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Abstract

Background

Previous epidemiological studies have examined the prevalence and risk factors for a vari-

ety of parasitic illnesses, including protozoan and soil-transmitted helminth (STH, e.g., hook-

worms and roundworms) infections. Despite advancements in machine learning for data

analysis, the majority of these studies use traditional logistic regression to identify significant

risk factors.

Methods

In this study, we used data from a survey of 54 risk factors for intestinal parasitosis in 954

Ethiopian school children. We investigated whether machine learning approaches can sup-

plement traditional logistic regression in identifying intestinal parasite infection risk factors.

We used feature selection methods such as InfoGain (IG), ReliefF (ReF), Joint Mutual Infor-

mation (JMI), and Minimum Redundancy Maximum Relevance (MRMR). Additionally, we

predicted children’s parasitic infection status using classifiers such as Logistic Regression

(LR), Support Vector Machines (SVM), Random Forests (RF) and XGBoost (XGB), and

compared their accuracy and area under the receiver operating characteristic curve

(AUROC) scores. For optimal model training, we performed tenfold cross-validation and

tuned the classifier hyperparameters. We balanced our dataset using the Synthetic Minority

Oversampling (SMOTE) method. Additionally, we used association rule learning to establish

a link between risk factors and parasitic infections.

Key findings

Our study demonstrated that machine learning could be used in conjunction with logistic

regression. Using machine learning, we developed models that accurately predicted four
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parasitic infections: any parasitic infection at 79.9% accuracy, helminth infection at 84.9%,

any STH infection at 95.9%, and protozoan infection at 94.2%. The Random Forests (RF)

and Support Vector Machines (SVM) classifiers achieved the highest accuracy when top 20

risk factors were considered using Joint Mutual Information (JMI) or all features were used.

The best predictors of infection were socioeconomic, demographic, and hematological

characteristics.

Conclusions

We demonstrated that feature selection and association rule learning are useful strategies

for detecting risk factors for parasite infection. Additionally, we showed that advanced classi-

fiers might be utilized to predict children’s parasitic infection status. When combined with

standard logistic regression models, machine learning techniques can identify novel risk fac-

tors and predict infection risk.

Author summary

In developing countries such as Ethiopia, intestinal parasites are a significant public health

problem. These parasites are detrimental to the health of schoolchildren. Numerous risk

factors for parasitic infections have been identified using uni- and multi-variate logistic

regression. However, logistic regression has inherent limitations when applied to data sets

with a large number of risk factors. We used machine learning techniques in conjunction

with logistic regression models to identify relevant risk factors for parasitic infections in a

dataset of 954 Ethiopian schoolchildren with 54 different risk factors for parasitic infec-

tions. Additionally, we developed predictive models of parasitic infection. Compared to

logistic regression, we discovered that machine learning techniques identified novel risk

factors and had higher predictive accuracy. Furthermore, we discovered that infection

prediction could be aided by combining socioeconomic, health, and hematological char-

acteristics. As a result, we concluded that advanced machine learning methods should be

used in conjunction with logistic regression to study parasitic infections.

Introduction

Gastrointestinal parasitic infections, caused by protozoans and helminths, are endemic to

developing countries [1]. The prevalence of such parasites is highest in children in sub-Saharan

Africa [2]. For instance, in Ethiopia, intestinal parasitic infections continue to be a widespread

public health problem, with a prevalence of around 25% for protozoal infections and 21.7% for

soil-transmitted helminths [3]. Intestinal protozoans include Giardia lamblia and Entamoeba
histoytica, and soil-transmitted helminths include roundworms (Ascaris lumbricoides and

Strongyloides stercoralis), hookworms (Ancylostoma duodenale and Necator americanus), and

the human whipworm (Trichuris trichiura). These parasites can cause serious health problems

such as lack of appetite, anemia, decreased physical growth, and impaired intellectual develop-

ment [4–7].

Previous literature suggests that risk factors for intestinal parasites include a combination

of socioeconomic, demographic, and environmental factors [8, 9]. These studies often use

standard statistical tests like logistic regression and frequency analysis [10]. These approaches,
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however, may have drawbacks such as overfitting the data when applied to data sets with a

large number of highly correlated variables. As a result, they may not accurately depict the rela-

tionship between risk factors and disease outcomes [11].

Advanced machine learning approaches are based on the premise that computers can mine

complex patterns and interactions from data sets based on mathematical rules and statistical

assumptions [12]. In contrast to an epidemiological or statistical approach, machine learning

does not rely on strong assumptions about the data’s linearity or predictor variables’ mutual

dependence but rather on iterative computing techniques to learn from massive data sets.

