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Abstract: Mixed lipid micelles were proposed to facilitate life through their documented growth
dynamics and catalytic properties. Our previous research predicted that micellar self-reproduction
involves catalyzed accretion of lipid molecules by the residing lipids, leading to compositional
homeostasis. Here, we employ atomistic Molecular Dynamics simulations, beginning with 54 lipid
monomers, tracking an entire course of micellar accretion. This was done to examine the self-assembly
of variegated lipid clusters, allowing us to measure entry and exit rates of monomeric lipids into
pre-micelles with different compositions and sizes. We observe considerable rate-modifications that
depend on the assembly composition and scrutinize the underlying mechanisms as well as the energy
contributions. Lastly, we describe the measured potential for compositional homeostasis in our
simulated mixed micelles. This affirms the basis for micellar self-reproduction, with implications for
the study of the origin of life.

Keywords: origin of life; Molecular Dynamics simulation; mixed micelles; accretion kinetics

1. Introduction

Lipids, sometimes regarded as amphiphiles or surfactants, are simple amphipathic
molecules, possessing a polar headgroup and a hydrophobic tail. These molecules can
spontaneously aggregate to form structurally diverse assemblies, such as micelles and
vesicles, when present above certain threshold concentrations (e.g., critical micelle concen-
tration, CMC). As the primary component of the membranes of all living cells, assemblies
of lipids and their growth dynamics have been the focus of research for many decades [1].
This uncovered the technological usefulness of lipid assemblies, particularly in the fields of
medicine and synthetic chemistry [2,3]. It has also offered insights on both the thermody-
namic attributes of lipid assemblies, such as structural stability and electrostatics, and their
kinetic parameters, such as their catalytic capacities [4,5].

As lipids are prebiotically available and possess capacities for spontaneous generation
of supramolecular structures, these molecules have been widely implicated in studies of
the origin of life. The traditional view of a protocell particularly invokes a vesicular bilayer
surrounding an assortment of replicating polymers within its lumen interior [6,7]. The
proposed role of the lipid bilayer in such studies is to sustain the replicating polymers
and prevent them from diffusing away. This view has elicited a renewed focus on lipid
systems in the context of prebiotic chemistry [8,9], typically comprised of simple lipids,
such as fatty acids and alcohols [10]. Recent accounts [4,11] have suggested that lipids have
other important functionalities besides acting as barriers between the protocellular inner
network and the aqueous solution. The lipid membrane must be kinetically tied to the
reproduction apparatus of the network, so that it will be able to coordinate its own growth
and division with the entire cell [12,13]. This realization prompts a deeper exploration of
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the reproduction dynamics of non-covalent lipid assemblies as a significant facet of any
origin-of-life scenario.

Going one step further, we have argued in previous studies [11,12] that mixed lipid as-
semblies may have facilitated the emergence of life without relying on replicating polymers.
To test this Lipid First approach, we have developed the Graded Autocatalysis Replication
Domain (GARD) chemical kinetics model, which directly illustrates how mutually catalytic
interactions among lipids influence the accretion rates of new lipids joining a growing
assembly. In this case, mutual-catalysis describes the predicted capacity of lipids to modify
the rates of entry and exit of other lipid types to and from a micellar assembly, though
synthetic reactions have also been explored in the context of the GARD model [11]. The
model predicts that the micellar lipids act on accreting lipids in a coordinated fashion, as
observed in published reports [12,14]. These catalytic exertions may lead to compositional
homeostasis, a unique state in which the assembly’s composition remains unchanged
throughout growth-and-split cycles [11,15]. Crucially, homeostatic growth followed by
fission results in self-reproduction, mostly with mutations, which is a basis for subsequent
selection and evolution. The inferences of the GARD model apply mostly to micelles rather
than to vesicles, making them better life precursors [12].

According to the GARD model, the mutually catalytic interactions entail a kinetic
influence of the momentary composition of a growing assembly on the accretion rates of
joining monomers. More explicitly, the model assumes that each lipid type may influence
the kinetics of any other lipid’s entry into or exit from the micelle. Thus, the micellar current
constituency plays a critical role in determining monomer fluxes, hence the time-dependent
changes of the micelle’s compositional states. It provides a recursive feedback loop, which
induces deviations from random accretion. Monte Carlo simulations of the GARD model
reveal that this guided progression allows an approach towards compositional homeostasis
and self-reproduction [16,17].

While lipid-based non-covalent catalysis cases have been presented before [18–20], and
some reports indicate that specific lipophiles may act as catalysts for the incorporation of
new lipid monomers into vesicles [21,22], limited molecular details have been obtained on
the precise mechanism and dynamics of lipids accretion into heterogeneous lipid assemblies.
The reason for this is the technical challenge of monitoring picoseconds compositional
changes within a population of nanoscopic mixed micelles, so as to be able to track the
entire accretion trajectory of multiple assemblies. Without such technological capacity,
experimentally studying catalysed accretion in the lab remains a daunting task.

However, advanced computational methodologies allow us to overcome some of these
difficulties. Molecular Dynamics (MD) simulations is an effective and reliable computa-
tional tool, extensively validated and broadly accepted as an accurate emulation of real
chemistry [23,24]. Since its invention, MD has matured enough to enable high-resolution
scrutiny of complex molecular systems that are often inaccessible to experimentation [25].
This makes MD one of the best investigative tool for probing lipid-based kinetic phenomena
in systems chemistry and protobiology arenas [26]. Indeed, MD has been used extensively
to research micellar systems [27–33], deriving both structural and dynamical attributes.
Though significant attention has been given to the process of self-assembly [27,29,34], most
of the work on heterogeneous lipid systems was conducted largely without significant
compositional variation.

