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Abstract: High-intensity interval training has drawn significant interest for its ability to elicit similar
training responses with less training volume compared to traditional moderate-intensity protocols.
The purpose of this study was to examine the effect of co-ingestion of branched-chain amino acids
(BCAA), arginine, and citrulline on 8 × 50 m high-intensity interval swim performance in trained
young swimmers. This study used a randomized cross-over design. Eight male (age 15.6 ± 1.3 years)
and eight female (age 15.6 ± 0.9 years) swimmers completed both amino acids (AA) and placebo
(PL) trials. The participants ingested 0.085 g/kg body weight BCAA, 0.05 g/kg body weight arginine
and 0.05 g/kg body weight citrulline before the swim test in the AA trial. The average 50 m time
was significantly shorter in the AA trial than that in the PL trial. The AA trial was faster than the
PL trial in the first, second, and the seventh laps. The AA trial showed significantly higher plasma
BCAA concentrations and lower tryptophan/BCAA ratio. The other biochemical parameters and
ratings of perceived exertion were similar between the two trials. The results showed that BCAA,
arginine, and citrulline, allowed the participants to swim faster in a high-intensity interval protocol
in young swimmers.
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1. Introduction

High-intensity interval training (HIIT) has drawn significant interest from athletes of various
sports, as well as general or less-fit populations [1,2]. The high-intensity nature of this protocol
recruits both type-I and -II muscle fibers [3], resulting in significant improvement in cardiopulmonary
and anaerobic capabilities [1,2,4,5]. Several studies have shown that HIIT can elicit similar
training responses in competitive swimmers with less training volume compared to traditional
moderate-intensity protocols [6,7]. One of the important factors for the success in HIIT is the ability to
maintain the training intensity, especially at the later stages. However, the accumulation of peripheral
and/or central fatigue, resulting from repeated high-intensity bouts, leads to declines in exercise
intensity at the later stages of HIIT, and potentially reduce the training effect [1,2].
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The peripheral factors for fatigue in HIIT include limitations in anaerobic and aerobic energy
supply, and intramuscular accumulation of metabolic by-products such as H+ and inorganic
phosphate [8,9]. Moreover, the central nervous system may also be involved, as the capacity of
the motor cortex to drive the knee extensors after high-intensity intermittent cycling was significantly
decreased [10]. One of the mechanisms that contributes to central fatigue is the increase in cerebral
concentration of the neurotransmitter serotonin (5-hydroxytryptamine) during exercise. The increased
cerebral serotonin could lead to the feeling of fatigue and the loss of central drive and motivation [11].
An increase in serotonin concentration in presynaptic neutrons would lead to increased serotonin
release and serotonin binding to postsynaptic receptors during nerve stimulation [12]. In addition,
cerebral serotonin concentration was inversely correlated to running time to fatigue in rodents [13,14].
The rate of cerebral serotonin synthesis is regulated by the transport of free tryptophan, the precursor
to serotonin, across the blood brain barrier [15]. Branched-chain amino acids (BCAA) have been
hypothesized to alleviate central fatigue by competing with tryptophan in crossing the blood brain
barrier through the L-system transporter [16]. Indeed, the decreased plasma free tryptophan/BCAA
ratio would reduce the uptake of tryptophan, and subsequently, serotonin synthesis in the brain [14].

Nitric oxide (NO), a signaling molecule with a wide range of physiological functions, has been
suggested to improve exercise performance by enhancing exercise-induced vasodilation [17], increasing
the oxygenation status in the working muscles, and improving VO2 kinetics [18]. Supplementations of
arginine or citrulline, both of which are precursors to NO, have been suggested to improve performance
in high-intensity exercise [19,20].

