. RPCA Based Method. In a recent paper [23], Candès
and Recht proved that for some positive constant C, the
matrix of the sample can be completed by solving the optimi-
zation problem in Formula (1) if the number of the observed
entries, p, obeys p ≥ Cn6/5r log n in which r stands for the
rank of the matrix and n for the maximum of the numbers
of rows and columns. Owning to the nonconvexity, Formula
(1), an N-P hard problem, is also proved to be approximated
by the nuclear norm one as:

minimize Xk k∗,
subject to Xij =Mij, i, jð Þ ∈Ω:

ð6Þ

There are several state-of-the-art algorithms that can
approximately solve the MC problem in Formula (6) to
recovery a low-rank matrix including the Accelerated Proxi-
mal Gradient (APG) approach [34] and the Singular Value
Thresholding (SVT) approach [24]. In this paper, the SVT
approach, an easy-to-implement and effective algorithm, is
applied through which the MC problem can be further mod-
ified as:

minimize τ Xk k∗ +
1
2 Xk k2F ,

subject to ΓΩ Xð Þ = ΓΩ Mð Þ,
ð7Þ

where τ is a large positive scalar and the ΓΩðXÞ in Formula
(7) is the orthogonal projector onto the input matrix outside
of Ω so that the ði, jÞth component of ΓΩðXÞ is equal to the
constraints in Formula (6), i.e., Xij if ði, jÞ ∈Ω and zero oth-
erwise. And when τ is large enough, the solution of the mod-
ified objective function converges to that of Formula (6) after
the implementation of the shrinkage iteration by the SVT
algorithm. Introducing an intermediate Yk that starts with
Y0 = 0, the mentioned algorithm inductively is defined as:

Xk = Ξτ Yk−1
� �

,

Yk = Yk−1 + δkΓΩ M −Xk
� �

,

8><
>:

ð8Þ

until a stopping criterion is reached. In Formula (8), fδkg
refers to a sequence of positive step sizes. Given the Sin-
gular Value Decomposition (SVD) of X =UΣV∗, Σ = diag
ðfσig1≤i≤rÞ, the soft-thresholding operator Ξτ is defined as

Table 1: Class description of the UCI cardiac arrhythmia database.

Class Class name
Number of
instances

1 Normal 245

2 Ischemic changes (coronary artery disease) 44

3 Old anterior myocardial infarction 15

4 Old inferior myocardial infarction 15

5 Sinus tachycardia 13

6 Sinus bradycardia 25

7 Ventricular premature contraction (PVC) 3

8 Supraventricular premature contraction 2

9 Left bundle branch block 9

10 Right bundle branch block 50

11 1. degree atrioventricular block 0

12 2. degree AV block 0

13 3. degree AV block 0

14 Left ventricular hypertrophy 4

15 Atrial fibrillation or flutter 5

16 Others 22
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ΞτðXÞ≔UΞτðΣÞV∗, ΞτðΣÞ = diag ðfðσi − τÞ+gÞ, where t+ is
the positive part of t. More details for SVT can be found
in [24].

3.3. Modified KDF-KNN Algorithm. Denote by a training set
fðx1, y1Þ,⋯, ðxm, ymÞg, where xi ∈ Rd is the ith training sam-
ple and yi ∈ fω1,⋯, ωcg is the class label corresponding to xi.
Given an unclassified sample x, we can find the first k nearest
neighbors fðxNN

1 , yNN
1 Þ,⋯, ðxNN

k , yNN
k Þg by the Euclidean

distance metric. In classical KNN, the label of x can be
assigned by the majority category label of its k nearest
neighbors.

Because the nearest neighbor close to the unclassified
sample should contribute more to classification, a Distance-
Weighted KNN (DS-WKNN) is proposed to assign each
nearest neighbor a weight wi according to a function of dis-
tance as follows:

wi =
d xNN

1 , xNN
k

� �
− d xNN , xNN

i

� �
d xNN , xNN

k

� �
− d xNN , xNN

1
� � : ð9Þ

In our previous work, we take the correlation of different
neighbors into account and present a Difference-Weighted
KNN, i.e., DF-WKNN and its kernel version KDF-WKNN.
In DF-WKNN, the weight assignment can be defined by solv-
ing a constrained optimization problem as follows:

w = arg min 1
2 x −wTX
�� ��2,

s:t: 〠
w

i

wi = 1:
ð10Þ

Let D = ½x − xNN
1 ,⋯, x − xNN

k �T . The optimization prob-
lem of Formula (10) can be rewritten as

w = arg min 1
2w

TDDTw,

s:t: 〠
w

i

wi = 1:
ð11Þ

Let Gk =DDT , through a series of mathematical opera-
tions, i.e., Lagrange multiplier method and regularization,
the problem in Formula (11) can be transformed into the fol-
lowing equation:

Gk =Gk + ηtr Gk
� �

/k
h i

w = 1k, ð12Þ

where trðGkÞ denotes the trace of the matrix G, and η = 10−0
~10−3 is the regularization parameter. Finally, the weights
w of KNNs are determined by solving the linear equa-
tion in Formula (12). For the kernel version KDF-WKNN,
the method for solving the weights w is similar to that
of the DF-WKNN described above. Please refer to [31] for
the details.