In this work, we present an atomistic-resolution MD simulation study of the accretion
of lipid monomers towards mixed micellar assemblies. We simulated binary mixtures of
five lipid types in different ratios, observed their aggregation, and measured the influence
of the micellar composition on the kinetics of monomer entry and exit. We report that
compositional changes do, indeed, affect these rates, and, to various extents, for different
lipid types, lending credence to the realism of network-like mutually-catalytic interactions
among lipids. We describe cohesive aggregation profiles for discrete lipid combinations,
and calculated the accretion flux of our mixed micelles, and determined that some may
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attain compositional homeostasis in non-random configurations, supporting predictions by
the GARD model.

2. Materials and Methods

System set-up: The 3D models of Lauric Acid (LAU), Dodecyl Phosphocholine (DPC),
Dodecyl Dimethyl Ammonio Propane Sulfonate (DAS), Dodecyl Dimethyl Amine-oxide
(DDA), and Sodium Dodecyl Sulfate (SDS) were built using the Micelle/Membrane Builder
facility of CHARMM-GUI [35]. The size of the system as well as the amount lipid monomers
were originally based on a previous study by Abel et al. [36], using similar specifica-
tions to observe the self-assembly of DPC lipids concluding in a single micelle. Like-
wise, 54 lipid molecules were packed in random positions and orientations in a simula-
tion box of 7.4 × 7.4 × 7.4 nm3 using the gmx insert-molecules tool of Gromacs 2020.2
(https://doi.org/10.5281/zenodo.3773801, accessed on 21 May 2020) [37] for each system.
The molecules were in high concentrations (~220 mM), well above their CMC. The systems
were solvated with TIP3P water molecules. Each box was replicated by periodic bound-
ary conditions. One lipid (LAU) is neutral, and two others (DPC, DAS) are zwitterionic,
hence, they bear zero net charges. The last two (SDS and DDA) bear net charges. Sodium
counterions are introduced for the negatively charged SDS, and chloride counterions are
introduced for the positively charged DDA. These counterions were added in random
positions to achieve a neutral net charge of the systems. The minimization procedure
and set-up of molecular dynamics (MD) simulations were performed with GROMACS
2020.2 program package, using the CHARMM-36 all-atom additive force field containing
lipid parameters [38]. The real space summation of electrostatic interactions was trun-
cated at 1.2 nm, and the Particle Mesh Ewald (PME) method was used to calculate the
electrostatic interactions beyond 1.2 nm with a grid spacing of 0.12 nm and an interpolation
order of 4. Van der Waals interactions were calculated using a cut-off of 1.2 nm. The
solvated systems were energy-minimized to eliminate unfavorable positions. Harmonic
positional restraints were applied on the lipid head group atoms—carboxyl oxygen for
LAU, phosphate phosphorus for DPC, ammonium nitrogen for DAS, ammonium nitrogen
for DDA, and sulfate sulfur for SDS—and tailgroup atoms—carbons at positions 4, 8, and
12—to achieve smooth minimization. 5000 steps of steepest descent algorithm were used,
adopting harmonic force constants of 1000 kJmol−1nm−2 for the abovementioned lipid
atoms. The minimized systems were equilibrated over 2 successive runs: 125 ps (NVT, 1fs
time-step) and 200 ps (NPT, 2 fs time-step). To allow water molecules and ions to adjust
around the lipids, harmonic restraints with a force constant of 1000 kJmol−1nm−2 were
applied on the same lipid atoms, as in the case of the minimization step.

Production of MD trajectories: All-atom MD simulations were performed on a local
High Performance Cluster (HPC) called Chemfarm, with nodes of 2 GPUs and 36 CPUs
using the CHARMM-36 force field of GROMACS 2020.2 package. All simulations comprise
trajectories of 50 ns, with atomic coordinates recorded every 2 ps. Two sets of triplicates
were performed for binary systems (containing two types of lipids), whereas one set of
triplicates was performed for each pure system (containing a single lipid-type). For each
replica, new initial random velocities were generated, and for each set of replicas new
initial atom positions were set as well. For the binary systems, five different concentration
ratios were performed (Table 1).

Table 1. Five different concentration ratios used for the binary systems.

Ratio Monomer Count

1 10%/90% 6/48
2 30%/70% 16/38
3 50%/50% 27/27
4 70%/30% 38/16
5 90%/10% 48/6

https://doi.org/10.5281/zenodo.3773801
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The following MD protocols were used: the integration time step was 2 fs; the isobaric–
isothermal (NPT) ensemble was employed; the pressure was set to 1 bar using isotropic
coupling to the Parrinello–Rahman barostat with a time constant of 5 ps and an isothermal
compressibility of 4.5 × 10−5 bar−1; the temperature was kept constant at 300 K using the
Nosé–Hoover thermostat with a time constant of 1ps. Bonds with hydrogen atoms were
constrained using the Linear Constraint Solver (LINCS).