Recent studies have used various machine learning approaches to accurately predict and iden-

tify relevant risk factors for disease outcomes like heart failure, acute renal failure, Type 2 dia-

betes, and malaria [13–16]. However, effective algorithms, such as association rule learning,

have not been widely used in disease risk factor analysis. Historically, association rule learning

has been used in market basket analysis to determine consumer behavior in supermarkets

[17]. Although this strategy may have novel applications in the field of epidemiology, it has

been used in only a few studies to date; when applied to public health data sets, association rule

learning was capable of identifying patterns of disease co-occurrences [18].

To our knowledge, no study has attempted to combine multiple machine learning tech-

niques to investigate risk factors and make accurate predictions for intestinal parasitic diseases.

Thus, our analysis could provide important information for directing targeted public health

interventions for intestinal parasitosis prevention and awareness. In this study, we used data

from a comprehensive Ethiopian school survey to identify risk factors for parasite infections

and to create predictive prevalence models utilizing powerful machine learning techniques.

Additionally, we employed association rule learning to find combinations of risk factors that

contribute to the development of a particular infection. Our findings demonstrate the potential

of machine learning in epidemiology.

Methods

Ethics statement

We obtained written or fingerprint consent from children’s parents or their legal guardians

after informing them of the study procedures. To ensure participant privacy, confidential

numerical identifiers were assigned to each child and all participant information remains pass-

word protected in electronic files. The children were also informed about their ability to with-

draw from this study at any time without jeopardizing their right to receive any services at

their school. Children who were found to have intestinal parasites were treated with anti-para-

sitic drugs in local health centers. Departmental Research and Ethics Review Committee

(DRERC) of Addis Ababa University College of Health Sciences, Department of Medical Labo-

ratory Sciences, approved the study.

Data collection. In 2016 and 2017, we conducted surveys among school children in Ethio-

pia’s Oromia region. We surveyed five elementary schools: Abdi Boru, Laga Dima, and

Wasarbi in the town of Sululta, and Batu and Sher in the town of Ziway. We obtained written

consent from the parents or legal guardians of the children and used an interviewer-led ques-

tionnaire. We collected data from a total of 954 schoolchildren. Additionally, we tested each

child’s stool and blood for parasite infection. Within 30 minutes of collection, fecal samples

were analyzed using direct wet mount microscopy and the Kato-Katz technique. Any remain-

ing fecal samples were analyzed using formol-ether concentration analysis at the Department

of Medical Laboratory at Addis Ababa University, Ethiopia. A more in-depth description of

each parasitological test can be found in our previously published study [19]. Allergic disorders
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related questions were derived from the widely used and validated ISAAC symptoms question-

naire [20], which had previously been used in this age group of children [21, 22] in Ethiopia.

Risk factors surveyed. We collected data on demographic, socioeconomic, health related,

environmental, and hematological variables. Table 1 contains the comprehensive list of risk

factors.

Outcome definition. For each sample, we classified infections as binary (infected or not

infected) for each of four outcomes: (1) any STH (with "infected" testing positive for any A.

lumbricoides, T. trichiura, A. duodenale, N. americanus, or S. stercoralis), (2) helminths (with

"infected" testing positive for any eggs or larvae of any helminthic parasites), (3) protozoans

(G. lamblia or E. histolytica), or (4) any parasite infection (positive for any protozoan and hel-

minthic parasites).

Data processing. Any sample that lacked a value for one of the outcome variables (n = 12)

in our investigation was omitted from the data set. We also excluded risk factors with a missing

value rate greater than 5% across all samples surveyed. Additionally, we used one-hot encoding

to convert risk factors with more than two categories to multiple factors and eliminated one

category for each factor to avoid multicollinearity in our data set. Following data processing,

we had 942 samples with 68 risk factors for each infection outcome. Finally, we performed fea-

ture scaling (a.k.a. min-max normalization) on continuous variables to standardize them to a

range of 0 to 1 for data imputation and data balancing (discussed later).

Logistic regression and statistics. We performed univariate and multivariate logistic

regression for each infection outcome. We compared risk factors identified through univariate

and multivariate logistic regression to those identified using four machine learning feature

selection methods. Due to the fact that logistic regression models require multiple hypothesis

testing, we utilized the Benjamini-Hochberg p-value correction, which limits the rate of false

discovery to 5% [23].

Feature selection. We employed feature selection algorithms to identify and eliminate

redundant risk factors for each infection outcome (dependent variable). We used the ranking-

Table 1. Risk factors for intestinal parasitic infections grouped by categories such as demographic, socioeconomic, health, environmental, and hematological

factors.

