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ABSTRACT Recent work shows that the plant microbiome, particularly the initial as-
sembly of this microbiome, influences plant health, survival, and fitness. Here, we
characterize the initial assembly of the Populus microbiome across ten genotypes
belonging to two poplar species in a common garden using 16S rRNA gene and
ITS2 region amplicon sequencing of the leaf endosphere, leaf surface, root endo-
sphere, and rhizosphere. We sampled these microbiomes three times throughout the
first growing season and found that the composition of the microbiome changed
dramatically over time across all plant-associated habitats and host genotypes. For
archaea and bacteria, these changes were dominated by strong homogenizing selec-
tion (accounting for 29 to 62% of pairwise comparisons). However, fungal assembly
was generally characterized by multiple ecological assembly processes (i.e., a mix of
weak selective and dispersal processes). Interestingly, genotype, while a significant
moderator of microbiome composition, generally explained less variation than sample
date across plant-associated habitats. We defined a set of core genera that accounted
for, on average, 36% of the microbiome. The relative abundance of this core commu-
nity was consistent over time. Additionally, using source tracking modeling, we deter-
mined that new microbial taxa colonize from both aboveground and belowground
sources, and combined with our ecological assembly null models, we found that both
selective and dispersal processes explained the differences between exo- (i.e., leaf sur-
face and rhizosphere) and endospheric microbiomes. Taken together, our results sug-
gest that the initial assembly of the Populus microbiome is time-, genotype-, and habi-
tat-dependent and is moderated by both selective and stochastic factors.

IMPORTANCE The initial assembly of the plant microbiome may establish the trajec-
tory of forthcoming microbiome states, which could determine the overall future
health of the plant. However, while much is known about the initial microbiome as-
sembly of grasses and agricultural crops, less is known about the initial microbiome
of long-lived trees, such as poplar (Populus spp.). Thus, a greater understanding of
initial plant microbiome assembly in an ecologically and economically important
plant such as Populus is highly desirable. Here, we show that the initial microbiome
community composition and assembly in the first growing season of Populus is tem-
porally dynamic and is determined by a combination of both selective and stochastic
factors. Our findings could be used to prescribe ecologically informed microbial inoc-
ulations and better predict the composition of the Populus microbiome into the
future and to better understand its influence on plant health.
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Agrowing body of literature recognizes that microorganisms living inside or in close
association with plant tissues, collectively known as the plant microbiome, are in-

tegral to plant health and survival (1, 2). Recent work has shown that plant micro-
biomes are influenced by a myriad of environmental factors, including soil type (3–6),
plant metabolites (7), and climate (8). However, relatively less attention has been given
to the influence of ecological assembly mechanisms on microbial community
composition, especially during initial microbiome assembly. Recognizing how plant
microbiomes initially assemble is essential for our understanding of plant-microbe
interactions and predicting future microbiome trajectories (9) and plant survival (10).

The initial assembly of the plant microbiome involves the colonization of microor-
ganisms from the outside (not plant-associated) environment, such as the air or sur-
rounding soil (11, 12). It is likely that the root endosphere is colonized by microorgan-
isms from the surrounding soil because root endosphere communities are generally a
subset of the larger species pool in the bulk soil (4). Indeed, Edwards et al. (5) proposed
a model of rice root endosphere colonization from the bulk soil and rhizosphere onto
the rhizoplane (i.e., root surface) and into the root endosphere. The colonization source
of the phyllosphere is relatively less certain, as both the air (13) and soil (14) have been
proposed as the dominant source of endospheric microorganisms, although recent evi-
dence suggests that phylloplane microorganisms are ultimately sourced from soils
(15). However, it is still unclear whether dispersal or selection is the major ecological
assembly process responsible for deciding which microbes can colonize endospheric
microbiomes (12).

Macroecological frameworks for community assembly have recently been adapted
for soil, animal, and plant microbiomes (e.g., 12–14), and such frameworks could be
useful in developing models of plant microbiome assembly under field conditions.
Community assembly from an ecological perspective constitutes a spectrum of deter-
ministic selection (i.e., ecological niche theory) to stochastic selection (i.e., neutral
theory). These mechanisms of community assembly have been shown to influence mi-
crobial community structure because they determine the degree of selection due to
niche-based (e.g., nutrient availability, plant defense compounds) and dispersal proc-
esses (16). Prior work in grass phyllosphere bacterial microbiomes demonstrates that
the phyllosphere is overall deterministically selected, but the relative influence of sto-
chastic selection is greater during initial plant growth (13, 14). Assembly of the
Phaseolus vulgaris core bacterial microbiome was characterized as relatively more
selective in belowground sample types (i.e., rhizosphere and root endosphere) and
more stochastic in inner aerial plant tissues (17). However, our understanding of plant
microbiome assembly is still incomplete because much of what we know about the
underlying plant microbiome assembly mechanisms is generally confined to annual
grass species and the bacterial community. These established patterns may diverge in
trees and their associated microbiomes because of structural and chemical differences
among tree compartments (i.e., different plant tissues) that may impact microbial
selection, drift, or dispersal. Furthermore, the assembly processes of bacterial and fun-
gal communities may not be consistent because differences in propagule size may
impact dispersal (18, 19), and bacteria and fungi respond to different selective pres-
sures (20, 21). Indeed, across 183 sites in Scotland, soil fungal community assembly
was significantly more stochastic than the assembly of bacterial communities (22).
These differences are likely even more important in trees, which form both arbuscular
and ectomycorrhizal symbioses (23). Hence, including novel model systems (i.e., trees),
multiple plant-associated habitats, and multiple microbial domains would increase our
ability to understand and predict plant microbiome trajectories holistically and better
understand plant holobiont systems.

An understanding of the plant microbiome assembly processes may be particularly
important for poplar species (Populus spp.) (24). Poplar trees are widely distributed
throughout North America (25), and they are an important potential biofuel feedstock
(26). The first poplar draft genome was sequenced in 2004 (27, 28), and since then,
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numerous distinct genotypes and their genomes have been described (29). These ge-
notypes vary not only phenotypically (e.g., resistance to fungal pathogens differs
among genotypes of the same poplar species [23]), but also in their microbiome com-
position (7, 30, 31). Genotypic influences on the plant microbiome are common across
species due to differences in metabolites, elemental concentrations, and root and leaf
traits (11), and these influences are generally stronger in aboveground, endospheric
microbiomes (15). However, the degree to which underlying assembly mechanisms
influence these microbiome compositional differences across poplar genotypes is cur-
rently unknown.

