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STUDY QUESTION: Does ovarian follicle activation by phosphatase homologue of chromosome-10 (PTEN) inhibition affect DNA dam-
age and repair in bovine oocytes and granulosa cells?

SUMMARY ANSWER: PTEN inhibition promotes bovine non-growing follicle activation but results in increased DNA damage and
impaired DNA repair capacity in ovarian follicles in vitro.

WHAT IS KNOWN ALREADY: Inhibition of PTEN is known to activate primordial follicles but may compromise further developmental
potential. In breast cancer cells, PTEN inhibition represses nuclear translocation of breast cancer susceptibility | (BRCAI) and Rad51; this
impairs DNA repair resulting in an accumulation of damaged DNA, which contributes to cell senescence.

STUDY DESIGN, SIZE, DURATION: Bovine ovarian tissue fragments were exposed to control medium alone or containing either | or
|0 uM bpv(HOpic), a pharmacological inhibitor of PTEN, in vitro for 24 h. A sub-group of tissue fragments were collected for Western blot
analysis after bpv(HOpic) exposure. The remainder were incubated in control medium for a further 5 days and then analysed histologically
and by immunohistochemistry to detect DNA damage and repair pathways.

PARTICIPANTS/MATERIALS, SETTING, METHODS: Bovine ovaries were obtained from abattoir-slaughtered heifers. Tissue frag-
ments were exposed to either control medium alone or medium containing either | pM or 10 pM bpv(HOpic) for 24 h. Tissue fragments col-
lected after 24 h were subjected to Akt quantification by Western blotting (six to nine fragments per group per experiment). Follicle stage
and morphology were classified in remaining fragments. Immunohistochemical analysis included nuclear exclusion of FOXO3 as a marker of
follicle activation, YH2AX as a marker of DNA damage, meiotic recombination |1 (MREI I), ataxia telangiectasia mutated (ATM), Rad51,
breast cancer susceptibility | (BRCAI) and breast cancer susceptibility 2 (BRCA2) as DNA repair factors. A total of 29 550 follicles from
three independent experiments were analysed.

MAIN RESULTS AND THE ROLE OF CHANCE: Tissue fragments exposed to bpv(HOpic) had increased Akt phosphorylation at ser-
ine 473 (pAkt/Akt ratio, 2.25- and 6.23-fold higher in | and 10 pM bpv(HOpic) respectively compared to control, P < 0.05). These tissue
fragments contained a significantly higher proportion of growing follicles compared to control (78.6% in | pM and 88.7% in 10 uM versus
70.5% in control; P < 0.001). The proportion of morphologically healthy follicles did not differ significantly between | uM bpv(HOpic) and
control (P < 0.001) but follicle health was lower in 10 uM compared to | pM and control in all follicle types (P < 0.05). DNA damage in
oocytes, indicated by expression of YH2AX, increased following exposure to | pM bpv(HOpic) (non-growing, 83%; primary follicles, 76%)
and 10 pM (non-growing, 77%; primary, 84%) compared to control (non-growing, 30% and primary, 59%) (P < 0.05 for all groups). A signifi-
cant reduction in expression of DNA repair proteins MREI I, ATM and Rad5| was observed in oocytes of non-growing and primary follicles
of treatment groups (primary follicles in controls versus 10 pM bpv(HOpic): MRE, 68% versus 47%; ATM, 47% versus 18%; Rad5|, 48%
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versus 24%), P < 0.05 for all groups. Higher dose bpv(HOpic) also resulted in lower expression of BRCA| compared to control and | pM
bpv(HOpic) (P < 0.001) in non-growing and primary follicles. BRCA2 expression was increased in oocytes of primary follicles in | pM bpv
(HOpic) (36%) compared to control (20%, P = 0.010) with a marked decrease in 10 pM (1%, P < 0.001). Granulosa cells of primary and sec-
ondary follicles in bpv(HOpic) groups showed more DNA damage compared to control (P < 0.05). However, bpv(HOpic) did not impact
granulosa cell DNA repair capacity in secondary follicles, but BRCAI declined significantly in higher dose bpv(HOpic).