Overall Simulation analyses: The MD trajectories were analyzed with tools included
in the GROMACS 2020.2 package and by in-house Python scripts. Molecular clusters
of lipids were calculated with the gmx clustsize tool of GROMACS using a cut-off of
0.24 nm (unless mentioned otherwise in the text), the largest distance to be considered in a
cluster. The cut-off choice was based on the database of atomic van der Waals radii used by
GROMACS [39]. The equilibrium minimum pairwise distance between two lipid molecules
is the equilibrium nucleus–nucleus distance of two hydrogen atoms, i.e., 0.24 nm (twice the
van der Waals radius of a hydrogen atom). Visualization of molecular conformations was
made with PyMOL (The PyMOL Molecular Graphics System, Version 2.3.0 Schrödinger,
LLC, New-York, US.) and VMD, version 1.9.4a43 (11 June 2020) [40]. Further analyses and
graphs were generated using Python.

B-matrix analysis: We took the slopes of all modulator-probe pairs and divided them
by the basal exit rate coefficient of the probe. The basal rates were measured in pure
mixtures (clusters of 100% probe type). We then multiplied the results by 100 to acquire
the clear percentages of change in rate coefficients. For example, the exit rate coefficient of
probe A from clusters of lipids A and B:

kexit o f A = kA( fB × βAB + 1 ) (1)

where kA is the basal exit rate of probe A, fB is the fraction of modulator B within the
cluster, and βAB is the value in the β-matrix that corresponds to the extent that modulator
B modify the exit rate of probe A. The equation is accommodating of micelles that include
more than two types, as exemplified in the compositional flux analysis.

Headgroup Interaction Prevalence (HIP) analysis: We took all the probe residence re-
actions and measured, at each time-step, the minimal distance of each of the probe’s
headgroup moieties to other moiety types in the cluster. If the distance was equal or below
0.3 nm, we noted that the moieties interaction is present. For each reaction, we calculated
the fraction of the residence time in which each possible probe-cluster moieties interac-
tion occurs (HIP values). Then, we grouped the reactions into two groups based on the
duration of their residence times—long residence group (above 10 ns) and short residence
group (1–2 ns)—and calculated the average HIP value for every possible headgroup pair
interactions within each group. Lastly, we calculated the fold changes in the HIP values
between these two groups for each moiety pair interaction, as a ratio of the long residence
group over the short residence group. T-tests were applied to observe the significance of
the fold changes.

Dynamic Headgroup Interaction Prevalence (HIP) analysis: We first divided all reac-
tions into two groups based on their involved clusters composition (below 50%, and above
50% lipid modulator levels). Then, we calculated the presence of a probe-cluster moiety
interaction across all compatible reactions in a specific group and did so separately for each
relevant time-step (for the first and last 0.5 ns of residence time). The HIP trends were
smoothed with a sliding window of 10 ps. Later, we calculated the difference (shift) in the
HIP plots between the modulator-rich and modulator-poor groups. We did so only for
cross-interactions (between lipids of different types), since same-type interactions exist in
clusters of many additional lipid types and, thus, are not applicable to this analysis.

Probe Orientation analysis: The orientation of a lipid is defined as the angle between
two vectors—the lipid vector, that connects a prominent atom in the lipid’s headgroup and
its terminal carbon, and the vector that connects the lipid headgroup and the geometrical
center of the involved cluster. The prominent headgroups atoms are: “N” for DPC, “S” for
SDS, “N” for DDA, “S” for DAS, and the carboxyl “C1” for LAU. The probe orientations
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were calculated for all the residence reactions from the exit analysis, and separately for
each time-step within the first and last 0.5 ns. The plots were smoothed with a sliding
window of 10 ps. Similar to the dynamic HIP analysis, the residence reactions were divided
into two groups based on the involved cluster composition (below 50%, and above 50%
lipid modulator levels). Afterwards, all compatible reactions within each group were
averaged discreetly for each time-step, generating a typical orientation progression for the
group. Lastly, we calculated the difference (shift) in the probe orientation plots between the
modulator-rich and modulator-poor groups.

Compositional flux analysis: We generated all possible compositions from the five
employed lipid types, with a resolution step of 5%. We then inserted each composition
into a variation of the GARD kinetic equation below, and calculated its accretion flux, as
well as the cosine similarity (H) between them. This similarity measure reveals the level of
compositional homeostasis, as high similarity means the flux drives the micelle towards
its current composition. A successful reproducer is defined as a composition that has an
H value of 0.9 or above. Lastly, the typical reproducing composition was generated from
averaging the compositions of the 10 best reproducers (those with the highest calculated
H values).

dni
dt

=

(
C× kentry,i ×

(
1 +

NG

∑
j=1

(
f j × βentry,ij

)))
−
(

kexit,i ×
(

1 +
NG

∑
j=1

(
f j × βexit,ij

)))
(2)

In the equation: ni is the amount of lipid type i, NG is the number of lipid types in the
system, C is the environmental concentration of lipid i, kentry,i and kexit,i are the basal entry
and exit rates of lipid type i into and from a homogeneous cluster (100% lipid i), f j is the
fraction of the composition that pertains to modulator lipid type j, and βentry,ij and βexit,ij
are the rate modification parameters of modulator j over probe i, taken from the derived
β-matrices in the results (see Sections 3.2 and 3.3).

3. Results
3.1. Varied Lipid Combinations Elicit Discrete Dynamic Profiles of Self-Assembly

To test the effects of lipid compositions on accretion kinetics, we employed five widely
different types of lipids, each with a distinct headgroup chemistry, so as to follow distinct
self-assembly processes (Figure 1A). The lipids include two single-charge lipids (SDS,
negative; and DDA, positive), two zwitterionic lipids (DPC, positive–negative; and DAS,
negative–positive) and a neutral lipid (LAU). All lipids are reported to spontaneously
aggregate to form micelles at equilibrium, except for LAU that mainly assembles into
vesicles in a pure state [41]. All five lipids possess an identical hydrocarbon tailgroup of
12 carbons, allowing to focus solely on the effects attributed to headgroup chemistries.