Previously, we revealed that supplementation of BCAA and arginine could improve repeated
sprint performance in handball players [21]. We later added citrulline to the supplementation
regimen [22,23] because the combined ingestion of citrulline and arginine may be more effective
in increasing plasma arginine concentration than consuming either amino acid individually [24].
Although the nutritional strategies to support HIIT have been proposed, most results were obtained
from land-based exercise [25]. In addition, the combination of BCAA, arginine, and citrulline on
high-intensity interval swimming performance has not been investigated. With the increasing
application of HIIT in swimming training, the aim of this study was to examine the effect of co-ingestion
of BCAA, arginine, and citrulline on 8 × 50 m swim performance in trained young swimmers.
The biochemical and stroke parameters were analyzed to investigate the potential mechanism of
the supplementation.

2. Materials and Methods

2.1. Participants

Eight male (age: 15.6 ± 1.3 years; height: 1.74 ± 0.05 m; weight: 64.4 ± 7.6 kg) and eight female
(age: 15.6 ± 0.9 years; height: 1.58 ± 0.06 m; weight: 54.0 ± 8.4 kg) swimmers were recruited from
a high school in northern Taiwan. All participants have been participating in swimming training
for at least 7 years and have competed at the national or international level. The characteristics
and personal best performance of the participants are presented in Table 1. The exclusion criteria
included cardiovascular disease risks, musculoskeletal injuries, smoking, or consumption of protein
supplements in the past three months. After the experimental procedure and potential risks
were explained, all participants and their legal guardians gave their written informed consent.
The study protocol was approved by the Research Ethics Committee of China Medical University
Hospital (CRREC-105-003).
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Table 1. Basic characteristics of participants.

Gender * Age (Year) Height (m) Weight (kg) Body Mass
Index Best Style Personal Best

† 50 m (s)
Personal Best

† 100 m (s)

M 15 1.78 67.1 21.18 Backstroke 29.8 62.2
M 17 1.78 71.1 22.44 Breaststroke 31.2 69.1

M 17 1.77 70.2 22.41 Front
crawl 25.7 54.9

M 17 1.78 70.5 22.25 Front
crawl 25.6 52.7

M 15 1.69 53.6 18.77 Front
crawl 27.3 56.2

M 14 1.68 52.6 18.64 Butterfly 28.9 57.3
M 16 1.69 68.8 24.09 Butterfly 26.8 57.3

M 14 1.71 61.1 20.90 Front
crawl 26.2 54.8

Mean ‡ 15.6 1.74 64.4 21.33
SD ‡ 1.3 0.05 7.6 1.89

F 16 1.46 46.3 21.72 Front
crawl 29.7 65.2

F 15 1.59 45.4 17.96 Front
crawl 29.8 66.1

F 17 1.60 51.4 20.08 Front
crawl 28.2 59.9

F 16 1.64 60.9 22.64 Front
crawl 28.0 61.2

F 15 1.53 44.1 18.84 Front
crawl 29.5 61.1

F 16 1.58 56.5 22.63 Butterfly 31.3 69.2
F 16 1.65 60.9 22.37 Butterfly 33.5 71.8
F 14 1.60 66.6 26.02 Butterfly 31.7 68.9

Mean § 15.6 1.58 54.0 21.53
SD § 0.9 0.06 8.4 2.55

* M: male; F: female; † personal best record in their respective best style; ‡ mean and standard deviation of male
participants; § mean and standard deviation of female participants.

2.2. Study Design

This study used a double-blind, placebo-controlled, randomized cross-over design. The study
protocol is outlined in Figure 1. Each participant completed two trials, amino acids (AA) and placebo
(PL), in a random order, separated by a wash-out period of at least seven days. The regular training
schedule and dietary habits were maintained during the study period. The participants refrained from
all training activity on the day prior to the trial. The study was conducted in January, 2017.
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2.3. Dietary Control

During the two days prior to each trial, the participants were provided with the same three
meals per day, purchased from local convenience stores. The meals provided approximately
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1624 kcal/day with 55% energy from carbohydrate, 25% from fat, and 18% from protein, according to
the manufacturer’s label. A standardized breakfast was given on the days of trials, including white
bread 0.5 g/kg body weight, jam 0.1 g/kg body weight, butter 0.l g/kg body weight, and soybean
milk 5 mL/kg body weight (6.2 kcal/kg body weight, containing carbohydrate 1.0 g/kg body weight,
protein 0.24 g/kg body weight, and fat 0.14 g/kg body weight).