LARGE=SCALE DATA: N/A.

LIMITATIONS, REASONS FOR CAUTION: This study focuses on non-growing follicle activation after 6 days culture and may not
reflect DNA damage and repair capacity in later stages of oocyte and follicle growth.

WIDER IMPLICATIONS OF THE FINDINGS: In vitro activation of follicle growth may compromise the bidirectional signalling between
oocyte and granulosa cells necessary for optimal oocyte and follicle health. This large animal model may be useful in optimising follicle activa-
tion protocols with a view to transfer for clinical application.
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Introduction

The phosphatidylinositol 3-kinase (PI3K) signalling pathway appears to
be the primary non-gonadotrophic growth factor signalling pathway
that regulates the growth and differentiation of ovarian follicles
(Dupont and Scaramuzzi, 2016). The balance between PI3K/Akt sub-
strates determines follicle growth acceleration, deceleration, survival
and apoptosis (Liu et al., 2006; Zhou et al., 2017), and phosphatase
homologue of chromosome-10 (PTEN) is a negative regulator of this
pathway. Excessive PI3K activation in mice has been hypothesised to
contribute to premature activation of primordial follicles which in turn
results in depletion of the primordial follicle pool and ovarian aging
(Reddy et al., 2008; Sobinoff et al., 2012). Inhibition of PTEN in cul-
tured human ovarian cortex results in increased activation of primor-
dial follicles and more secondary follicles, however the subsequent
growth and survival of those apparently healthy isolated secondary fol-
licles is compromised (McLaughlin et al, 2014; Grosbois and
Demeestere, 2018).

This finding might be related to the role of PTEN in maintaining gen-
omic integrity (Shen et al., 2007), promoting and regulating cell growth
and survival (Reddy et al., 2008; Jagarlamudi et al., 2009). Akt activa-
tion during cell cycles in normal cell proliferation upregulates numer-
ous substrates at the GI/S and G2/M transition, some of which are
involved in DNA damage repair pathway. DNA damage is the starting
event of apoptosis and can be detected even in the absence of mor-
phological changes. It is suggested that the PI3K/Akt pathway initiates
checkpoint kinase | (Chkl) phosphorylation during DNA damage
response cascade at G2 arrest (Xu et al., 2010), thus allowing time for
DNA repair processing.

Effects of PTEN inhibition on DNA damage response have been
reported in many different types of cancer (Altiok et al., 1999; Plo
et al., 2008; Golding et al., 2009; Fraser et al., 2012) with varying out-
comes. Endogenously high levels of Akt decreases homologous recom-
bination repair capacity of DNA double-strand breaks (DSBs) (Brunet
etal., 1999; Thacker, 2005; Plo et al., 2008; Jia et al., 2013). In addition,
a study using a breast cancer cell line showed that high intracellular

levels of Akt repressed nuclear translocation of breast cancer suscepti-
bility | (BRCAI) and Rad5l, resulting in the lack of homologous
recombination of DNA DSB repair (Plo et al., 2008). Upregulation of
the PI3K/Akt pathway can also generate spontaneous DNA breaks
and pose a significant threat to genome stability by inhibition of Chkl
(Puc and Parsons, 2005). On the other hand, low protein kinase B
(Akt) activity has been shown to impair the DNA damage repair
mechanism by non-homologous end joining in human glioma cells (Kao
et al., 2007; Golding et al., 2009).