For each experiment, we simulated 15 lipid combinations, 5 pure and 10 binary mix-
tures of the five lipid types at high concentrations (~220 mM) to facilitate fast accretion.
Each run lasted 50 ns and consisted of 54 monomers randomly distributed in the simulation
box, surrounded with explicit water molecules. The lipids spontaneously self-assembled
into clusters, which grew bigger over time (Figure 1B). As observed before [33,42–44], two
paths for cluster growth were present. While monomers are available in the environment
(mostly during the first few nanoseconds), growth is driven primarily by stepwise addition
of single monomers to existing small clusters. However, after monomers are practically de-
pleted, the lipid clusters continued to grow mostly through fusion events, exhibiting much
slower kinetics. Notably, general monomer depletion occurred as even the concentration of
single monomers in the simulation box is similar to their CMC [45–48].

Following the accretion trajectories of different lipid admixtures, we probed their
self-assembly profiles using two complementary measures. First, we examined the average
non-monomeric cluster sizes along the simulations (Figure 1C). We observed that the
average cluster size is very sensitive to charge distributions—the simulations that reached
a single micelle state were those with more neutral net charge (such as pure LAU), while
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those that remained at the average aggregation number of about 20 are those with more
pronounced net charges (such as pure SDS and pure DDA). Notably, some lipid mixtures
displayed slow kinetics and did not reach an accretion plateau.

Figure 1. The self-assembly process of different lipid chemistries. (A) The molecular structures of
the five lipid types employed in the simulations. The headgroup charged moieties are marked by
color-coded frame and explicit charge indicator. (B) A typical self-assembly progression of lipids in
an MD simulation. Depicted are 100% DPC molecules, with blue and orange spheres corresponding
to headgroup moieties ammonium and phosphate, respectively. (C) Average size (lipid counts) of
clusters in experiments of different lipid chemistries. Clusters start from size 2 and grow over the
duration of the simulation. Line colors refer to different lipid chemistries (legend in (D)). The plots
are an average of several simulations of either pure or mixed (50%/50%) lipid chemistries and were
smoothed with a sliding window of 1 ns. (D) Average accessible surface area (SASA) of the employed
lipids in the experiments. The plots are an average of several simulations of either pure or mixed
(50%/50%) lipid chemistries, and were smoothed with a sliding window of 200 ps.

The second measure of accretion was changes in the Solvent Accessible Surface Area
(SASA) of the simulated lipids over time, a measure of their compactness or, conversely,
their accessibility for further interactions (Figure 1D). The SASA plots of the different
chemistries start high, then decrease as lipids aggregate and become less exposed to water.
Admittedly, this analysis is sensitive to the molecular size of the employed lipids, so
that chemistries that involve bigger and bulkier lipids tend to display greater solvent
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accessibility. Accounting for this shift, the plots follow a similar trend to those displayed in
the cluster size examination.

The two analyses provide quantitative information that portray cohesive aggregation
profiles for distinct lipid chemistries. Interestingly, the accretion profiles of some lipid com-
binations are strikingly different from those of both pure constituents, as best exemplified
by the complete self-assembly of SDS with DDA with prominent compactness, while each
of them hardly manifests a full-sized micelle by the end of the simulation (Figure 1C,D).
This may illustrate cooperative stabilizing interactions between the lipids, similar to those
experimentally reported for SDS and C12TAB (sharing similar topology with DDA) [49],
with kinetic implications.

3.2. Exit Rates of Lipids from Pre-Micelles Are Significantly Affected by Compositional Variation

Deriving association and dissociation kinetics from MD simulations is often nontrivial,
and the chosen strategy changes depending on the explored molecular system [50–54].
Kinetics by classical MD simulations is mostly studied in ligand-receptor systems, where
single-molecule experiments are performed on a sole receptor-ligand pair. This setting
makes it computationally demanding to derive statistically correct association and dis-
sociation rates [55]. In contrast, self-assembling lipid systems unlock a variety of cluster
sizes, shapes, conformations, and compositions, yielding an abundance of association and
dissociation events of free-monomers (ligands) with respect to a lipid cluster (receptor),
facilitating the derivation of statistically reliable kinetic rates.

We adopted a reaction-based methodology for detecting instances of lipids associating
with, and dissociating from, pre-micellar clusters. Such transitions were detected and
recorded for all employed lipids from all the simulations, noting the composition and size
of the involved clusters in each transition. Using this methodology, lipid exit rates were
first measured (Figure 2A, Supplementary Video S1). This is, generally, a much simpler
analytic measurement than that of entry rates, due to it being a first-order reaction. Based
on previous ligand-receptor studies, we regarded the involved cluster as the receptor,
its constituent lipid types that may influence the exit kinetics as “modulators”, and the
leaving lipid as the “probe”. A “residence time” was defined as the duration between
the first and last contact of the probe with the cluster, and its inverse is defined as the
exit rate coefficient (Equation (3)). A similar definition of the term is used in the realm of
ligand-receptor complexes [54,56–61], and has been discussed in the context of micellar
systems as well [62,63]. In the analysis, we only inspected residence reactions that occurred
for more than 1 ns in clusters of at least 10 monomers, to make sure the probe was fully
inserted within a micellar phase before its expulsion.

kexit =

〈
1

Residence Time

〉
(3)

Figure 2B shows that with increasing levels of modulator DPC within the clusters, the
exit rate coefficients of SDS and DDA drastically diminish, while those of DAS and LAU are
unaffected. Interestingly, the measured rate coefficients are an order of magnitude higher
than observed experimentally, for pure SDS and pure C12TAB micelles [64,65], explainable
by the disordered nature of the pre-micelles as compared to fully-formed micelles in the
lab, and, perhaps, also by the limitations of the computational model, such as the choice of
the employed force-field.