Demographic Factors Socioeconomic Factors Health Factors Environmental Factors Hematological Factors

Age Sleeps on a bed Cockroach skin Application of dung to farm fields Hematocrit

Deworming Household burns Prick test Cigarette smokers in the house Hemoglobin

Family Size Charcoal Child has asthma Location of cooking area Lymphocytes count

Residence Household burns Child has hay Family has a cat Mean Corpuscular Hemoglobin

Sex Dung Fever Family has a cow Mean Corpuscular Hemoglobin

ConcentrationHousehold burns gas Child has had hay Family has a dog

Household burns leaves fever in last year Family has a hen Mean Corpuscular Volume

Household burns nafta Child with rash in last year Family has a horse Platelet count

Household burns wood Child has wheeze in last year Family has a pig Red Blood Cell count

Household uses electricity Father with asthma Family has a sheep White Blood Cell count

Composition of floor in the home Father with hay fever Source of water in household

Maternal Education Father with wheeze Type of toilet in the home

Maternal Occupation Mother with asthma Location of household waste disposal

Child’s mattress Mother with hay fever

Roof on the home Mother with wheeze

Composition of walls in the home

What the child sleeps on

https://doi.org/10.1371/journal.pntd.0010517.t001
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based approaches Information Gain (IG) and ReliefF (ReF) to determine the importance of

each risk factor (also referred to as feature throughout the paper) independently from the

other risk factors in the data set. IG calculates information gain for each risk factor for the

infection outcome. The risk factors contributing the most information for the infection out-

come have a higher information gain and are selected [24]. ReF determines the risk factor’s sig-

nificance by randomly selecting samples and computing the Manhattan distance between

neighboring samples and their disease outcomes [25]. We also used subset-based approaches

such as Joint Mutual Information (JMI) and Minimum Redundancy Maximum Relevance

(MRMR) to identify relevant risk factors. These subset-based methods identify risk factors

with a higher mutual information score with the outcome than the mutual information

between the selected risk factors [26, 27]. To avoid bias in our classification runs, we per-

formed feature selection on the training data and filtered the validation/test data using the

same features. We then ranked our risk factors using ranking or subset-based scoring metrics

and included the top twenty features in our classifier. The strength of risk factors for each out-

come was determined by their occurrences across multiple feature selection methods as well as

univariate and multivariate logistic regression. We defined consensus as a feature being in the

top twenty for at least 95% feature selection runs.

Classifiers and hyperparameters. To ensure the robustness of our findings, we used a

variety of classifiers, machine learning methods that model the relationship between risk fac-

tors and infection outcomes. We used tree-based methods like Random Forests (RF) and

XGBoost (XGB) and linear models like Support Vector Machines (SVM) and Logistic Regres-

sion (LR) [28–30]. We evaluated the performance of our classifiers using accuracy scores and

area under receiver operating characteristic (AUROC) curves. Classifiers incorporate a variety

of hyperparameters that must be customized for each dataset. As a result, we used preliminary

testing to determine an appropriate range of hyperparameters for each classifier, followed by

grid searching to determine the optimal combination of hyperparameters for maximizing

accuracy. For Logistic Regression classifier, we used no penalization method and utilized the

default optimizer, Large-scale Bound-constrained Optimization (L-BFGS-B) [31].

Data imputation. Data collection through questionnaires or surveys frequently results in

missing or inconsistent data [32]. Missing values hinder our ability to conduct unbiased data

analysis and negatively affect machine learning algorithms, including feature selection and clas-

sification [33]. Simply eliminating rows of data with a single missing value can result in skewed

statistical results and a decrease in statistical power. We used k-nearest neighbors’ imputation

to overcome this issue, which finds missing values and estimates them using a number, k, of

nearest neighbors belonging to the same class [34]. We chose a value of 5 for k based on empiri-

cal evidence. KNN imputation has been shown to reduce the bias for feature selection

approaches such as ReliefF (ReF) [35]. Imputation was done only on training data samples.

Model validation. We employed stratified tenfold cross-validation to determine each

model’s generalizability. We divided the data set into ten folds (subsets) for each combination

of feature selection method and classifier, maintaining a consistent distribution of our out-

come class for each fold. Then, we performed the k-nearest neighbors’ imputation for each

fold. To ensure robust results, we did the cross-validation ten times using a different random

number generator seed each time.