A common goal of plant microbiome research is to define and characterize the core
microbial community (12, 14, 17, 32–35). Core plant microbiomes generally represent a
small proportion of microbial richness but are consistently present among samples at
high relative abundances (33). While it is debated whether the core microbiome con-
fers benefits to the host (12, 33, 34), reducing the complexity of the microbiome
presents a greater opportunity to investigate the impact of individual microbial mem-
bers on host fitness (32, 36). Hence, developing an understanding of the core micro-
biome of poplar trees could lead to future targeted microbiome interventions (i.e., syn-
thetic communities) that promote plant health and productivity. Indeed, the addition
of a synthetic community consisting of Burkholderia and Pseudomonas strains isolated
from Populus hosts increased lateral root formation and root hair production in
Arabidopsis plate assays, and these organisms are predicted to carry out different func-
tions related to growth and plant growth promotion in Populus (37).

To increase our understanding of the initial assembly of the Populus microbiome
across genotypes, we planted ten Populus genotypes consisting of P. deltoides and P.
trichocarpa in a common garden and sampled the leaf endosphere, leaf surface, root
endosphere, and rhizosphere microbiomes three times throughout the first growing
season—directly before field propagation (T0, 16 May 2017), 29 June 2017, and 18
September 2017. We used 16S rRNA gene and ITS2 region amplicon sequencing to
characterize the archaeal and bacterial and the fungal communities, respectively. We
hypothesized that microbiome community composition as well as the underlying as-
sembly mechanisms (e.g., deterministic versus stochastic assembly) would change sig-
nificantly during this time. Specifically, we hypothesized that deterministic selection
would increase over time, as has been demonstrated in other successional contexts
(38). Furthermore, we expected greater deterministic selection in plant endosphere
microbiomes compared to the rhizosphere and leaf surface microbiomes due to the
selective pressures of plant defense compounds (39). Overall, we expected the devel-
opment of a dominant core community during the first growing season. We also
attempted to resolve the colonization source of the root and leaf endosphere. We
hypothesized that the rhizosphere would be the greatest source of root endosphere
microorganisms, and the leaf surface would be the greatest source of leaf endosphere
microorganisms due to spatial proximity. Our overall goals were to characterize the initial
microbiome assembly across plant-associated habitats (i.e., plant tissues and immediate
environment) and to determine the colonization source of endospheric microorganisms.

RESULTS
a-Diversity changes over time in multiple plant-associated habitats. We detected

a significant three-way interaction in the effect of plant-associated habitat, genotype,
and sample date on archaeal and bacterial a-diversity expressed as Hill numbers (40)
at both q (defined in Materials and Methods) = 0 (analogous to richness) and q=1
(analogous to Shannon’s entropy) (analysis of variance [ANOVA] – q=0: F42,343 = 1.921,
P = 0.001; q=1: F42,343 = 2.622, P, 0.001). When analyzed separately among plant-asso-
ciated habitats, we generally found that sample date only affected a-diversity in the
exospheric microbiomes (i.e., leaf surface, rhizosphere) for both q=0 and q=1 (Fig. 1;
see Fig. S1 at https://doi.org/10.6084/m9.figshare.14251463.v1). While the leaf surface
decreased in a-diversity over time, the rhizosphere increased over time. Alternatively,
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endospheric microbiome a-diversity was relatively stable over time. At q=0, there was
a significant effect of genotype on both the leaf endosphere and rhizosphere a-diver-
sity, but at q=1, the effect of genotype was only significant in the leaf endosphere
(see Table S1 and Fig. S2 at https://doi.org/10.6084/m9.figshare.14251463.v1).
However, for both q=0 and q= 1, the effect of genotype interacted with sample date
for leaf endosphere a-diversity such that there was only a genotype effect during the
latest September sample date (see Table S1 and Fig. S2 at https://doi.org/10.6084/m9
.figshare.14251463.v1).

Plant-associated habitat interacted individually with genotype and sample date for
fungal alpha diversity at both q=0 (i.e., richness; ANOVA – genotype: F27,295 = 2.989,
P, 0.001; sample date: F6,316 = 26.929, P, 0.001) and q=1 (i.e., Shannon’s entropy;
ANOVA – genotype: F27,295 = 2.011, P = 0.003; sample date: F6,316 = 9.051, P, 0.001).
When analyzed separately among plant-associated habitats, we generally found that
fungal a-diversity in the exospheric microbiomes (i.e., leaf surface, rhizosphere)
increased over time for both q=0 and q=1 (Fig. 1; see also Fig. S1 at https://doi.org/10
.6084/m9.figshare.14251463.v1). However, we also found that a-diversity in the leaf
endosphere decreased over time for both q=0 and q=1 (Fig. 1). Across both q=0 and
q=1, genotype was only a significant effect of fungal alpha diversity in the rhizosphere
(q=0: F9,94 = 2.665, P = 0.038; q=1: F9,94 = 2.806, P = 0.026; see Fig. S3 at https://doi.org/
10.6084/m9.figshare.14251463.v1).

Microbial community composition consistently changes over time. Plant-associ-
ated habitat explained 19.6% of the variation in archaeal and bacterial community
composition (permutational multivariate analysis of variance [PERMANOVA]: P, 0.001,
R2 = 0.196). Because there was a three-way interaction among plant-associated habitat,
genotype, and sample date (P, 0.001), we analyzed each plant-associated habitat sep-
arately. When separated by plant-associated habitat, sample date was consistently a
significant moderator of archaeal/bacterial community composition (Fig. 2A); however,
the strength of this effect varied (Table 1). For example, the effect of sample date was,
on average, a three times weaker correlate of the community composition in endos-
pheric microbiomes (e.g., leaf and root endosphere) compared to exospheric micro-
biomes (e.g., leaf surface, rhizosphere).

Taxonomic succession, for the most part, varied among plant-associated habitats.
For instance, in the leaf endosphere, there was a relative increase in Proteobacteria
over time (particularly Gammaproteobacteria), while in the rhizosphere, the relative
abundance of Proteobacteria declined (see Fig. S4A at https://doi.org/10.6084/m9
.figshare.14251463.v1). Similarly, at the order level, the leaf surface and rhizosphere fol-
lowed diverging patterns: the relative abundance of Sphingomonadales increased in

FIG 1 Means (and standard errors) of a-diversity based on Hill numbers (40) of archaea and bacteria
and fungi across plant-associated habitats and sampling dates at q = 0 (richness). Letters represent
significant differences among sample dates (P, 0.05). Note the different axis scales. T0 represents
samples collected directly before field propagation.
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the leaf surface and decreased in the rhizosphere over time (see Fig. S5A at https://doi
.org/10.6084/m9.figshare.14251463.v1).

Genotype was also a significant moderator of archaeal and bacterial community
composition in all but the leaf surface microbiome (Table 1). Genotype effects were

FIG 2 (A and B) Principal-coordinate analysis (PCoA) ordinations of archaeal and bacterial (A) and
fungal (B) community composition across plant-associated habitats, sampling time, and host species.
The percentages in parentheses quantify the variance explained by each axis. Note the different axis
scales.