By systematically mapping the kinetic modulation for all probe-modulator pairs, we
generated a matrix of rate modifications (Figure 2C). This matrix represents an MD-derived
estimate of β-matrix of mutually-catalytic interactions in the GARD model [16,66] (see
Methods). The results clearly demonstrate that the most affected lipid probes are SDS and
DDA, having their exit rates diminished by all lipid modulators with varying powers and
linearity scores, while other lipids experience very mild catalysis. Notably, the highest
kinetic influences in the matrix occur mutually between SDS and DDA, reflecting the
cooperativity observed in their accretion profiles (Figure 1C,D).
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Figure 2. Exit reactions of monomeric lipids from pre-micellar clusters. (A) an SDS probe molecule
escaping from a pre-micellar cluster. Orange—SDS, cyan—DPC. The probe is in space-filled represen-
tation, while the cluster lipids are in stick representation. The time from the first (fully inserted) to the
last (dissociating) image is about 0.6 ns. (B) Kinetic analysis showing the average exit rate coefficients
of different probe lipids influenced by varying levels of modulator DPC in the involved clusters.
Error bars convey the standard error of the mean. R2 values for the weighted linear regressions:
SDS—0.962, DDA—0.946, DAS—0.065, and LAU—0.286. The basal rate coefficient of DPC, at pure
DPC clusters, is depicted for contrast. (C) The matrix of all composition-induced modifications to the
exit rate coefficients. Values correspond to the extent of rate modification for each probe-modulator
pair, in respect to the probe’s basal rate. Colors correspond to the magnitude of the values. Stars
represent R2 values, whereby one star is 0.55–0.7, two stars are 0.7–0.85, and three stars are 0.85–1.
(D) Average residence time of different lipid probes within clusters of various sizes. Error bars convey
the standard error of the mean. R2 values for the weighted linear regressions, for clusters sizes 2 to
20 lipids: DPC—0.937, SDS—0.997, DDA—0.993, DAS—0.919, and LAU—0.976.
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Lastly, we examined the influence of cluster size on the probe residence times. For
this, we combined all reactions of the same lipid probe type with all other lipid modulators
and calculated typical residence times for all possible cluster sizes. The results depict linear
ascents for all probes, ranging from cluster sizes of 2 monomers to about 20 monomers
(Figure 2D). This phenomenon has been demonstrated before in vesicles [31], explained by
a higher packing order of lipids, and was mostly absent in micelles of shorter lipids [44]. For
larger cluster sizes, the residence times observed seem to peak between 25–35 monomers
and diminish for even bigger clusters with higher observed variation. This trend could
similarly be a result of greater molecular crowdedness in bigger clusters with increasing
number of stabilizing hydrophobic interactions [31]. This data expands the previous
analysis and demonstrates that variations in the micellar phase, either compositional or
size-based, have substantial kinetic effects over exiting lipid monomers.

3.3. Entry Rates of Lipids into Pre-Micelles Show Sensitivity to Compositional Variation

In comparison to exit rates, the derivation of ligand entry rates in MD is not triv-
ial, with multiple reported approaches optimized for different cases of protein-ligand
binding [58,60,61,67]. When it comes to the explicit kinetic analyses of monomer entry into
a lipid assembly (Figure 3A, Supplementary Video S2), the available literature is rather
scant [33,44,51]. To accommodate this challenge, we adapted published algorithms in the
realm of protein-ligand binding [54,57–59] to fit the lipid assembly system. We defined the
term “addition time”, which is the duration between two consecutive entries of lipids of the
same type. In this approach, the cluster into which the probe lipid enters includes the lipid
that entered prior to it. Our defined “addition time” is analogous to the unbound time in
ligand-protein systems [54,57–59], a duration in which a receptor is not bound to a ligand.
It has been argued that the unbound time of a receptor, together with the concentration
of free ligands, correspond to the entry rate coefficient. We therefore use the formula
shown in Equation (4), whereby Cmonomers is the average of the varying concentration of
free probe during the addition time. In the analysis, we only inspected residence reactions
that occurred for more than 300 ps in clusters of at least 10 monomers.

kentry =

〈
1

Addition Time× 〈Cmonomers〉

〉
(4)

In general, the analysis presents rate coefficients that are about one order of magnitude
faster than experimentally reported, for pure SDS and pure C12TAB systems [64,65]. Again,
this may be a result of the limitations of the employed computational model, such as
the choice of force-field, or likely the disordered nature of the simulated pre-micellar
assemblies as compared to fully formed micelles in lab experiments. A known fact is
that MD simulations can emulate relative differences of a measure better than its absolute
values as experimentally reported [68]. Remarkably, the entry rate coefficients are also
about 2–2.5 orders of magnitude higher than those of the exit rates, a difference that is very
comparable to experimental reports [64,65]. Therefore, it seems that at the very least the
results convey trends that are reliably similar to those of the actual rate coefficients.