2.4. Supplementation

On the days of the trials, the participants reported to a 25 m swimming pool in the morning after an
overnight fast. After collecting blood samples from the antecubital vein, the participants consumed the
standard breakfast, followed by one of the two interventions. In the AA trial, the participants ingested
0.085 g/kg body weight BCAA (leucine: isoleucine: valine = 10:7:3, containing vitamin E 6.67 IU/g
BCAA, capsule, General Nutrition Corporation, Pittsburgh, PA, USA), 0.05 g/kg body weight arginine,
and 0.05 g/kg body weight citrulline (arginine: citrulline = 1:1, tablet, General Nutrition Corporation).
In the placebo (PL) trial, the participants consumed the identical number of empty capsules and tablets
containing starch (Chung-Yu Biotech Co LTD, Taichung, Taiwan) and one capsule of vitamin E (100 IU,
General Nutrition Corporation). All capsules and tablets were taken with water within 15 min.

2.5. High-Intensity Interval Swimming Test

Thirty min after consuming the amino acids or placebo, the participants began a controlled 1000 m
warm-up. The warm-up included 8 × 50 m easy swim focusing on individual skills, 200 m mixed style,
and 4 × 100 m free style. The warm-up lasted approximately 20 min. The 8 × 50 m high-intensity
interval swimming test started 60 min after consuming the amino acids or placebo, following the
international rules with push starts. There was a 3-min active recovery period between each sprint.
The approximate work to rest ratio of 1:6 is chosen to allow the better recovery of acid/base balance
and creatine phosphate resynthesis [2]. The participants were asked to swim with their best style with
the best effort in each sprint. Four male and five female participants swam front crawl, two male and
three female participants swam butterfly, one male participant swam breaststroke and another male
participant swam backstroke. Participants from both trials were grouped into 3 or 4 according to their
best record, and competed at the same time to encourage the best performance. No food or fluid was
provided during the test. The ratings of perceived exertion (RPE) were recorded immediately before
and after the test using Borg’s 20-point scale [26].

2.6. Stroke Characteristics

The stroke characteristics were analyzed by an experienced swimmer/coach by reviewing the
video files of the entire trials. The time to finish three consecutive strokes, measured by a stop watch,
was recorded during approximately 35–40 m in each lap. The stroke rate was determined by dividing the
time by three. For front crawl and backstroke, the timing started when the right hand entered the water,
and ended immediately before the right hand entered the water for the second time. For breaststroke,
the timing started when the arms started the outsweep, and ended when the arms completed the forward
extension for the third time. For butterfly, the timing started when the arms entered the water, and ended
immediately before the arms entered the water for the third time. The stroke count was measured during
the entire lap, excluding the sculling or flipper movement after the start or turn.

2.7. Measurement of Blood Biochemical Parameters

The time point of blood sampling is shown in Figure 1. Venous blood samples were collected into
tubes containing EDTA. After centrifugation at 1500× g for 15 min at 4 ◦C, the plasma samples were
aliquoted and stored at −70 ◦C until further analysis. Plasma BCAA concentrations were measured
enzymatically (Biovision, Milpitas, CA, USA) with a microplate spectrophotometer (Benchmark Plus,
Bio-Rad, Hercules, CA, USA). Plasma tryptophan concentrations were analyzed with a fluorescence
assay (Bridge-It, Mediomics, St. Louis, MO, USA). The fluorescence at excitation 485 nm and emission
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665 nm was read by a microplate fluorescence reader (Plate Chameleon, Hidex, Turku, Finland).
Plasma NOx concentrations were determined using Griess reagent [27]. Plasma concentrations of urea,
glucose, lactate, NH3, glycerol, and non-esterified fatty acids (NEFA) were measured enzymatically
with an automatic analyzer (Hitachi 7020, Tokyo, Japan) using commercial kits (Randox, Antrim, UK).
Hemoglobin concentration and hematocrit in whole blood were measured by a blood cell analyzer
(Sysmex Kx-21, Diamond Diagnostics, Holliston, MA, USA) to correct potential changes in plasma
volume during the study periods [28].