TABLE 1 PERMANOVA results for differences in archaeal/bacterial and fungal community
composition by sample date, host genotype, and their interaction among plant-associated
habitatsa

Plant part R2
date P valuedate R2

genotype P valuegenotype R2
interaction P valueinteraction

Archaea/bacteria
Leaf endosphere 0.103 .0.001 0.164 .0.001 0.285 .0.001
Leaf surface 0.327 .0.001 0.070 0.292 0.112 0.112
Root endosphere 0.090 .0.001 0.098 0.044 0.140 0.160
Rhizosphere 0.326 .0.001 0.096 0.016 0.083 1.000

Fungi
Leaf endosphere 0.240 .0.001 0.240 0.034 0.189 0.032
Leaf surface 0.247 .0.001 0.111 .0.001 0.145 .0.001
Root endosphere 0.142 .0.001 0.121 0.134 0.145 0.131
Rhizosphere 0.251 .0.001 0.145 .0.001 0.099 1.000

aP values have been corrected by the false-discovery rate (n=4) (96). Bolded values represent significant
differences among groups (P, 0.05).
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strongest in the two endosphere microbiomes, and in these microbiomes, the effect of
genotype was stronger than that of sample date (Table 1). However, in the leaf endo-
sphere, there was a significant sample date-genotype interaction (PERMANOVA,
P, 0.001), where there was only a genotype effect during the June and September
sample dates (T0, P=0.261; June, P = 0.021, R2 = 0.407; September, P = 0.003, R2 =
0.569). Interestingly, genotypic differences in the belowground microbiomes were
intraspecific, as host species was not a significant moderator of community composi-
tion (root endosphere, P=0.440; rhizosphere, P=1.000; Fig. 2A). However, in the latter
two sample dates for the leaf endosphere microbiome (when genotype was a signifi-
cant moderator of community composition), there was a significant difference
between communities in P. deltoides and P. trichocarpa (P = 0.026, R2 = 0.031). This dif-
ference in the microbiome composition was noted at the genus level with a greater
relative abundance of Streptococcus spp. in the P. deltoides leaf endosphere (see Fig.
S6A at https://doi.org/10.6084/m9.figshare.14251463.v1). Upon further multiple-com-
parison testing among genotypes, we failed to detect significant differences between
genotypes within the same plant-associated habitat across all sample dates (P, 0.05;
see Table S2 at https://doi.org/10.6084/m9.figshare.14251463.v1).

Plant-associated habitat explained 24.1% of the variation in fungal community compo-
sition (PERMANOVA, P, 0.001, R2 = 0.241). Similar to the archaeal/bacterial results
described above, because there was a three-way interaction among plant-associated habi-
tat, genotype, and sample date (P, 0.001), we analyzed each plant-associated habitat sep-
arately. When separated by plant-associated habitat, sample date was consistently a signif-
icant moderator of fungal community composition and, on average, explained 22% of the
variation (Fig. 2B; full statistics in Table 1). Taxonomically, this was represented as a gradual
increase in the relative abundance of Basidiomycota over time across all plant-associated
habitats (see Fig. S3B at https://doi.org/10.6084/m9.figshare.14251463.v1), particularly the
orders Agaricales and Termellales (see Fig. S4B at https://doi.org/10.6084/m9.figshare
.14251463.v1). In the rhizosphere, there was a gradual decrease in Trichoderma spp. (see
Fig. S5B at https://doi.org/10.6084/m9.figshare.14251463.v1).

Functionally, there was a shift in the root endosphere fungal community away from
pathogenicity at T0 toward mycorrhization during the June and September sample
dates (Fig. 3). Accordingly, at T0, fungal pathogens constituted over 60% of the fungal
reads in the root endosphere, while mycorrhizal fungi were almost nonexistent
(,0.02%). By the September sampling date, the relative abundance of pathogens
decreased to 16% of the root endosphere fungal reads, respectively, while ectomycor-
rhizal (EM) fungi increased to 7%. Arbuscular mycorrhizal (AM) fungi also increased dra-
matically over the sampling period, although relative abundances were significantly
smaller than those of both pathogens and ectomycorrhizal fungi (Fig. 3).

Genotype was also a significant moderator of fungal community composition in all
but the root endosphere microbiome (Table 1). However, in the leaf endosphere and
surface microbiomes, there were significant sample date-genotype interactions
(PERMANOVA – leaf endosphere, P = 0.032; leaf surface, P, 0.001), where the effect of
genotype was strongest in the later sampling dates (although not significant for the
leaf endosphere; see Table S3 at https://doi.org/10.6084/m9.figshare.14251463.v1).
Genotypic differences could only be attributed to host species in the leaf surface
microbiome (P= 0.030, R2 = 0.019), where P. trichocarpa had greater relative abundan-
ces of the plant pathogen Alternaria spp. (see Fig. S6B at https://doi.org/10.6084/m9
.figshare.14251463.v1).

Microbial assembly processes differ by microbial domain. Using a null modeling
approach, we assessed ecological assembly processes of the microbial communities
following Stegen et al. (41). Assembly processes were broadly categorized as (i) vari-
able selection, whereby selective processes lead to disparate microbial communities,
(ii) homogenous selection, whereby selective processes lead to similar microbial com-
munities, (iii) dispersal limitation, whereby limitations to dispersal allow ecological drift
to lead to disparate microbial communities, and (iv) homogenizing dispersal, whereby
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high rates of dispersal lead to similar microbial communities (see Materials and
Methods for complete statistical criteria).

Across all plant-associated habitats, no single assembly process dominated archaeal
and bacterial community assembly (Fig. 4A). However, when assessed for each sample
date and plant-associated habitat individually (the two strongest moderators of commu-
nity composition), homogenous selection was the primary driver of between-community
shifts in composition for 29 to 62% of pairwise comparisons within each plant-associated
habitat-sample date combination (Fig. 4B). The relative dominance of homogenous selec-
tion as the primary assembly process varied with both plant-associated habitat and sam-
ple date (Fig. 4B). For example, homogenous selection decreased during the growing sea-
son in aboveground microbiomes but remained fairly constant in the belowground
archaeal and bacterial microbiomes (Fig. 4B). Other assembly processes, such as dispersal
limitation, also varied by both plant-associated habitat and sample date. While dispersal
limitation increased from T0 to June and decreased from June to September in the leaf
endosphere and rhizosphere, it consistently increased in the root endosphere and leaf
surface archaeal and bacterial microbiome (Fig. 4B).

Interestingly, variable selection was also a relatively important moderating factor in
the root endosphere throughout the first growing season, which would appear to con-
tradict the dominance of homogenous selection. However, pairwise comparisons for
the same genotype within each plant-associated habitat-sample date combination
were often 100% dominated by homogenous selection (see Table S4 at https://doi
.org/10.6084/m9.figshare.14251463.v1). Thus, significant variable selection among geno-
types occurred in the root endosphere, particularly among P. trichocarpa genotypes (see
Table S5 at https://doi.org/10.6084/m9.figshare.14251463.v1). Differences between the
leaf endosphere and leaf surface and the root endosphere and rhizosphere were charac-
terized by a combination of dispersal limitation and variable selection, while similarities
were mostly characterized by homogenous selection, and these patterns were fairly con-
sistent over time (see Fig. S7A and B at https://doi.org/10.6084/m9.figshare.14251463.v1).