The entry analysis shows that elevated levels of modulators in the involved clusters
elicit mostly rough linear surges for the calculated rate coefficients (Figure 3B), with lower
linearity scores than those that appear in the exit analysis. The detected mutually catalytic
influences were summarized in accordance to the GARD concepts, in a similar manner
to the β-matrix of the exit analysis (Figure 3C). Interestingly the entry matrix conveys
similar trends to those that appear in the exit matrix, whereby the same modulator-probe
pairs show significant rate modifications. This symmetrical pattern suggests that the same
mechanism underlies both types of rate modification. It also accentuates the influence of
cluster composition over accretion dynamics, as accelerated entry and decelerated exit both
promote faster assembly growth.
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Figure 3. Entry reactions of monomeric lipids into pre-micellar clusters. (A) A DPC molecule joining
a lipid cluster. Cyan—DPC, orange—SDS. The probe is in space-filled representation, while the
cluster lipids are in stick representation. The time from the first (associating) to the last (fully-inserted)
image is about 0.4 ns. (B) Kinetic analysis showing the average entry rate coefficients of different
probe lipids influenced by varying levels of modulator DDA in the involved clusters. Error bars
convey the standard error of the mean. R2 values for the weighted linear regressions: DPC—0.356,
SDS—0.814, DAS—0.446, and LAU—0.481. The basal rate coefficient of DDA, at pure DDA clusters, is
depicted for contrast. In the analysis, we eliminated a minority of cases in which the relative amount
of the lipid components in the cluster changes by more than 5% of the total. We also subtracted from
the addition time segments in which the concentration of free probes is zero and eliminated cases
where the addition time is below 300 ps. (C) The matrix of all composition-induced modifications to
the entry rate coefficients. Values represent the scope of rate modification for each probe-modulator
pair, in respect to the probe’s basal rate. Colors correspond to the magnitude of the values. Stars
represent R2 values, whereby one star is 0.55–0.7, two stars are 0.7–0.85. (D) Average residence time
of different lipid probes within clusters of various sizes. Error bars convey the standard error of the
mean. R2 values for the weighted linear regressions, for clusters sizes 2 to 14 lipids: DPC—0.020,
SDS—0.834, DDA—0.890, DAS—0.732, and LAU—0.067.

Lastly, we investigated the influence of cluster sizes on the entry rate of lipids, inde-
pendent of clusters composition (Figure 3D). We calculated the inverse of the entry rate
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coefficients for all lipid types across all relevant experiments and averaged them based
on the size of their involved clusters. Some trends are similar to those of the exit analysis,
such as linear ascents at small cluster sizes. However, the employed lipid types generally
preserve the magnitudes of their kinetics across all cluster sizes, fitting previous results [44].

3.4. Specific Headgroup Interactions Contribute to Observed Rate Modifications

In addition to exploring the kinetic effects, it is important to demonstrate the molecular
mechanisms that underlie this dynamic behavior. As the tailgroups of the employed lipids
are nearly identical, these mechanisms likely involve only interactions between pairs of
headgroup, neutral, charged, and zwitterionic (Figure 1A).

In order to determine the headgroup contributions, we further investigated the lipid-
lipid interactions during probe residence reactions. We introduced a measure called Head-
group Interaction Prevalence (HIP), which is defined as the percentage of a reaction’s
residence time in which a specific headgroup interaction is present. We further defined a
HIP fold change, comparing two groups of reactions with high and low probe residence (see
Methods). The results (Figure 4A) indicate that headgroup interactions play an important
role in residence time elongation, since specific headgroup moiety interactions result in
different HIP fold changes. The interactions that portray greater and more significant HIP
fold changes match those exhibiting greater rate modifications in the exit kinetic measure-
ments (Figure 2C), as illustrated in Figure 4B. Heterogeneous lipid headgroup interactions
appear to contribute more to residence time elongation than homogeneous interactions,
further emphasizing the power of lipid mutual catalysis [69]. Interestingly, for pairs of
single-charge probes and cluster zwitterionic lipids, interactions with both zwitterionic
headgroup moieties generally display substantial HIP fold changes, possibly due to the
proximity of moieties on the lipid headgroup structure. Taken together, this analysis vividly
displays the mechanistic interactions that underlie the observed compositionally driven
kinetic effects.

The detected probe accretion kinetic effects indicate that the activation energy for
exit and entry transitions is sensitive to the composition of the modulating clusters. The
asymmetry between the exit rate decelerations (Figure 2C) and entry rate accelerations
(Figure 3C) implies that variations in cluster composition may influence the energy levels of
both the transition state and the micellar ground state (Figure 4C). In essence, it is possible
that both catalysis and thermodynamic changes in affinity levels contribute to the observed
kinetics. Validating these energy transformations for different micellar chemistries is a
challenging task. Classical MD simulations have been used extensively to determine
binding free energies for protein-ligand interactions, using a wide variety of methods
for disparate chemical systems [24]. Self-assembling lipid systems that are dynamic and
generate clusters of diverse sizes, compositions, and conformations may prove more tasking
to dependably investigate as compared to proteins with more defined binding sites.

Therefore, we opted for a descriptive approach that focuses on changes in the mode
of interaction of a probe with its modulating cluster. We devised two analyses that
examine the lipid-cluster mode of interaction: a dynamic variation of the HIP analy-
sis, and an analysis that follows the orientation of probes throughout their residence.
While the first analysis focuses on molecular interactivity, the second investigates probe
conformational transformations.