2.8. Statistical Analysis

The results were initially analyzed by three-way (gender × trial × time) analysis of variance with
repeated measurements. However, gender effect was insignificant in all performance, biochemical
and stroke parameters. Therefore, the data from both genders were pulled together and analyzed by
two-way (trial× time) analysis of variance with repeated measurements. If the interaction effect was to
be found significant, the differences between the two trials were identified by Ryan-Holm-Bonferroni
post hoc analysis [29]. If the time or lap effect was to be found significant, the differences within the
same trial were identified with Bonferroni post hoc analysis. A p < 0.05 is considered statistically
significant. With the power of 0.80 and sample size of 16, the minimal detectable difference is
1.06 standard deviation (SD). The data are presented as mean ± SD.

3. Results

The average 50 m time of the eight laps in the high-intensity interval swimming test was
significantly shorter in the AA trial than that in the PL trial (AA: 30.50 ± 2.87 s vs. PL: 30.94 ± 3.02 s,
p < 0.001, Figure 2a). Thirteen participants (6 male and 7 female) out of total 16 had faster average lap
time in the AA trial (Figure 2a). When each lap was considered separately, there were significant trial,
lap, and interaction effects (all p < 0.001, η2 = 0.795, 0.452, 0.236, respectively). The post-hoc analysis
showed that AA trial was faster than the PL trial in the first (AA: 30.47 ± 0.44 s vs. PL: 31.34 ± 0.57 s,
p < 0.001), second (AA: 32.76 ± 2.54 s vs. PL: 33.58 ± 2.48 s, p < 0.001), and the seventh laps (AA:
31.64 ± 4.30 s vs. PL: 32.50 ± 4.60 s, p < 0.001) (Figure 2b).

The AA trial showed significantly higher plasma BCAA concentrations before and after the
8 × 50 m test (Figure 3a). Plasma tryptophan concentrations were decreased after the interval
swim in both trials at the similar magnitude (Figure 3b). Nevertheless, the elevated plasma BCAA
concentrations lead to significantly lower tryptophan/BCAA ratios before and after the interval swim
in the AA trial (Figure 3c). Plasma NOx levels showed a significant time effect (p < 0.001), but the post
hoc analysis did not find significant difference among the three time points in either trials (Table 2).
Plasma concentrations of NH3, urea, lactate, glycerol, and NEFA were similar in both trials (Table 2).
The participants also reported similar RPE before and after the 8 × 50 m test in both trials (Table 2).
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Figure 3. Plasma amino acid concentrations at baseline, before, and after the 8 × 50 m high-intensity
interval swimming test in the AA (amino acids supplemented) and PL (placebo) trials. (A) Branched-chain
amino acids, trial effect: p < 0.001; time effect: p < 0.001; interaction effect: p < 0.001. (B) Tryptophan, trial
effect: p = 0.821; time effect: p < 0.001; interaction effect: p = 0.383. (C) Tryptophan/branched-chain amino
acids ratio, trial effect: p < 0.001; time effect: p < 0.0001; interaction effect: p < 0.001; * Significantly different
from the baseline in the same trial, p < 0.05; † AA trial vs. PL trial at the same time point, p < 0.05. Pre-Ex:
before 8 × 50 m swim test; Post-Ex: immediately after 8 × 50 m swim test.
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Table 2. Biochemical parameters and ratings of perceived exertion at the baseline, before, and after 8 ×
50 m test in the in the AA (amino acids supplemented) and PL (placebo) trials.