Class imbalance. If a dataset is unbalanced, the feature selection and classification models

tend to overfit to the majority outcome. As a result, the model may be inaccurate. We

employed Synthetic Minority Oversampling (SMOTE) technique to increase model accuracy

by balancing the unbalanced dataset. SMOTE accomplishes this by identifying the k-nearest

neighbors (we used k = 5 based on empirical evidence) and randomly generating new data

along the line between two neighbors of the same class [36].
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SMOTE is increasingly being employed in epidemiological research with highly skewed

data sets. For example, SMOTE improved the prediction accuracy of decision tree models on a

data set of patients with chronic kidney disease [37]. Additionally, SMOTE was utilized in con-

junction with a Random Forest classification technique to distinguish between patients and

non-patients in a cervical cancer data set to increase the overall accuracy after balancing [38].

In our investigation, to avoid bias, we used SMOTE to oversample the number of cases for

each of the four outcomes in order to balance the training data set. We ran our classification

runs with and without SMOTE to determine whether balancing improved our models. We

also used under sampling on our training sets. However, due to the small number of outcome

variables, we obtained lower accuracies than without any data balancing or with SMOTE.

Association rule learning. We used association rule learning to deduce risk factor combi-

nations that had a strong connection with the four disease outcomes [39]. The technique

employs a metric called "support" that quantifies a rule’s frequency of occurrence as a propor-

tion of all samples, as well as "confidence," a metric that quantifies the likelihood that the ante-

cedent (e.g., a subset of risk factors) caused the consequent (e.g., outcome). As a proxy for the

association rule’s strength, we use lift, the ratio of observed to expected support when the ante-

cedent and consequent are unrelated. A lift greater than one indicates that the antecedent is

likely to result in the consequent. We chose a lift of two as our cutoff value and used rules with

the highest support and confidence values. In the event of tied lift values, we identified rules

that contained risk factors in greater than 20% of the top association rules.

Code availability. The study’s code was written in Python and R due to their user-friend-

liness and advanced statistical learning libraries. Our code can be found at https://github.com/

Ziad-Attia/Machine-Learning-Package.git.

Results

Characteristics of the study population

In our study of 942 children, 54.8% (516) were female, 55.7% (525) were urban residents, 9.2%

(87) were younger than 6, 43.4% (408) were between the ages of 6 and 10, and the remaining

were older than 10. 79.5% (749) of children were dewormed. We found that 5.1% of children

were infected with STH (48 cases), 5.8% (55) with protozoans, 15.1% (142) with any helminth,

and 20.1% (189) with any parasite.

Logistic regression

Multivariate logistic regression models showed a significant decrease in the odds of having an

STH infection among children who lived in cities versus villages and were dewormed

(p< 0.05). On the other hand, we found a significant increase in the odds of having STH infec-

tion for children belonging to households that sometimes used nafta for cooking, and in chil-

dren whose fathers had hay fever (p< 0.05). (S1 Table contains all odds ratios and p-values).

A separate logistic regression using any protozoan infection as the outcome was signifi-

cantly related to paternal wheezing, sometimes burning leaves, and having a dog (p < 0.05). In

addition, cooking in the home and child’s wheezing was found to significantly decrease the

odds of having a protozoal disease (p< 0.05). (S2 Table contains all odds ratios and p-values).

Furthermore, any helminth infection was significantly associated with paternal hay fever,

maternal occupation, family size, mean corpuscular hemoglobin concentration, hematocrit

levels, and type of mattress on which the child sleeps (p<0.05). (S3 Table contains all odds

ratios and p-values for this infection).

Lastly, looking across any parasite (defined positive either protozoa or helminths) infec-

tions, we found few demographic and lifestyle factors such as family size, increase in
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hematocrit were inversely associated with any parasite infection, while a significant increase in

odds of any parasite infection was found with disposing of waste in an open field, paternal hay

fever, and a positive dust mite skin prick test. (S4 Table contains all odds ratios and p-values

for this infection). However, after Benjamini-Hochberg correction, all of the aforementioned

risk factors lost statistical significance due to the high dimensionality of the data. This demon-

strates the value of combining advanced machine learning-based feature selection methods

with traditional logistic regression once more.

Risk factor analysis

Feature selection methods provided a novel and complementary approach to logistic regres-

sion for risk factor analysis. Table 2 compares the risk factors identified by feature selection

approaches to the significant risk factors identified through logistic regression models. For

each respective feature selection method, a risk factor was considered important if it appeared

in at least 95% of the runs performed. We found nafta burning (frequent and infrequent), fre-

quent burning of leaves, having a positive cockroach skin prick test, and father with wheeze as

strong predictors for all outcome variables. These risk factors were present in at least eight fea-

ture selection or logistic regression models. Risk factors such as, child with asthma in last year,

source of water, and household with thatched roof, mother with hay fever, platelets’ count, and

having a pig were identified across all infection outcomes using eight feature selection methods

but were not identified using logistic regression models. (Table 2). We observed some varia-

tions in selected risk factors for each outcome variable. For example, frequent dung burning

was identified by feature selection for STH infections, but not or any parasitic infections.