The dynamic HIP analysis shows the percentage of reactions in which a specific
headgroup interaction is present at each time-step during the probe residence. We cal-
culated these values for probes interacting with modulator-rich and modulator-poor
clusters and plotted the difference (HIP shift) between these two groups (Figure 4D,
Supplementary Figure S4A–D). The results indicate that elevated levels of modulator
lipids in clusters indeed promote the majority of probe-modulator headgroup interactions,
which is most prominent in chemistries that match substantial exit rate modifications. The
analysis demonstrates how probes become engulfed in the cluster during their residence
(Figure 4C,D), interacting selectively with neighboring lipids. The gradual changes in
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HIP shift throughout the residence, especially for kinetically affected chemistries (e.g.,
SDS–DDA), suggest that higher modulator concentration in clusters make these interac-
tions more intensive within the pre-micellar cluster than in the transition states (at the
beginning and end of the probe residence). Thus, it can be expected that the energy state of
the probe within the cluster is more affected by compositional variation than that of the
transition state.

Figure 4. Specific headgroup interactions during lipid residence within clusters. (A) A volcano
plot describing the fold change in Headgroup Interaction Prevalence (HIP) values between long
residence (above 10 ns) and short residence (1–2 ns) reactions. Colors refer to lipid types; shapes
refer to the charge of the interacting moiety. Inner shapes represent the probe’s moiety, and outer
shapes represent moieties that belong to other lipids in the cluster. Black dashes indicate a 2.5-fold
change and a 10−5 p-value. (B) Illustrations of representative lipid headgroup interactions with low
(1–3) and high (4–6) HIP fold change. High HIP fold changes match the kinetic results, indicating
that these interactions prolong probe residence times. (C) The energy landscape of lipid entry/exit
transitions. Black corresponds to the basal energy profile of the transition, while gray corresponds to
a profile modified by compositional variation as inferred from the observed kinetics. Green dashes
represent activation energies for the exit reaction. (D) Dynamic HIP plots depicting the difference
(shift) in HIP values between modulator-rich (50–100%) and modulator-poor (0–50%) clusters along
the first 0.5 ns of the residence. Colors refer to distinct headgroup moieties interactions of probe-
modulator pairs. Shapes in the legend refer to the charges of the moieties (see legend of (A)). Only
interactions to the right of the vertical dashed line in (A) are included. (E) The probe orientation
(α) in respect to the geometrical center of the cluster (blue circle). (F) A plot depicting the degrees
shift in probe orientation in relation to the geometrical center of the involved clusters. The shift is
between modulator-rich (50–100%) and modulator-poor (0–50%) clusters, along the first 0.5 ns of the
probe residence. Positive shifts correspond to changes in orientation towards a tangential direction,
while negative shifts correspond to changes towards a radial orientation. Colors refer to different
probe-modulator pairs. Only single-moiety probes (SDS, DDA, and LAU) are included.
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However, there are indications that the transition state is somewhat affected as well.
The association and dissociation phases of the residence show almost complete symmetry
(Supplementary Figure S4A–D), pointing to cohesive modes of interaction. As HIP shifts
are observed at the very beginning and end of the residence (i.e., the shallow depth of
probe penetration into the cluster), these findings further strengthen the assertion that the
modes of interaction for both monomeric entry and exit are highly similar with a definitive
transition state [70] that is sensitive to compositional changes.

To further elucidate the lipid-cluster mode of interaction, a probe orientation analysis
was introduced. It follows the orientation of the probe in regard to the geometric center of
the involved cluster (Figure 4E). Similar to the dynamic HIP analysis, we calculated the
shift in probe orientation (orientation shift) between modulator-rich and modulator-poor
clusters (Figure 4F, Supplementary Figure S4E,F). As before, the most affected chemistries
match probe-modulator pairs that experience substantial rate modifications, leading to
more tangential probe orientations that suggest higher headgroup involvement.

The analysis depicts mostly no variation in the orientation shift along the residence,
implying that increased modulator presence in clusters affects probe orientation equally
at the transition state and at the bulk of the micellar residence. This is true except for
chemistries involving LAU as probe or modulator. It appears that clusters with high
LAU concentrations show more pronounced tangential orientations at the transition state,
which continuously diminish throughout the probe residence. This behavior could again
be clarified by the increased cluster compactness induced by the lipid (Figure 1C,D).
High-LAU compactness could obligate probes to more forcibly disrupt the micelle during
their transition and assume more tangential orientations. These changes may explain
LAU-modulated detected kinetic effects. In sum, both dynamic analyses portray changes
to lipid-cluster interaction modes, suggesting that although catalytic contributions are
undeniably present, accretion kinetics are more influenced by compositionally driven
affinity modifications.

3.5. Observed Accretion Kinetics Predicts Micelle Self-Reproduction at Non-Random Compositions

Self-reproduction of a chemical system is a widely accepted criterion for seeding
life. As gleaned from the function of nowadays cells, a multicomponent chemical system
must undergo homeostatic growth in which the relative concentration of each molecule in
the system is preserved over growth and split cycles [11]. It has long been reported that
micelles can grow through accretion of environmental lipids [43,64] or through endogenous
synthesis [71,72], and can divide once they become too big and structurally unstable [73].
Some recent studies have provided experimental demonstration of compositional home-
ostasis in a population of proliferating mixed micelles [12,74,75], but detailed evidence at
the single micelle level is still lacking.