Across all plant-associated habitats, sample dates, and genotypes, the fungal com-
munity was characterized by both dispersal limitation and undominated assembly
processes, with selection playing a relatively minor role (Fig. 4C). When assessed for
each sample date and plant-associated habitat individually, fungal community

FIG 3 (A and B) Relative abundance of arbuscular mycorrhizal (AM), ectomycorrhizal (EM), and
pathogen fungal reads across sample dates for the root endosphere (A) and rhizosphere (B). Different
letters represent significant differences in guild relative abundance among sample dates (P, 0.05).
Note the different y axis scales.
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assembly was, for the most part, undominated by selective or dispersal processes
(Fig. 4D). However, similar to the archaeal and bacterial communities, the dominance
of assembly processes differed by sample date. In the leaf surface fungal microbiome,
there was a shift from homogenizing dispersal to homogenous selection during the
first growing season (Fig. 4D). Alternatively, dispersal processes, at the expense of ho-
mogenous selection, became relatively more dominant in the rhizosphere for fungi
during the growing season. Unlike for archaea and bacteria, pairwise comparisons
within plant-associated habitat-sample date-genotype combinations for fungi were
most often characterized by assembly processes undominated by selection or dispersal
(see Table S6 at https://doi.org/10.6084/m9.figshare.14251463.v1), a pattern that was
consistent within host species as well (see Table S7 at https://doi.org/10.6084/m9
.figshare.14251463.v1). Differences between the leaf endosphere and leaf surface were
mostly controlled by weak selection and dispersal factors (i.e., “undominated”), while
differences between the root endosphere and rhizosphere were characterized by a
combination of undominated assembly processes and dispersal limitation (see Fig. S7C
and D at https://doi.org/10.6084/m9.figshare.14251463.v1). These patterns were con-
sistent over the growing season.

Core taxa disproportionately represent the Populus microbiome. Using occu-
pancy-abundance distributions of microbial genera across all time points, we detected
23 distinct bacterial (Table 2) and 12 distinct fungal (Table 3) core genera across the
four plant-associated habitats based on .95% occupancy and .1% average relative
abundance (see Fig. S8 at https://doi.org/10.6084/m9.figshare.14251463.v1). While we

FIG 4 Relative dominance of assembly processes. (A and C) Overall dominance of assembly
processes for archaea and bacteria (A) and fungi (C) among all samples. (B and D) Relative
dominance of assembly processes within each plant-associated habitat-sample date combination for
archaea and bacteria (B) and fungi (D). Too few fungal leaf endosphere samples in September (due to
insufficient read depths) prevented the characterization of assembly processes.
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detected no core archaeal and bacterial genera in the leaf endosphere, on average,
archaeal and bacterial core genera constituted 51%, 24%, and 49% of reads in the leaf
surface, root endosphere, and rhizosphere microbiome, respectively. The core genera
accounted for 1.4%, 0.8%, and 2.9% of archaeal and bacterial genera in the leaf surface,
root endosphere, and rhizosphere microbiome, respectively. Across the growing sea-
son, the relative abundance of the core archaeal and bacterial community increased in
the leaf surface (ANOVA, F2,102 = 65.74, P, 0.001), decreased in the rhizosphere (F2,103 =
13.11, P, 0.001), and did not significantly change in the root endosphere (F2,102 = 1.04,
P = 0.357; Fig. 5A).

For fungi, core genera constituted, on average, 44%, 44%, 7%, and 67% of reads in
the leaf endosphere, leaf surface, root endosphere, and rhizosphere fungal micro-
biome, respectively. The core genera accounted for 0.7%, 1.4% 0.4%, and 1.8% of fun-
gal genera in the leaf endosphere, leaf surface, root endosphere, and rhizosphere
microbiome, respectively. Similar to archaea and bacteria, the relative abundance of
fungal core genera across the growing season differed by plant-associated habitat.
During the first growing season, the relative abundance of fungal core genera
increased in the leaf endosphere (ANOVA, F1,28 = 14.06, P, 0.001), remained the same
in the leaf surface (F2,103 = 0.38, P = 0.685), and decreased in the root endosphere
(F2,58 = 9.46, P, 0.001) and rhizosphere (F2,103 = 105.1, P, 0.001; Fig. 5B). Half of the
core fungal genera were classified as potential plant pathogens, while the other half
were classified as saprotrophs. Interestingly, many core genera were shared among
plant-associated habitats. For instance, the bacterium Sphingomonas and the fungal
plant pathogen Fusarium were core genera in the leaf surface, root endosphere, and

TABLE 2 Core archaeal and bacterial genera defined by.95% occupancy and.1% average
relative abundance

Plant-associated habitat Occupancy (%) Relative abundance (%) Genus
Leaf surface 99.0 1.7 Agrobacterium

98.1 1.4 Devosia
95.1 5.0 Hymenobacter
98.1 3.3 Massilia
100.0 13.6 Methylobacterium
96.1 1.1 Mycobacterium
98.1 3.5 Pseudomonas
100.0 21.9 Sphingomonas

Root endosphere 95.1 1.2 Hyphomicrobium
97.1 6.1 Pseudomonas
99.0 2.7 Rhodoplanes
100.0 2.2 Sphingomonas
99.0 11.6 Streptomyces

Rhizosphere 100.0 1.8 Alicyclobacillus
99.0 1.9 Bacillus
100.0 3.1 Bradyrhizobium
100.0 2.2 Burkholderia
100.0 2.2 Chitinophaga
100.0 3.5 Devosia
100.0 3.2 Dyella
100.0 2.6 Hyphomicrobium
100.0 3.7 Kaistobacter
100.0 1.8 Mesorhizobium
100.0 2.7 Mycobacterium
100.0 1.2 Novosphingobium
100.0 3.5 Phenylobacterium
100.0 1.7 Pseudonocardia
100.0 9.0 Rhodoplanes
100.0 2.5 Sphingomonas
100.0 3.0 Streptomyces
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rhizosphere. Similarly, in addition to the aforementioned genera, Rhodoplanes and
Streptomyces were core genera in both the root endosphere and rhizosphere.
Additionally, the two core genera in the leaf endosphere, the fungal plant patho-
gens Alternaria and Boeremia, were also leaf surface core genera.