In order to reduce the impact from the imbalance of sam-
ple number, we further modified the obtained w generated by

KDF-WKNN by setting a correction factor γ to punish these
classes with a large number. Denote by φðxÞ a function to
count the number of a certain class, the algorithm of γ is
inductively defined as:

γi =
log λi + n/φ ið Þ + ξð Þð Þ

log λi + 1ð Þ , i = 1,⋯, c, ð13Þ

where i refers to the label of certain class belonging to the c
classes in the training dataset, and n stands for the number
of training samples. ζ is a positive constant parameter which
can be justified according to the sample. And γi = roundð
max ðφðiÞÞ/avgðφðiÞÞÞ, in which the numerator and the
denominator stand for the maximal and average number of
all the classes, respectively. Then, the final weight can be writ-
ten as wi ≔wi ∗ γi. From Formula (13), it is intuitive that
when the number of one class i is large, the correction factor
γi becomes smaller, so that a lower weight will be assigned to
the corresponding sample.

4. Experimental Results

In this section, we perform comparison experiments with
respect to missing value imputation methods and classifica-
tion methods for arrhythmia datasets with different propor-
tions of missing values (e.g., 10%~70%). All the experiments
are carried out with Intel(R) Core(TM) i5-4590 CPU
(3.30GHz) and 32GB RAM under the Matlab2012a program-
ming environment. The dataset comes from the UCI machine
learning repository described in Section 3.1, and the different
proportions of missing values are generated by computer at
random based on the original UCI arrhythmia dataset.

4.1. Experimental Procedure. The experimental flow on the
UCI arrhythmia dataset is delineated in the flow block dia-
gram (Figure 3), which is comprised of four steps:

Comparison of the experimental results from different
angles

Deletion of the values in the original UCI arrhythmia
dataset at random to generate some different

proportions of missing datasets

Imputation of these missing values using different
methods for all created datasets (Zero, Mean, PCA

and RPCA imputation method)

Classification of these datasets using different
classifiers (KNN, DS-WKNN, DF-WKNN, KDF-

WKNN, MKDF-WKNN)

Figure 3: The block diagram of the experimental procedure.
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(1) The first step is to delete different proportion values
on the original UCI arrhythmia dataset at random
to generate some different proportions of missing
value datasets.

(2) The second step involves imputation of these missing
values using different methods for all created data-
sets. In our experiment, we apply four methods, i.e.,
Zero, Mean, PCA, and RPCA imputation methods.
“Zero method” means to input the missing values
with zero which is used for comparison; “Mean
method” refers to replace each missing value with
the average value of the corresponding attribute
which is commonly applied in arrhythmia classifica-
tion; The PCA and RPCA method are the two induc-
tive learning-based methods we introduced in
Section 3.2.

(3) Then, we classify these datasets using different classi-
fiers (KNN, DS-WKNN, DF-WKNN, KDF-WKNN,
MKDF-WKNN), and the VALUE of k is unified into
151. In our experiment, the value of the parameter in
MKDF-WKNN, ζ, is 10−4. To reduce bias, the perfor-
mance of these classifiers is evaluated by running 10-
fold cross-validation with 9-fold for training and 1-
fold for testing. We split the arrhythmia database into
10 folds and the mean classification accuracy is
adopted by the average of 10 splits.

(4) At last, we compare the performance of these
methods for arrhythmia classification and visualize
the experiment result.

4.2. Classification Performance. In this section, we show the
experiment results that were implemented using an accuracy
indicator to examine the performance of missing value impu-
tation methods and five classifiers for classifying cardiac
arrhythmia. The experiments compare the performance on
different proportions of missing value datasets generated
from the UCI arrhythmia database. And the whole result is
shown in Table 2.

From Table 2, we can infer that out of five different clas-
sifiers the MKDF-WKNNmodel gives very attractive classifi-
cation results in terms of classification accuracy through the
four missing value imputation methods of 71.90%, 73.01%,
71.68%, and 71.90%, respectively. To further research on
the influence of different missing value imputation methods
on the accuracy of certain classifiers and observe the trends
obviously, we take the MKDF-WKNN classifier as an exam-
ple and visualize the last four rows of Table 2 in form of line
chart (Figure 4).

We empirically tested 7 simulations based on the dataset
with the percentage of missing values range from 10% to 70%
(the proportion of missing data in the original UCI dataset is
0.33%) using four methods to estimate the missing values,
and the accuracy is obtained by the classification on the data
after imputation.