Cooking inside living area and some leaves burning were identified by feature selection and

logistic regression for predicting protozoans, but not for any STH infections (Table 2). Fur-

thermore, our feature selection model frequently identified none statistically significant fea-

tures in logistic regressions. In contrast, logistic regressions identified only two features of

STH infection that were missed by feature selection.

Classification performance

The RF and SVM classifiers had the highest predictive accuracy for all infection outcomes.

Using SVM and JMI, we obtained an accuracy of 79.9% for predicting whether a child has an

infectious parasite or not (Fig 1A). Additionally, using SVM and ReF, we obtained the highest

accuracy of 84.9% for predicting whether a child has or does not have a helminth infection

(Fig 1B) The RF and SVM models predicted protozoan and STH infection status with the high-

est accuracy (94.2% and 94.9%, respectively) (Fig 1C and 1D). These accuracies were obtained

primarily by utilizing all risk factors or by utilizing a subset of risk factors. SVM, RF, and XGB

achieved comparable results across all infection outcomes, and their accuracy was higher than

Logistic Regression (LR). Similarly, on average, all feature selection methods were equally

accurate. However, combining JMI feature selection with SVM classification resulted in the

highest overall accuracy across four infection outcomes (Fig 1) We also observed that risk fac-

tors selected through feature selection methods lead to similar prediction accuracy than classi-

fication using all features. Classification with data balancing using SMOTE produced

comparable accuracies to classification without any data balancing. However, LR’s classifica-

tion accuracy was significantly worse with SMOTE than without any data balancing. (Fig 1

and S1 Fig).

We created receiver operating characteristic (ROC) curves and calculated area under the

ROC curves (AUC) to assess the performance of classification methods using the set of features

and hyperparameters that produced the highest accuracy scores. Across all parasitic infections,
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we found that RF had higher AUC scores than SVM, XGB, and LR (Fig 2). Data balancing

slightly decreased the AUC scores for LR and XGB, though marginally increased for RF (S2

Fig).

Comparative performance of feature selection methods

We observed a distinction between the most frequently occurring risk factors within ranking-

based (IG and ReF) and subset-based (JMI and MRMR) techniques. IG and ReF did not fre-

quently identify the same features, with the exception of the protozoan infection. As for sub-

set-based methods, there was very little overlap in the selected features, except for platelets

count, which both JMI and MRMR selected for all four infection outcomes. The greatest over-

lap was observed between ReF and MRMR across all four outcomes (Table 2).

Fig 1. Heatmaps illustrating the accuracy scores for different feature selection and classifier combinations using SMOTE; for infection by (a) any parasite, (b) any

helminth, (c) protozoan, and (d) any STH. Green indicates a high accuracy, while red indicates a low accuracy. Feature selection include all features, or top 20 features

selected through Joint Mutual Information (JMI-20), Minimum Redundancy Maximum Relevance (MRMR-20), InfoGain (IG-20) and ReliefF (ReF-20). Classifiers

include Logistic Regression (LR), Random Forests (RF), Support Vector Machines (SVM), and XGBoost (XGB).

https://doi.org/10.1371/journal.pntd.0010517.g001
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In terms of robustness, both ranking and subset-based methods tended to identify the top

features, despite the high cutoff of 95%. Most of the top features were identified by ReF and

MRMR simultaneously, while IG and JMI showed relatively less robust and identified few fea-

tures across the infection outcomes (Table 2).

Fig 2. Receiver operating characteristic (ROC) curves for different classifiers using best feature selection method and best hyperparameters for that infection

outcome with SMOTE; for infection by (a) any parasite, (b) any helminth, (c) protozoan, and (d) any STH. Classifiers include Logistic Regression (LR), Random

Forests (RF), Support Vector Machines (SVM), and XGBoost (XGB). Blue dashed line represents the ROC curve for a random guess. The Area Under Curve (AUC) scores

are (a) LR: 0.52, RF: 0.56, SVM: 0.50, XGB: 0.54, (b) LR: 0.47, RF: 0.51, SVM: 0.50, XGB: 0.48, (c) LR: 0.70, RF: 0.73, SVM: 0.50, XGB: 0.58, and (d) LR: 0.54, RF: 0.62, SVM:

0.50, XGB: 0.52.