From our MD simulations, we can see strong indication of compositional homeostasis.
For example, we can look at the mutual interaction of SDS and DDA, accelerating the
entry and decelerating the exit of each other with comparable strengths. If we account for
only the exit rates (the more reliable of the two measures), we calculated—by taking the
intersection point of the two curves of exit rates of SDS probe–DDA modulator and vice
versa—that micelles with 45.25% DDA and 54.75% SDS will attain perfect compositional
homeostasis, where both lipid types will display an identical exit flux. Other such pairs
could display similar homeostatic states at different ratios.

Furthermore, acquiring the rate modification parameters by which one lipid influences
the entry and exit rates of a second lipid allows us to tentatively examine the prospect of
compositional homeostasis in more elaborate micellar clusters containing more than two
lipid types. For that, we examined the compositional space of micelles comprised of the five
employed lipid types (Figure 5) and calculated the entry and exit fluxes for the lipids (see
Methods). Providing equimolar 4mM lipid concentrations in the environment, we observed
that 0.58% of the compositional space “pixels” attains homeostasis. The centroid of the
best self-reproducing assemblies contains 21% DPC, 36% SDS, 37.5% DDA, 3% DAS, and
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2.5% LAU. The self-reproducing compositions are clustered together in space (Figure 5),
matching the definition of a compotype (cluster of composomes, as predicted by the GARD
formalism) [11].

Figure 5. Micellar self-reproduction in five-dimensional compositional space. The PCA plot features
the reproduction capacity of mixed micelles of different compositions containing the employed five
lipids, within an environment where these lipids are in equimolar 4 mM environmental concentrations.
The best 62 (0.58%) reproducers are shown in blue and the worst 2000 reproducers are in orange. We
note that enhancement of the equimolar concentrations had negligible effects on the results.

An important aspect of the group of homeostatic compositions are how distant they
are from the equimolar concentrations in the environment. This is a hallmark of the
fact that these compositions are governed by kinetic phenomena away from equilibrium.
Without composition-driven kinetic effects, whereby the entry and exit rates for all lipid
types would be equal, equilibrium will be reached at compositions that reflect the outside
concentrations [16]. The resultant homeostatic compositions in our analysis are more
distant from the equimolar state than 40.38% of possible compositions. This nontrivial
finding is significant as it portrays away-from-equilibrium dynamics for self-reproducing
mixed micelles that defines living cells.

4. Discussion

The depicted MD results provide prime evidence that the temporary composition of
pre-micellar assemblies affect their proceeding accretion trajectory in compositional space
by modifying the entry and exit rates of aggregating lipids. Using simple analyses, we
were able to quantify the mutual rate modifications among the simulated lipids, observing
cooperative and selective interactions. We further described the mechanistic underpin-
nings of the observed kinetics and the contribution of lipid–micelle affinity. Finally, we
extrapolated the kinetics of more elaborate mixed micelles based on the matrices of derived
rate modification parameters, predicting the scope of compositional homeostasis in an
emulated multi-component assembly. These results constitute an important step towards
researching the origin of life in invoked simple lipid chemical systems.

Self-aggregation is a concerted interplay of monomers, primarily driven by hydropho-
bic interactions among tailgroup [76]. This insight is reflected in accretion kinetics, whereby
changes to the length of lipid tailgroups could modify exit rates by several orders of mag-
nitude [70,77,78]. This work uncovers the contribution of headgroup chemistry to the
accretion kinetics, with some energetic influences. Previous reports illustrated the effects of
headgroup chemistries on aggregate sizes and structures [76], and our work uncovers com-
plementary key facets in lipid insertion and removal. Additionally, we observed a minor
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influence of cluster size on these kinetics, especially above monomer count ~30, possibly
indicating that this trend is not dependent on system specifications (such as volume and
monomer count).

Molecular Dynamics is an established experimental tool for investigating the emergent
behavior and accretion kinetics in lipid systems [26], and has proven itself again in the
present work, generating entry and exit rates that are highly comparable to experimentally
measured rates [64,65]. Importantly, the observed kinetic trends match previous experi-
mental reports, such as the cooperativity between single-charged positive and negative
lipids [49] and the generally faster entry and slower exit kinetics of neutral lipids [79].
Therefore, we advocate that the MD results are expected to reliably display compositionally
driven kinetic effects. Future work may improve our analytical endeavors, exploring more
heterogeneous systems in longer and more elaborate simulations, and, perhaps, validating
these results with advanced laboratory experiments.

One of the remarkable aspects of the kinetic analyses is the existence of certain mutual
catalysis among different lipid types. This finding suggests that each lipid may act as
a rate modifier and influence the accretion rates of another lipid in a micellar context.
Mutual catalysis among simple molecules has been reported before [80,81], particularly
in lipid systems [12,74], yet has not been quantitatively explored in detail. Excitingly, rate
modifications appear to distribute across a broad scale, and, when present, they occur
with significant probe-modulator specificity. These conclusions match previous GARD
predictions [66,82], and strengthen the treatment of mixed micelles as nanoreactors [4,12]. It
is reasonable to assume that mutual rate modification applies for most (if not all) lipophilic
molecules, to various degrees, and, thus, more diverse micellar systems will produce more
complex catalytic networks.

Lastly, the acquired results promote the validity of micellar self-reproduction. Af-
firming previous work [12], we present here the realism of compositional homeostasis in
proliferating micelles, based on the derived rate modification parameters. This finding is
highly significant in the context of the origin of life, providing, perhaps for the first time,
direct evidence that growing micellar assemblies could truly self-reproduce, bequeathing
their compositional information to progeny. Therefore, this significantly supports the
possibility of life’s emergence in catalytic mixed micelles, paving a path for selection and
evolution towards life as we know it.
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