Trial Baseline Pre-Ex Post-Ex

NOx (µM)
AA 11.61 ± 4.94 31.65 ± 29.56 23.06 ± 15.28
PL 12.68 ± 7.42 25.84 ± 29.39 18.36 ± 11.71

NH3 (µM)
AA 115.20 ± 103.49 123.72 ± 66.29 123.86 ± 65.35
PL 116.59 ± 40.69 109.02 ± 50.89 114.81 ± 50.31

Urea (mM)
AA 4.64 ± 0.77 5.38 ± 0.90 5.11 ± 0.91
PL 4.77 ± 0.65 5.01 ± 0.87 4.63 ± 0.73

Lactate (mM)
AA 1.36 ± 0.56 1.91 ± 0.59 14.75 ± 4.43 *,†

PL 1.43 ± 0.34 1.71 ± 0.38 14.12 ± 2.79 *,†

Glycerol (µM) AA 46.00 ± 21.00 81.89 ± 28.83 * 240.89 ± 96.61 *,†

PL 44.63 ± 25.27 71.35 ± 26.45 227.44 ± 58.36 *,†

NEFA (mM) 1 AA 0.49 ± 0.27 0.42 ± 0.16 0.22 ± 0.09 †

PL 0.44 ± 0.25 0.38 ± 0.10 0.20 ± 0.08 †

RPE 2 AA 9.1 ± 2.4 15.0 ± 1.8 * 17.2 ± 2.3 *
PL 9.7 ± 2.4 14.8 ± 2.2 * 17.3 ± 1.8 *

1 NEFA. non-esterified fatty acids; 2 RPE: ratings of perceived exertion; * Significantly different from the baseline in
the same trial, p < 0.001; † Significantly different from Pre-Ex in the same trial, p < 0.05. Pre-Ex: before 8 × 50 m
swim test; Post-Ex: immediately after 8 × 50 m swim test.

The data of stroke rate and stroke count are shown in Table 3. None of the main effects was
significant in stroke rate. However, the participants in the AA trial showed a trend of faster stroke
rate in the first (p = 0.011) and second lap (p = 0.011 and 0.002, respectively, according to paired t-test),
compared to those in the PL trial. The last lap showed the highest stroke count in both trials. In the
AA trial, the participants swam the last lap with significantly higher stroke count than in the third lap
(p = 0.015), while in the PL trial, the stroke count in the last lap was significantly higher than in the
third (p = 0.038) and fourth lap (p = 0.041).



Nutrients 2018, 10, 1979 8 of 13

Table 3. Stroke rate and stroke count in the 8 × 50 m high-intensity interval swimming test in the AA and PL trials.

Trial Lap

1 2 3 4 5 6 7 8 Mean

Stroke rate 1

(count/min)
PL 70.6 ± 19.5 71.2 ± 19.3 72.3 ± 19.0 71.4 ± 20.2 70.2 ± 18.7 69.2 ± 18.5 69.4 ± 18.2 69.4 ± 18.3 70.5 ± 19.0
AA 74.5 ± 18.5 76.0 ± 18.3 72.7 ± 19.5 72.4 ± 18.4 70.7 ± 16.5 71.4 ± 18.0 70.1± 17.4 71.9 ± 18.2 72.7 ± 18.1

Stroke count 2 PL 30.7 ± 9.0 a,b 30.6 ± 9.5 a,b 30.8 ± 9.1 a 30.8 ± 9.2 a,b 31.1 ± 9.4 a,b 31.7 ± 9.5 a,b 31.6 ± 9.4 a,b 31.9 ± 9.0 b 31.1 ± 9.3
(count/lap) AA 31.1 ± 8.5 a,b 30.6 ± 8.2 a,b 30.6 ± 8.2 a 31.1 ± 8.6 a 31.2 ± 8.3 a,b 31.3 ± 8.1 a,b 31.5 ± 8.4 a,b 32.1 ± 8.4 b 31.2 ± 8.3
1 Trial effect p = 0.102, lap effect p = 0.489, interaction effect p = 0.513; 2 Trial effect p = 0.910, lap effect p < 0.001, interaction effect p = 0.643; The values with different superscripts (a, b) were
significantly different within the same trial.
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4. Discussion