Endospheric microbiomes have both above- and belowground sources. Across
the sink microbiomes (e.g., leaf and root endosphere), we were able to determine the
source for 6.9% and 3.5%, on average, of new archaeal and bacterial and fungal taxa,
respectively (see Table S8 at https://doi.org/10.6084/m9.figshare.14251463.v1) using
SourceTracker (42). Generally, source microbiome contributions to the sink microbiome
were comparable, with each source contributing about half of the source-attributable

TABLE 3 Core fungal genera defined by.95% occupancy and.1% average relative abundance

Plant-associated habitat Occupancy (%) Relative abundance (%) Genus Guilda

Leaf endosphere 96.6 35.5 Alternaria Pathogen
96.6 8.7 Boeremia Pathogen

Leaf surface 100.0 16.9 Alternaria Pathogen
96.2 6.2 Aureobasidium Pathogen
97.1 11.5 Boeremia Pathogen
98.1 5.5 Filobasidium Saprotroph
100.0 2.0 Fusarium Pathogen
97.1 2.2 Paraconiothyrium Saprotroph

Root endosphere 98.4 7.4 Fusarium Pathogen
Rhizosphere 100.0 1.2 Coniochaeta Pathogen

100.0 5.9 Fusarium Pathogen
95.2 1.6 Humicola Saprotroph
99.0 12.2 Kabatiella Pathogen
100.0 18.7 Phialemonium Saprotroph
98.1 2.5 Scytalidium Saprotroph
100.0 24.8 Trichoderma Saprotroph/endophyte

aGuild is defined using the FUNGuild database (84).

FIG 5 (A and B) Mean relative abundance (and standard error) of archaeal and bacterial (A) and
fungal (B) core genera during the first growing season across plant-associated habitats. Note the
different axis scales. Too few fungal leaf endosphere samples in September (due to insufficient read
depths) prevented the characterization of a core microbiome.
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new taxa within each sink microbiome (ANOVA, F1,124 = 8.165, P = 0.004). The singular
exception was for the leaf endosphere archaeal and bacterial microbiome. Here, while
model predictions estimated that the root endosphere contributed almost 12% of new
taxa to the archaeal and bacterial leaf endosphere community, the leaf surface was
estimated to contribute only 2.6%. Source contributions were also consistent over time
for both the leaf and root endosphere across both amplicons (16S-leaf, P = 0.096; ITS-
leaf, P = 0.440; 16S-root, P = 0. 213; ITS-root, P = 0.159).

DISCUSSION

The initial assembly of the plant microbiome may establish the trajectory for forth-
coming microbiome states (via priority effects) and could determine the overall future
health of the plant (12, 43, 44). Thus, a greater understanding of initial plant micro-
biome assembly in an ecologically and economically important plant such as Populus is
highly desirable (25, 26). Here, we show that the initial microbiome composition and
assembly in the first growing season of Populus are temporally dynamic and are deter-
mined by a combination of both selective and stochastic factors.

Sample date was consistently a strong predictor of the microbial community com-
position when assessed within each individual plant-associated habitat, which high-
lights how changing plant, soil, and climactic factors over time influence microbial
community composition. First of all, increasing root and leaf biomass during the first
growing season may affect the diversity of the microbial community through species-
area relationships (45, 46). Additionally, seasonal internal redistribution of sugar and
nitrogen among plant tissues (47, 48) would affect substrates necessary for microbial
growth leading to changes in microbial community composition. Our finding that
Gammaproteobacteria gradually replace Alphaproteobacteria in aboveground sample
types over time contradicts previous studies in grass microbiomes (14, 49), highlighting
differences between tree and grass microbiomes. Additionally, as plants grow during
the first growing season, exudation of plant photosynthates into the rhizosphere from
roots likely increases (50). This increase in exudation has been shown to favor
Proteobacteria and Bacteroidetes at the expense of Actinobacteria in Arabidopsis (50),
Avena (51), and Citrus (52). Interestingly, our results showed opposite patterns (see Fig.
S4 at https://doi.org/10.6084/m9.figshare.14251463.v1), which could reflect other envi-
ronmental changes that would favor Actinobacteria. Increased temperatures during the
summer months could positively impact Actinobacteria (53). Furthermore, increased ac-
tivity during summer months (54) may enhance nutrient availability (55, 56) and shift
the microbial community composition. These results contribute to the growing litera-
ture suggesting that microbial communities are temporally dynamic (57). However, we
build upon this to show that, across habitat types (e.g., leaf endosphere, rhizosphere,
etc.), the initial community assembly of the plant microbiome cannot be captured
through examination of a single time point and that stochastic processes as well as
deterministic ones shape the plant microbiome.

The effect of sample date was stronger in exospheric microbiomes (i.e., the leaf sur-
face and rhizosphere) than in endospheric microbiomes (i.e., the leaf and root endo-
sphere) for archaea and bacteria. This is corroborated by multiple studies that show
that the host effects dominate the endosphere microbiome, while environmental fac-
tors influence the exospheric microbiomes to a greater extent (12, 15, 17). However,
host effects likely also changed during the initial growing season as leaf area increased
and patterns of nutrient and sugar distribution changed (47, 48). This suggests that
environmental changes over the first growing season are stronger than changes to the
host. The muted community change with season in endospheric microbiomes could
also be due to dispersal limitation, where microbes adapted to the changing exo-
spheric conditions are prevented from colonizing the plant endosphere. Indeed, we
found evidence for dispersal limitation to be a major factor in structuring differences
between endo- and exospheric microbiomes (see Fig. S7 at https://doi.org/10.6084/m9
.figshare.14251463.v1) and within the endospheric microbiomes (Fig. 5). However, this
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finding that exospheric archaeal and bacterial microbiomes were influenced by sample
date to a greater degree than in endospheric microbiomes was not followed by fungi
(Table 1). This difference could be attributed to the overall greater stochasticity or
weak selective/dispersal factors found in fungal community assembly (Fig. 5). Such dif-
ferences highlight the need to study the plant microbiome holistically, as different mi-
crobial domains and plant-associated habitats can follow distinct patterns.

An increased understanding of fundamental community assembly processes describes
the elementary units that underpin microbial community composition. Consistent with
our hypothesis, the relative dominance of assembly patterns (e.g., variable selection, ho-
mogenous selection, dispersal limitation, and homogenizing dispersal) changed over
time. However, a general pattern with time across plant-associated habitats for both arch-
aea and bacteria and fungi did not emerge. This is surprising because in other succes-
sional contexts (e.g., soils after wildfire disturbances and a salt marsh soil chronose-
quence), selective assembly processes tend to dominate over time (58, 59). While
disturbances may lead to historical contingencies that could affect assembly mechanisms
(9), the environmental pressures on the microbiome of a growing plant could also lead to
large changes in assembly. Indeed, during the first 4 months of sorghum (Sorghum
bicolor) growth, the relative dominance of community assembly processes of the fungal
phyllosphere microbiome shifted from stochasticity (i.e., weak selective and dispersal
processes) to homogenous selection and homogenizing dispersal (60). Furthermore, evi-
dence of deterministic selection increased during successive microbial passages in the
Solanum phyllosphere (61). These conflicting results among studies suggest that temporal
patterns of microbial assembly may be idiosyncratic and depend on the host species. This
demonstrates the need to understand plant microbiome assembly in multiple species
aside from “model” grass systems.