Form Figure 4, as we imagine, the accuracy becomes
lower and lower with the increase of the percentage of miss-
ing values for all the four broken lines. And, when the pro-
portion of missing data ranges from 0% to 30%, the last
three imputation methods are similar and perform better
than the “Zero method”. For the proportion of missing data
ranging from 30% to 70%, the “RPCA-based method”

Table 2: Comparison of the classification accuracy (%) achieved w.r.t. the imputation methods and classifiers.

Proportion 0.3% 10% 20% 30% 40% 50% 60% 70%

KNN

X0 59.07 55.75 54.65 54.87 53.98 54.20 53.98 54.42

MEAN 58.19 57.08 55.53 55.75 54.42 53.98 53.76 54.65

PCA 58.19 57.96 55.53 56.19 54.65 54.65 53.76 53.76

RPCA 58.85 57.52 56.86 57.30 55.09 54.42 54.42 55.09

DS-WKNN

X0 60.84 59.96 55.75 54.42 52.88 53.76 52.43 51.99

MEAN 61.50 59.29 58.19 56.42 55.31 54.20 53.54 53.32

PCA 61.06 60.18 58.41 58.63 55.31 55.31 53.32 50.88

RPCA 59.96 58.63 58.63 59.29 54.20 55.53 57.08 54.42

DF-WKNN

X0 70.58 66.15 63.27 59.73 58.85 56.86 56.19 54.20

MEAN 71.90 69.03 68.14 65.49 61.73 59.29 59.29 56.19

PCA 70.35 69.03 66.59 65.49 61.28 61.28 55.53 50.44

RPCA 70.80 67.92 65.93 65.49 62.17 61.06 60.40 57.08

KDF-WKNN

X0 70.35 66.15 63.27 60.18 58.19 56.86 56.19 54.65

MEAN 71.68 69.03 67.92 65.71 61.73 59.29 59.29 56.19

PCA 70.58 68.81 67.04 65.93 61.50 61.50 55.09 51.77

RPCA 70.80 67.70 65.93 64.60 61.95 61.73 60.18 56.86

MKDF-WKNN

X0 71.90 67.04 63.72 59.96 60.18 58.85 57.30 53.98

MEAN 73.01 70.58 68.14 66.37 62.17 58.41 59.51 54.87

PCA 71.68 69.91 69.03 66.37 60.62 60.62 55.53 49.56

RPCA 71.90 70.58 67.70 66.15 64.38 60.84 61.28 56.42
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outperforms the other three; however, the “PCA-based
method” sharply gets worse, which indicates the lack of sta-
bility of the “PCA-based method”. Throughout the whole
picture, the “RPCA-based method” is more stable and accu-
rate particularly for the data including a larger number of
missing values, which indicates that the “RPCA-based
method” can successfully handle missing values in arrhyth-
mia dataset no matter how many values in it are missing.
And the “Mean method”, a most commonly used imputation
method in arrhythmia classification, is second only to it.

Based on the experimental results, we conclude that for
arrhythmia classification, when the small part (0% to 30%)
of data is missing, we can apply any of the other three impu-
tation methods except the “Zero method”. And when the

missing values are large (30% to 70%), we can use the
“RPCA-based method” to replace the classical method, i.e.,
the “Mean method”.

What is more, we also make a histogram of one column
in Table 2 when 0.33% values of the data are missing (the
original UCI arrhythmia dataset) in Figure 5.

Figure 5 illustrates the mean classification accuracy of
five classifiers, i.e., KNN, DS-WKNN, DF-WKNN, KDF-
WKNN, andMKDF-WKNNwith four missing value estima-
tion methods. Obviously, we can see that whatever method is
chosen to fill the missing data, MKDF-WKNN outperforms
the others in terms of classification accuracy, which indicates
that the modification is effective for the uneven dataset like
the UCI arrhythmia dataset in which the major class labels
are “Normal”. In addition, we can infer that the mean accu-
racy is more than 70% when using our MKDF-WKNN clas-
sifier, whereas the mean accuracy of the traditional KNN is
lower than 60%, which implies that our proposed algorithm
is reliable for the classification of different arrhythmia types
so that the problem that stated in Section 2 can be solved.

5. Conclusion

Missing value is a crucial problem, which could compromise
the quality of data, so missing value estimation is a significant
preprocessing step for further experiments. In this paper, we
compare the main methods for estimating the missing values
in electrocardiogram data like the “Zero method”, “Mean
method”, “PCA-based method”, and “RPCA-based method”.
In our comparative study, the “RPCA-based method” can
successfully handle missing values in the arrhythmia dataset
no matter how many values in it are missing, which indicates
that the higher classification accuracy can be expected in the
practical application when a large number of values in the
dataset are missing. As for the imbalance data classification
problem, we also propose a modified KNN-based classifica-
tion algorithm, i.e., MKDF-KNN, which is modified by a cor-
rection factor to handle the imbalance datasets problem to
get better performance. In the future, we will further study
the modified factor for the weight of the weighted-KNN
and improve the robustness of the method of selecting better
parameters of our MKDF-WKNN.
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