https://doi.org/10.1371/journal.pntd.0010517.g002
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Association rules

We found some overlap between the features discovered through feature selection, logistic

regression, and association rule learning. Due to a large number of rules with tied lift and con-

fidence values, we chose five association rules for each outcome with risk factors that appeared

in at least 20% of the top rules. This way, we avoided choosing similar and redundant associa-

tion rules. The key results for the association rules can be found in Table 3. Burning of nafta,

wood, charcoal, and dung were found in 10 of the 20 rules across the four outcomes, as well as

in feature selection (Table 3). Additionally, a strong association was discovered between own-

ing dogs and horses and having parasitic infections. However, neither of these animals was

found to be significant in logistic regression models for parasite infection. Additionally, certain

Table 3. The top five rules based on association rule learning with SMOTE for each infection outcome. For each

infection, the five rules with the highest lift values are chosen and sorted. The combinations of risk factors specified on

the left leads to the given infection.

Parasitic Infection Support Confidence Lift

Child’s sleeping, Smokers in the household, Sex, Family of size 6 to 9 members 0.011 1 2

Ages between six to ten, Water from open well, Waste disposal in open pit, Low White

Blood cell count

0.011 1 2

Have a dog, Have a horse, Frequent wood burning, Low mean corpuscular hemoglobin

concentration

0.010 1 2

Have a horse, Low hemoglobin, Sex, Low mean corpuscular hemoglobin concentration 0.010 1 2

Have a horse, Sex, Frequent wood burning, Low mean corpuscular hemoglobin

concentration

0.010 1 2

STH Infection Support Confidence Lift

Urban residence, Have a cow, Frequent nafta burning, Some wood burning 0.014 1 2

Informal maternal education, Some dung burning, Some nafta burning, Low mean

corpuscular volume

0.014 1 2

Low hemoglobin, Some charcoal burning, Frequent nafta burning, Some wood

burning

0.014 1 2

Urban residence, Informal maternal education, Frequent nafta burning, Some wood

burning

0.014 1 2

Informal maternal education, Some charcoal burning, Frequent nafta burning, Some

wood burning

0.014 1 2

Protozoan Infection Support Confidence Lift

Sex, Low mean corpuscular hemoglobin, High mean corpuscular hemoglobin

concentration, Low mean corpuscular volume

0.016 1 2

Dewormed, Some wood burning, High mean corpuscular hemoglobin concentration,

Low mean corpuscular volume

0.016 1 2

Dewormed, Sex, High mean corpuscular hemoglobin concentration, Low mean

corpuscular volume

0.016 1 2

Dewormed, Low hemoglobin, High mean corpuscular hemoglobin concentration, Low

mean corpuscular volume

0.016 1 2

Some gas burning, Some wood burning, Mother is a housewife, Low White Blood cell

count

0.016 1 2

Helminthic Infection Support Confidence Lift

Have a sheep, Frequent charcoal burning, Low mean corpuscular hemoglobin, Low

mean corpuscular volume

0.013 1 2

Have a sheep, Sex, Frequent charcoal burning, Low mean corpuscular hemoglobin 0.011 1 2

Child’s mattress, Child’s sleeping, Cooking in living area, Age greater than 10 0.009 1 2

Child’s bed, Child’s mattress, Cooking in living area, Age greater than 10 0.009 1 2

Child’s mattress, Child’s sleeping, Dewormed, Age greater than 10 0.009 1 2

https://doi.org/10.1371/journal.pntd.0010517.t003
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rules identified sex as a significant associative predictor, which was not detected in any of the

other analyses conducted in the study. Similar to feature selection, association rules showed a

combination of different hematological parameters, such as a low or high mean corpuscular

hemoglobin concentration and low white blood cell count, to be significant predictors. Addi-

tionally, urban residence was found in two association rules for STH infection, despite our

findings from logistic regression models indicating that urban residence is protective against

STH infection. Finally, association rule learning also found deworming to be positively associ-

ated with protozoal and helminthic infections.

Discussion

In our study, we used a variety of machine learning approaches to identify risk factors for four

types of parasitic infection as outcome variables. According to several previous studies, machine

learning classifiers do not outperform logistic regression in predictive tasks [40–42]. Here, we

demonstrated that the SVM, RF and XGB achieved the higher accuracy than LR for all four

infection outcomes (Fig 1) Our highest accuracies were obtained when features from JMI were

used, indicating that selected features may contain useful information for predictive purposes.

We demonstrated that data balancing with SMOTE did not improve classification accuracy

for all infection outcomes in our analysis. This may be due to the rarity of infections, necessi-

tating a significant oversampling of cases in order to balance the data set. This may have

resulted in the removal of a substantial amount of variation from our data set, preventing us

from achieving a higher level of accuracy.