The results of this study suggested that the combined supplementation of BCAA, arginine,
and citrulline significantly improved performance in 8 × 50 m high-intensity interval swims in
well-trained young swimmers. The participants in the AA trial showed significantly lower plasma
tryptophan/BCAA ratio before and after the interval swims. In addition, the participants were able
to swim faster under a similar degree of perceived effort, indicating the possibility of alleviated
central fatigue.

The participants in the AA trial showed significantly higher plasma BCAA concentrations and
lower tryptophan/BCAA ratio after the interval swims, compared to the PL trial. This is in agreement
with our previous studies using the same supplements [22,23]. It has been revealed that central
nervous system plays a role in the development of fatigue in repeated high-intensity exercise [9].
Several studies using functional magnetic resonance imaging have found increased activations in
sensory processing and motor-related brain regions such as primary motor cortex, supplementary
motor area and pre-motor cortex while performing fatiguing exercise tasks [30]. These activations
suggest a greater perception of effort under fatigue and the need for higher motor output to sustain the
same physical workload [31]. The decreased plasma tryptophan/BCAA ratio in the AA trial would
reduce the cerebral uptake of tryptophan, leading to lower cerebral serotonin synthesis [14].

Although previous studies have reported that oral supplementation of BCAA could reduce RPE
and mental fatigue in maximal exercise in untrained participants [32], our results suggest that the
participants in the AA trial had better performance under the same level of RPE. This contradiction
may result from the different protocols to measure physical performance. Blomstrand et al. used a
fixed-rate protocol, followed by a 20-min maximal exercise on a bicycle treadmill [32]. On the other
hand, the time-trial style of the present protocol required the participants to swim at their best effort in
each lap. Therefore, the participants in both trials reached similar RPE, which is in agreement with our
previous study [33].

A recent study revealed that a short-term citrulline supplementation could increase peak power
output by 9% and total power output by 7% in 60-s all-out sprint that followed the 6-min bout of
severe-intensity exercise [20]. In addition, a single dose of citrulline malate could improve performance
in repeated high-intensity anaerobic resistance exercises [34]. Acute beetroot juice supplementation,
which is rich in citrulline, also improved peak and mean power output, while reducing the time
required to reach peak power output in the Wingate test [35]. A recent review summarized that
acute beetroot juice could improve the performance in repeated high-intensity exercise by increasing
phosphocreatine resynthesis and muscle shortening velocity [36]. These ergogenic effects could be
mediated by the increased tissue oxygenation and improved O2 kinetics. In the first and second lap
during which central fatigue may not have been accumulated, it is possible that ergogenic effect was
partially the result of the role of citrulline in improving short-term anaerobic performance. At the
later stage of repeated high-intensity exercise, the aerobic system becomes an important energy source
despite the all-out effort [9]. For example, the contribution of aerobic energy increased from 25% in the
first sprint to approximately 50% in the second to forth sprints in 30 s × 4 swimming with 30 s rest in
between [37]. Our participants also showed significantly elevated plasma glycerol concentrations after
8 × 50 m swim (Table 2), indicating greater lipolysis. The increased phosphocreatine resynthesis and
muscle work efficiency, combining with delayed central fatigue, may lead to the better performance in
the later stage of the high-intensity interval swim.

Our results showed that plasma ammonia and urea were similar between the two trials.
In addition, ammonia concentrations remained unchanged after exercise in both trials, indicating
that BCAA oxidation was not significantly increased in the AA trial. It is possible that the breakfast
and the appropriate warm up before 8 × 50 m swim had already increased plasma ammonia levels.
This is in agreement with Peyrebrune et al., who reported that plasma ammonia concentration was
decreased after 8 × 50 yards sprint swimming [38]. These results agree with the notion that the major
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source of ATP turnover comes from aerobic metabolism, rather than adenosine monophosphate (AMP)
deamination, towards the end of the repeated swims.