Our finding that homogenous selection was the dominant assembly process for
archaea and bacteria at each sample date across plant-associated habitats suggests
that the initial Populus archaeal and bacterial microbiome assembly is repeatable and
predictable even among different Populus genotypes. This is remarkable given the fact
that this consistency was noted even when compared between two different Populus
species. This is not to say that there were no differences among genotypes; however,
the impact of genotype on microbial community composition across microbial
domains was relatively similar or less than that of sample date. In the leaf and root
endosphere, the archaeal and bacterial microbiome was, in fact, more structured by
genotype than sample date. These genotypes vary in production of numerous metabo-
lites, such as salicylic acid (7, 62, 63), which can correlate with changes in the microbial
community composition (64). Plant phenotypic differences are even more pronounced
across Populus species such as P. trichocarpa and P. deltoides, which have differential
resistances to plant pathogens such as Sphaerulina musiva and Marssonina brunnea
(31, 65). Differences in microbiome composition among genotypes may grow stronger,
especially within the endosphere, as the plants mature and differences in pathogen
infectivity begin to emerge. For example, the effects of the leaf spot and stem canker
fungal pathogens Marssonina brunnea and Sphaerulina musiva are known to dramatically
increase over the initial years after establishment in plantation settings (66), and similar
patterns have been observed at our site in P. trichocarpa trees in the subsequent years af-
ter this study (M. Cregger and W. Muchero, unpublished data). However, we did not find
differences in pathogen relative abundance among different genotypes or Populus spe-
cies (Fig. 3; Fig. S6 at https://doi.org/10.6084/m9.figshare.14251463.v1), which contradicts
early findings in mature Populus trees (31), further supporting out hypothesis that geno-
typic differences likely emerge as trees age.

With a few exceptions, our hypothesis that the dominance of a microbial core com-
munity would increase over time was unsupported by the data. Only the archaeal and
bacterial leaf surface microbiome and the fungal leaf endosphere core microbiomes
increased in dominance over time. However, across all time points, these 23 distinct
bacterial and 12 distinct fungal core genera constituted a substantial proportion of the
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plant microbiome (7 to 69%). This supports earlier findings that overall beta diversity
in the plant microbiome is controlled by the variation in a relatively small number of
taxa (4, 14, 32, 67). This is corroborated by the fact that most of the fungal core genera
in our study were considered potential plant pathogens, which can disproportionately
affect the plant microbiome (36). Interestingly, although Populus plants form both EM
and AM symbioses (68), none of the core fungal genera were classified as such. This is
likely because at T0, mycorrhizal associations had not yet established. Indeed, the pro-
portion of both EM and AM reads increased during the first growing season in the root
endosphere and rhizosphere, which suggests that mycorrhizal colonization in the field
can occur relatively rapidly (,1month), and there is a strong preference of such a rela-
tionship with time.

The bacterial core microbiome consisted of several taxa that have also been classi-
fied as “core” in numerous other studies across vastly different plant types. For exam-
ple, core bacterial genera in the leaf surface in our study included Methylobacterium,
Sphingomonas, Pseudomonas, and Hymenobacter, which have been classified as core
members of the Panicum virgatum, Miscanthus x giganteus, Arabidopsis thaliana, and
Medicago truncatula phyllospheres (14, 69, 70). Additionally, in the rhizosphere, core
Alphaproteobacteria genera in our study, such as Bradyrhizobium, Burkholderia,
Mesorhizobium, and Rhodoplanes are also considered core rhizosphere bacteria across
numerous plant phyla (35). This suggests that there is a consistent consortium of bac-
teria that frequently colonize different plant-associated habitats regardless of plant
type or species. In other words, these core genera may be selected based on the plant-
associated habitat (e.g., phyllosphere versus rhizosphere), and differences in plant-
associated habitats among plant species may be less important. It is possible then that
these bacteria perform important functions in the plant. However, in contrast to the
fungal core genera, the functions of the bacterial core genera still remain unclear
because metagenome prediction based on amplicon data has yet to be verified by
large-scale genomic sequencing of isolates or shotgun metagenomics in plant tissues.
Until then, the functional significance of the core microbiome is still debated (33, 34);
however, these core members represent taxa that should be prioritized for isolation
and subsequent genomic sequencing to understand their functional significance.

Consistent with previous studies, we found that the colonization of the root and
leaf endosphere likely occurs from multiple sources (71–73). However, our hypothesis
that the adjacent exospheric microbiome would be the dominant source of the endos-
pheric microbiome (e.g., the rhizosphere for the root endosphere) was largely unsup-
ported. Our results suggest that under most circumstances new taxa colonize from a
combination of aboveground and belowground source environments. This finding
somewhat contradicts previous studies that suggest that the soil microbiome is the
dominant reservoir of plant endosphere taxa (14, 70). While it is true that highly diverse
soil microbial communities, in general, share many microbial members with those in
the plant endosphere, a mechanistic model of microbial colonization cannot necessar-
ily be inferred from such observations. For example, aeolian-derived microbes from dif-
ferent environments may be deposited on leaf as well the soil surface (74, 75). Such
microbes have been shown to enter the leaf endosphere through stomatal openings
(73), so even though there is shared membership between the leaf endosphere and
the soil, this does not necessarily mean that the soil is the source of said microbe. Our
source tracking models attempt to remedy this by including multiple aboveground
and belowground sources. Nevertheless, the lack of source attribution (,10% in many
cases) limits the conclusions that can be made from these models. However, we show
that it is likely that multiple sources contribute to plant endosphere colonization.

Extending these source tracking predictions to our community assembly models,
we show that colonization of the plant endosphere by archaea and bacteria is influ-
enced by both variable selection and dispersal limitation. This suggests that differences
in the community composition between endo- and exo-spheric microbiomes is due to
both selective pressures and physical limitations of colonization. While this has been

PopulusMicrobiome Initial Assembly

May/June 2021 Volume 6 Issue 3 e01316-20 msphere.asm.org 13

https://msphere.asm.org


previously hypothesized (4, 73), we are the first to demonstrate with community as-
sembly models that this is indeed the case. Furthermore, we show that, for fungi, sto-
chastic factors likely play a major role in influencing the colonization of the plant endo-
sphere from its adjacent exosphere, and in the root endosphere, dispersal limitation is
also a factor. The mode of microbial colonization is an important consideration of plant
microbiome assembly, and these models of microbial colonization (i.e., source tracking
and assembly processes) should be paired with future experiments that empirically
test modeled results.