We found a strong correlation between lower hematological parameters and parasitic infec-

tions using feature selection methods and association rules. Previous research indicates that

this association is due to intestinal parasites associated with appetite loss and malnutrition,

which can manifest as symptoms of anemia in children [43]. We also found association

between intestinal parasites and burning of fuels like leaves, nafta, wood, charcoal, and dung.

This could be due to the correlation between the use of such fuels, as opposed to electricity as a

proxy of lower socioeconomic status. Alternatively compared to nafta uses, study subjects who

use wood as main source of fuel are farmers and are usually exposed to soil without protective

shoe that could increase chance of acquiring hookworm and other STH infection. A previous

study in Ethiopia also confirms that there is a higher prevalence of STHs among farmers than

others. [44]

Additionally, we discovered that living in an urban area and cooking in the living room

were protective factors. This may be because these characteristics serve as proxy indicators of

higher socioeconomic status. Previous research has established a link between low socioeco-

nomic status and an increased risk of intestinal parasites [45]. Lastly, our findings that paternal

hay fever and wheeze are generally strong predictors of outcome variables may suggest that

families with respiratory allergies are also at compromised immune system, with an increased

risk susceptibility of parasitic infections [46]. Also, it could be a result of these factors acting as

a proxy measure for other respiratory problems in the family or health access. Lack of access to

health care has been linked to intestinal parasite infections [47]. However, the relationship

between atopic diseases and helminthic infection remains controversial. Some studies showed

that decreased prevalence of atopy among helminthic infected [48, 49], while others showed

either positive, or no relation between helminthic infection and allergic disease [50, 51]. Most

these studies are cross sectional, and do not allow making any strong temporal associations. A

more reliable longitudinal study by Cooper et al [52] showed that a deworming programme in

Ecuadorian schoolchildren reduced helminthiases without promoting atopy or atopic diseases.
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Our study population also enrolled in mass deworming program, which limits the possibility

that helminthic induced allergic disorder to be an alternative explanation. Furthermore, a posi-

tive association between dust mite skin prick test and infection with any parasite in this study

could be due to helminths induced non-functional sensitization of IgE against environmental

allergens. Doyen et al [53] documented that Helminth induced sensitization to Dpt was not

explained by sensitization to N-glycans nor to major allergens.

In this study protozoan infection was inversely associated with child wheezing but not

with paternal wheezing. This could partly explained by difference in age of the population

being studied and/or the time of infection. Studies showed that early life infection reduced

allergic disorders due to the fact that programming of Th cell memory against allergens

commonly occurs during early childhood [54]. However, others have reported conflicting

findings either no [55] or positive [56] association between protozoan infection and child-

hood wheezing. Further investigation is required to elucidate immune regulatory mecha-

nisms involved in the association between intestinal protozoan infections and allergic

manifestations.

Regarding association rule learning, we discovered that deworming in conjunction with

anemia was positively associated with protozoan infections. However, deworming was only

found to have a mitigative effect for STH infections in our multivariate logistic regressions,

which is supported by previous literature [57]. This may suggest that deworming may be creat-

ing an environment for other intestinal parasites such as protozoans by mitigating STH infec-

tions, as some previous studies have suggested [19]. In association rule learning, we also

observed that having animals such as dogs, cows, horses, and sheep was positively associated

with different intestinal parasites, which agrees with previous studies that have found a higher

prevalence of intestinal parasitosis among children raising animals compared to those not rais-

ing animals [58]. This association may be because raising animals may act as a proxy for rural

residence, but could also be a result of fecal contamination by infected animals. Our analysis

found urban residence in two association rules as increased risk for STH infection, despite

conflicting in logistic regression models. This discrepancy could be due to differences in these

models. Unlike the logistic regression model, which relies on a single model to compute the

probability that the module has a fault (i.e., fault-prone) based on its module metrics, associa-

tion rule mining is that a large set of rules can characterize various types of faulty modules.

This could increase the prediction performance since we can select rules based on interesting-

ness measures of a rule such as support and confidence [59]

Our findings provided support for the hypothesis that hematological parameters associated

with anemia are strong predictors of intestinal parasitic infections, possibly due to the strong

biological connection. Future studies may prioritize data collected from blood samples for

predictive purposes due to the high biological relevance of blood samples to intestinal para-

sites. Our findings, however, demonstrated the importance of socioeconomic and atopy-

related factors, implying the importance of combining internal biological parameters with

certain external risk factors.