In previous studies we have shown that 0.17 g/kg body weight BCAA, twice of the dosage
in the present study, could delay the development of central fatigue and prevent the decline in
perceptual-motor functions [22,23]. Although the dosage can be tolerated, the large number of capsules
may discourage some athletes from following this supplement regime. The lower dosage of 0.085 g/kg
body weight in this study still resulted in an average plasma BCAA concentration of 0.8 mM prior to
exercise, which was similar or slightly lower to the previous results [21–23]. The combined dosage
of citrulline and arginine is 0.1 g/kg body weight, which is in line with previous studies using acute
citrulline supplementations [22,23,39].

We specifically use the acute supplementation protocol for the purpose of creating higher
plasma BCAA concentration during exercise to compete with free tryptophan in cross blood brain
barrier. The longer-term of BCAA supplementation would not lead to significantly higher plasma
concentrations compared to the acute regimen. In addition, it has been shown that acute supplements
of citrulline-malate or other nitrate sources 40 min to 2.5 h prior to exercise could improve performance
and lead to lower steady-state VO2 at the same intensity [40–42], while several days of beetroot juice
supplementation did not elicit greater improvements [40]. Therefore, the acute supplementation
regime used in this study would be sufficient for the ergogenic effect.

HIIT has been reported to elicit similar, or even better effects on performance compared to
high-volume lower-intensity training in competitive swimmers [6,43]. The shorter duration and lower
training volume make HIIT ideal for most athletes and general populations who are living on a tight
schedule. Most HIIT in swimming includes repeated sprints of 10 to 30 s duration with resting intervals
of 2 to 5 min [44]. Our study adopted this protocol so that the results can be applied to practical
training situations. It appears that our participants can maintain speed throughout the present protocol
with 3-min recovery between each lap, whereas those with shorter (60 s) recovery periods resulted in
significant decrements in performance toward the end [45]. Plasma lactate values in the present study
are in line with others using similar protocols in swimmers [37,46], and similar to that after a 100 m
swimming competition [47].

Swimming velocity is the product of stroke rate, the number of stroke cycle per min, and stroke
length, the distance travelled with each stroke cycle [48]. Elite swimmers usually increase stroke rate,
while ignoring stroke length, in order to increase or maintain speed when fatigue is accumulating [49].
In the present study, the participants in the AA trial swam significantly faster in the first and second
lap with a trend of higher stroke rate. It is possible that the supplements provided higher central drive
in the early stages of 8× 50 m swim. In the seventh lap, the stroke rate is similar between the two trials.
Therefore, the faster speed may result from the longer stroke length, indicating higher muscle strength
or technical efficiency in the AA trial during the lap. In the third and fourth laps, the participants
swam the fastest, while using the lowest stroke count. This suggests that the participants swam with
the highest efficiency in the middle of the 8 × 50 m test.

One of the limitations to this study is the low energy provided in the standard meals during the
two days prior to the trial. The meal boxes provided were similar to the participants’ usual diet, both
in terms of energy content and food choice. The participants may have had relatively low muscle
glycogen levels on the morning of the trials. However, the breakfast before the trial, containing
1.0 g/kg body weight carbohydrate, would ensure the euglycemic state throughout the test. Another
limitation is the relatively short exercise time. Whether the ergogenic effect shown in this study can
be extended to the entire training period requires further investigation. The lack of data in oxygen
consumption and phosphocreatine concentration in the muscle also prevented us from gaining further
understanding of the mechanisms.
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5. Conclusions

The present results showed that BCAA, arginine, and citrulline allowed young participants to
swim faster in a 8 × 50 m high-intensity interval protocol while feeling the same level of effort. Future
research may focus on the modifications in training load to utilize the enhanced physiological and
psychological mechanisms associated with these supplements.
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