Our results comprehensively characterize the early assembly of the temporally
dynamic Populus microbiome among multiple plant genotypes and species and across
different plant-associated habitats. While the fundamental assembly processes and col-
onization sources remained largely similar throughout the first growing season, the
microbiome community composition shifted dramatically. This suggests that changing
seasonal factors as well as changes associated with plant growth are primarily respon-
sible for these shifts. Future work, such as long-term, seasonal plant microbiome stud-
ies, may be able to partition the influence of season and plant growth. It is hypothe-
sized that the initial assembly of the microbiome “sets the stage” for future
microbiome states through priority effects (76). Hence, where differences exist (e.g.,
the modest differences among plant genotypes), our findings could be used to predict
the composition of the Populus microbiome into the future and better understand its
influence on plant health.

MATERIALS ANDMETHODS
Plant collections. During December of 2016, eight P. trichocarpa genotypes were collected from

Corvallis and Clatskanie genome-wide association study (GWAS) populations (65), and two P. deltoides
genotypes were collected from a previous University of Tennessee Institute of Agriculture (UTIA) Sun
Grant experiment in Blount County, TN, in the same field as the plots described below (31, 77). Cuttings
were kept on ice, shipped overnight, and maintained at 4°C until propagation (March 2017). Cuttings
were rinsed in a 1% Zerotol 2.0 solution for surface sterilization, rooting powder was placed on sterile
cutting surfaces (0.1% indole-3-butyric acid), and plants were placed in sterile potting soil (Fafard 52
Mix, Sun Gro Horticulture, Massachusetts, USA). Once significant root growth took place and leaf buds
opened, cuttings were transferred to an experimental plot in Blount County, TN, managed by the UTIA-
East Tennessee Research and Education Center (ETRED) (see Cregger et al. [31] for site details).

Experimental design, harvest, and sample processing. Soils were augured to transplant cuttings
and minimize the effects of soil compaction on belowground root establishment. We planted six rows of
80 individuals spaced 1 m apart. These rows were broken up into three blocks made up of 4 to 26 repli-
cates of each genotype. Sampling was conducted on three sampling dates in the initial growing sea-
son—day of transplant T0 (in May of 2017, representing the microbial community that was present in
the cuttings and that colonized the plants in the greenhouse), June 2017, and September 2017 to
assess initial microbiome community assembly across four plant-associated habitats (leaf endo-
sphere, leaf surface, root endosphere, and rhizosphere). At each time point, three random replicate
plants (one from each block) were destructively harvested per genotype, and samples were trans-
ferred to the laboratory. Roots, and the attached soil (operationally defined as rhizosphere soil), were
stored at 280°C until root washing, sterilization, and genomic DNA (gDNA) extractions took place
(within 2months of sampling). Briefly, fine roots (,2mm diameter) were sorted and surface-sterilized
by sequential washing with bleach (3.125%) and then ethanol (70%) and rinsing of the roots with
autoclaved water (4 times) as previously described (31); the rhizosphere was collected from an initial
rinse with sterile water. Leaves were stored at 4°C after harvest and processed within 3 days. Leaves
were rinsed (rinsate was collected as leaf surface samples) and surface-sterilized as previously
described (31) by washing leaves with bleach and rinsing the leaves with autoclaved water (4 times).
Postprocessing, leaf samples were also stored at –80°C until DNA extractions.

DNA extractions and Illumina MiSeq preparation and sequencing. Prior to extraction, root and
leaf tissues were cut into fine pieces (;5mm or less), and leaf and root rinsates (rhizosphere) were centri-
fuged at 10,000 � g, and the supernatant was removed. These pelleted soil rhizosphere samples were then
extracted using the PowerSoil DNA kit (Qiagen, Venlo, The Netherlands) following the standard protocol
except that a Precellys tissue homogenizer was used to bead-beat extractions (30 sec of 5,500 � g bead-
beating with a 30 sec rest in triplicate). Root and leaf endosphere samples were extracted using the Qiagen
PowerPlant Pro DNA kit following the standard protocol except that prior to extraction, 50mg of tissue per
extraction was bead-beaten for 1 min in liquid nitrogen blocks with one sterile steel bead two times.
Extractions were quantified on a Nanodrop 1000 spectrophotometer (NanoDrop Products, Wilmington, DE,
USA). Root and leaf endosphere extractions were purified and concentrated using a DNA Clean and
Concentrator-5 kit (Zymo Research Corporation, Irvine, CA, USA) prior to PCR amplification.

A two-step PCR approach was used with barcode-tagged and frameshifting nucleotide primers tar-
geting the 16S rRNA gene for archaea and bacteria and the ITS2 region for fungi (78) using pooled
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primer sets to increase coverage of archaeal, bacterial, and fungal taxa (31) (see Table S9 at https://doi
.org/10.6084/m9.figshare.14251463.v1). The first step of PCR included 2.5 mM peptide nucleotide acid
(PNA) blockers for 16S rRNA amplifications, and 2.5 mM PNA targeting plant nuclear rRNA genes for ITS2
region was used to reduce the amplification of plant material (see Table S9 at https://doi.org/10.6084/
m9.figshare.14251463.v1). Thermal cycler conditions for the primary PCRs for soils were 5 cycles of 95°C
for 1min, 50°C for 2min, and 72°C for 1min. Primary PCR conditions for plant tissues were 5 cycles of
95°C for 1min, 78°C for 5 s, 50°C for 2min, and 72°C for 1min. Primary PCR products were cleaned with
17ml of Agencourt AMPure beads and eluted in 21ml of nuclease-free water. Secondary PCRs had puri-
fied DNA tagged with barcoded reverse primers and forward primers (see Table S9 at https://doi.org/10
.6084/m9.figshare.14251463.v1) in the 50-ml reaction mixture, except with 20ml of purified DNA from
primary PCRs. Thermal cycler conditions for secondary soil PCRs consisted of denaturation at 95°C for
45 s, followed by 32 cycles of 95°C for 15 s, annealing at 60°C for 30 s, 72°C for 30 s, and final extension
at 72°C for 30 s. Secondary PCRs for plant tissue consisted of denaturation at 95°C for 45 s, followed by
32 cycles of 95°C for 15 s and 78°C for 5 s, with remaining cycle parameters the same as with soil second-
ary PCRs. After PCRs, all experimental units were pooled based on band intensity and purified with
Agencourt AMPure XP beads (0.7:1 bead to DNA ratio; Beckman Coulter, Inc., Pasadena, CA, USA).
Illumina MiSeq sequencing was carried out using a 9-pM amplicon concentration with a 15% PhiX spike
(2� 300 cycles).