Recent advances in computational capacity and machine learning (ML) have shown the

ability to accurately identify patients at high risk of mortality [60] and cardiovascular disease

[61] using electronic health record (EHR) data. Although such an approach is not commonly

used in parasite epidemiological surveys, our ML algorithm may shed light on new possibilities

to use and develop new models to assess risk factors in similar epidemiological studies. Fur-

thermore, applying association rule mining to parasite survey data sets could further confirm

existing knowledge regarding parasite risk factors and discover new risk factors that could

potentially lead to improved prevention efforts, decision support, and hypothesis generation.
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However, further clinical and biomedical studies should be done to determine the clinical

validity of the new associations generated in our machine learning algorithm.

Limitations

Our findings should be considered in light of some limitations. First, this is a cross-sectional

data collection which makes it difficult to attribute causality based on the observed association.

Second, the size of our data set and the class imbalance in our data limited our model’s predic-

tive capabilities. Additionally, by oversampling certain combinations of features using

SMOTE, we may have increased the bias in our association rule learning. Third, it is worth

noting that while machine learning methods can help us understand the significance of certain

risk factors, they do not always indicate whether these risk factors are additive or mitigating.

As a result, it is best to combine traditional statistical techniques with advanced machine learn-

ing techniques to obtain a more holistic view of risk factors. Finally, our models may not gen-

eralize well to other populations, given that they were trained on data from school children

enrolled in one region in Ethiopia. Further validation of these models is recommended in

other geographic settings to determine generalizability.

Conclusion

Our findings emphasize the importance of using machine learning algorithms to identify

novel risk factors and validate the significance of previously identified risk factors. While fea-

ture selection approaches overlapped with logistic regression in our study, they also revealed a

large number of risk factors that were not discovered by these approaches. Additionally, asso-

ciation rule learning revealed links between certain risk factor combinations and parasitic

infections that were not evident using logistic regression models or feature selection

approaches. Finally, SVM, RF and XGB classifiers produced highly accurate predictive models

in comparison to LR classifiers. Our findings demonstrate the importance of combining bio-

logically relevant predictors, such as hematological characteristics, with socioeconomic and

health-related factors for predicting parasitic infections.

Supporting information

S1 Fig. Heatmaps illustrating the accuracy scores for different feature selection and classi-

fier combinations without any data balancing; for infection by (a) any parasite, (b) any hel-

minth, (c) protozoan, and (d) STH. Green indicates a high accuracy, while red indicates a

low accuracy. Feature selection include All features, or top 20 features selected through Joint

Mutual Information (JMI-20), Minimum Redundancy Maximum Relevance (MRMR-20),

InfoGain (IG-20) and ReliefF (ReF-20). Classifiers include Logistic Regression (LR), Random

Forests (RF), Support Vector Machines (SVM), and XGBoost (XGB).

(TIF)

S2 Fig. Receiver operating characteristic (ROC) curves for different classifiers using best

feature selection method and best hyperparameters for that infection outcome without

data balancing; for infection by (a) any parasite, (b) any helminth, (c) protozoan, and (d)

STH. Classifiers include Logistic Regression (LR), Random Forests (RF), Support Vector

Machines (SVM), and XGBoost (XGB). Blue dashed line represents the ROC curve for a ran-

dom guess. The Area Under Curve (AUC) scores are (a) LR: 0.57, RF: 0.57, SVM: 0.55, XGB:

0.53, (b) LR: 0.54, RF: 0.54, SVM: 0.54, XGB: 0.49, (c) LR: 0.72, RF: 0.72, SVM: 0.49, XGB: 0.69,

and (d) LR: 0.54, RF: 0.61, SVM: 0.50, XGB: 0.59.

(TIFF)
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S1 Table. Univariate and multivariate logistic regression analysis of risk factors for STH

infection. For each risk factor, corresponding references and survey results are provided.

Adjusted p-values are provided in parenthesis.

(DOCX)

S2 Table. Univariate and multivariate logistic regression analysis of risk factors for infec-

tion with any protozoan. For each risk factor, corresponding references and survey results are

provided. Adjusted p-values are provided in parenthesis.

(DOCX)

S3 Table. Univariate and multivariate logistic regression analysis of risk factors for infec-

tion with any helminth. For each risk factor, corresponding references and survey results are

provided. Adjusted p-values are provided in parenthesis.

(DOCX)

S4 Table. Univariate and multivariate logistic regression analysis of risk factors for infec-

tion with parasites. For each risk factor, corresponding references and survey results are pro-

vided. Adjusted p-values are provided in parenthesis.

(DOCX)
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