Bioinformatics. Paired-end .fastq sequence files had primers and adaptors removed individually
using the Cutadapt program (79). Trimmed .fastq files were then joined using QIIME 1 and imported into
the QIIME 2 environment (80). Joined sequences were demultiplexed, and median Phred quality scores
were visualized. Due to poor quality on the 39 end for 16S data, they were truncated to 190 bp. The ITS
reads were not further trimmed or truncated. Both 16S and ITS2 data sets were denoised and delineated
into amplicon sequence variants (ASVs) using the DADA2 algorithm in QIIME 2 (81). Representative
sequences were then assigned a taxonomic classification using the naive Bayes classifier through the
sklearn Python package for 16S rRNA sequences with the SILVA database (82), while ITS2 gene represen-
tative sequences were assigned a taxonomic classification in QIIME 1 using BLAST and the UNITE refer-
ence database (83). Contaminants (unassigned reads, mitochondria, chloroplasts for 16S; Protista,
Chromista, Animalia, and Plantae reads for ITS2) were removed. Contaminants were a low percentage of
total reads for bacteria (;9%) and fungi (;15%). Fungi were further classified into functional guilds
using the FUNGuild database (84).

After quality and taxonomic filtering (i.e., removal of plant and plasmid DNA), we sequenced 2.35� 107

16S reads across 386 samples (26 samples were removed due to low depths [,900 reads]), with a minimum
depth of 965 reads and a maximum of 352,342 reads (see Fig. S9A for the rarefaction curve at https://doi
.org/10.6084/m9.figshare.14251463.v1). For ITS2, we sequenced 1.92� 107 reads across 323 samples (4 sam-
ples were removed due to low depths [, 900 reads] or presence of contaminant sequences) with a mini-
mum depth of 910 reads and a maximum of 326,368 reads (see Fig. S9B for the rarefaction curve at https://
doi.org/10.6084/m9.figshare.14251463.v1).

Quantifying microbial assembly processes (see below) relies on phylogenetic turnover (41). The phy-
logenetic tree for 16S reads was created in the QIIME2 environment using FastTree 2 (85) and was mid-
point rooted. Because ITS genes do not align well across large phylogenetic distances, we used a “ghost
tree” approach to create a phylogenetic tree for ITS2 reads (86). Briefly, the 18S SILVA database (82) was
used to create a foundational tree, and class-level ITS branches from the UNITE database (83) were
grafted onto the ends of the foundational tree. The ITS2 ASVs were then clustered into 99% operational
taxonomic units (OTUs) by closed reference OTU picking using VSEARCH (87). These ITS2 OTUs were
only used to quantify microbial assembly processes; other analyses were conducted using ASVs.

Statistical analysis. All statistical analyses were conducted in R (88) using the Picante (89),
phyloseq (90), and vegan (91) packages. Significance was determined at the a = 0.05 level for all
statistical tests.

Differences in a-diversity over time and among genotypes were compared by means of Hill numbers
(40) of samples rarified to 900 reads (for both amplicons) at orders of q= 0 and q= 1. The parameter q
determines the relative weighting of rare species. At q= 0, all species are weighted equally (richness); at
q= 1, species are weighted proportionally to their relative abundance (analogous to Shannon’s index).
Differences in means of Hill numbers among plant-associated habitats, sample dates, and genotypes
were assessed by ANOVA. Where independent variables were significant, we assessed multiple compari-
sons by Tukey’s test of honest significant differences. We used Q-Q plots and scale-location plots to
inspect normality and homoscedasticity, respectively. Where these assumptions were unmet, independ-
ent variables were log-transformed and reanalyzed satisfying the aforementioned assumptions.

Differences in the microbial community composition among plant-associated habitats, sample dates,
and genotypes were assessed by PERMANOVA (92), using Bray-Curtis distances applied to proportionally
normalized data. We visualized differences in community composition using principal-coordinate analy-
sis (PCoA).

Assembly processes were assessed using a null modeling approach following Stegen et al. (41).
Assembly processes are broadly categorized as (i) variable selection, whereby selective processes lead to
disparate microbial communities, (ii) homogenous selection, whereby selective processes lead to similar
microbial communities, (iii) dispersal limitation, whereby limitations to dispersal allow ecological drift to
lead to disparate microbial communities, and (iv) homogenizing dispersal, whereby high rates of
dispersal lead to similar microbial communities. This approach uses both phylogenetic and taxonomic
turnover to classify the dominant assembly process in pairwise sample comparisons. To characterize
phylogenetic turnover, we use the between-community version of the (abundance-weighted) b-mean-
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nearest taxon distance (bMNTD) (93). Observed bMNTDs were then compared to a null model distribu-
tion of bMNTDs generated from 999 null model expectations (i.e., randomized taxa reshuffling among
phylogenetic tree tips). The difference between observed bMNTD and the mean of the null distribution
was measured in units of standard deviation (of the null distribution) and is referred to as the b-nearest
taxon index (bNTI). Values of bNTI of $2 signify variable selection as the dominant assembly process,
and bNTI values of #–2 signify homogenous selection as the dominant assembly process following
Stegen et al. (41).

Taxonomic turnover was used to define the dominant assembly processes of jbNTI valuesj , 2. For
taxonomic turnover, we use the Raup Crick index (94) modified to include species abundances (41). We
calculated separate null models for archaea and bacteria and fungi using probability-based randomiza-
tion. Null model microbial compositions were assembled for each sample by randomly sampling from
the total ASV (or OTU for fungi, see above) pool in proportion to occupancy to define ASVs and then in
proportion to abundance to define abundances into those selected ASVs, thereby maintaining similar
levels of a-diversity. The community composition for each sample was probabilistically generated 999
times. For each iteration, the Bray-Curtis dissimilarity index between samples was calculated, and the
proportion of iterations in which the index was smaller than or equal to the observed Bray-Curtis dissim-
ilarity index between those pairs of samples was our resulting metric. We standardized this metric
(RCBray) to range from 21 to 1 by subtracting 0.5 and multiplying by 2 (94). Values of jbNTI j , 2 and
RCBray $ 0.95 signify dispersal limitation, and values of jbNTI j, 2 and RCBray # –0.95 signify homogeniz-
ing dispersal following Stegen et al. (41). Values of jbNTI j , 2 and jRCBrayj , 0.95 signify weak selection
and moderate levels of dispersal such that no process dominates assembly and are therefore classified
as “undominated” (95).

The core microbiome of each plant-associated habitat was characterized using occupancy-abun-
dance distributions of microbial genera across all time points (14). Microbial genera were considered
“core” when their occupancy (the proportion of presence in all samples) was at least 95% and their
relative abundance was at least 1% averaged across all sampling dates within a plant-associated
habitat.

We used SourceTracker (42) to determine the relative contribution of the rhizosphere and leaf sur-
face as microbial sources of new microbial taxa (i.e., not present in the previous sample dates) in endos-
pheric microbiomes for the June and August sampling dates. Differences in the relative contributions of
sources among sample dates and genotypes were also assessed by ANOVA. These ANOVAs were ana-
lyzed using the same approach as for a-diversity.

Data availability. The data sets presented in this study can be found in the Sequence Read Archive
under BioProject number 685817. The R code for all statistics and figures as well as the final ASV, taxon-
omy, and sample data tables used in this analysis can be found at https://github.com/nicholascdove/
Populus_microbiome_assembly.
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