Taken together, these findings support the idea that oocytes lacking
PTEN may accumulate DNA damage, with reduced DNA damage
repair capacity. DNA DSBs are the most detrimental type of damage,
but they do not occur as frequently as other lesions. Persistent unre-
paired DNA DSBs may lead to genomic instability (Khanna and
Jackson, 2001; Jackson and Bartek, 2009; Menezo et al., 2010; Titus
et al., 2013) and the capacity of the cell to repair the damage will influ-
ence the balance between cell survival and apoptosis (Bzymek et al.,
2010; Torgovnick and Schumacher, 2015). In oocytes and granulosa
cells, unrepaired DNA DSBs may potentially impact upon the quality
of oocytes (Carroll and Marangos, 2013; Oktay et al., 2015; Winship
et al., 2018). In this study, our aim was to determine whether PTEN
inhibition affected DNA damage and repair mechanisms in bovine
ovarian follicles activated in vitro, using a serum-free culture system.
We have shown that this system is able to maintain follicular growth
and support oocyte development in vitro using bovine and human ovar-
ies (Telfer et al., 2008; McLaughlin and Telfer, 2010).

Materials and Methods

Ovarian cortical tissue collection,
preparation

Bovine ovaries were obtained from the abattoir and collected in pre-
warmed culture medium MI199 (HEPES buffered) (Gibco BRL, Life

Technologies Ltd., Paisley, Renfrewshire, UK) supplemented with sodium
pyruvate (2 mM), glutamine (2 mM), bovine serum albumin (BSA) (3 mg/ml),
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penicillin G (75 pg/ml), streptomycin (50 pg/ml) and amphotericin B (2.5 pg/
ml) (all chemicals from Sigma-Aldrich Chemicals, Poole, Dorset, UK). At the
laboratory, thin slices of ovarian cortex were removed from the ovaries using
a scalpel blade no. 24 and then transferred into fresh dissection medium com-
prising preheated Leibovitz medium (Gibco BRL) supplemented with sodium
pyruvate (2 mM), glutamine (2 mM), BSA (Fraction V. 3 mg/ml), penicillin G
(75 pg/ml) and streptomycin (50 pg/ml). Excess stromal tissue was trimmed
using forceps and a scalpel blade. The tissue was gently stretched using the
blunt edge of a scalpel blade with the cortex uppermost and cut into small
strips sized 4mmXx2mm X | mm. Any follicles measuring >40 pm were
excised from the tissue fragments.

Ovarian tissue fragments culture

Basic culture medium was prepared from McCoy’s 5a medium with bicarbon-
ate and HEPES (20 mM) (Glbco BRL) supplemented with BSA (I mg/ml), glu-
tamine  (3mM), penicilin G (0.1 mg/ml), streptomycin (0.1 mg/ml),
transferrin (2.5 pg/ml), sodium selenite (4 ng/ml), insulin (10 ng/ml), hFSH
(I' ng/ml) and ascorbic acid (50 pg/ml) (all obtained from Sigma-Aldrich
Chemicals). Before use, the medium was equilibrated at 37°C in humidified
air with 5% CO,.

Following tissue preparation and cutting, 10—12 fragments per culture
were randomly selected as 0 h controls for histological examination. The
remaining tissue fragments were cultured in flat-bottomed 24-well culture
plates (Corning Costar Europe, Badhoevedorp, The Netherlands) contain-
ing 300 pl of basic culture medium or culture medium supplemented with
the PTEN inhibitor dipotassium bisperoxo(5-hydroxypyridine-2-carboxyl)
oxovanadate (V) (bpv(HOpic) (Merck Millipore Chemicals Ltd, UK) at |
or 10 uM at 37°C in humidified air with 5% CO,. After 24 h, all media was
removed from tissue fragments and replaced with fresh basic culture
medium. At this point, 6-9 tissue fragments from each group were snap-
frozen and stored at —80°C for Western blot analysis of Akt
phosphorylation.

Remaining tissue fragments were incubated for a further 5 days, with half
the media removed and replaced with fresh on alternate days. On comple-
tion of the culture period, all remaining tissue fragments were fixed in 10%
normal buffered formalin (NBF) for histological examination to determine
the effect of PTEN inhibitor on follicle and oocyte development.

Histological methods and tissue analysis

After fixation in NBF for 24 h, tissues were further processed and embed-
ded individually into paraffin wax blocks and serially sectioned at 5pm
thickness. Sections were mounted on Super Frost Plus slides (VWR
International Ltd., Leicestershire, UK). For all morphological and numerical
analyses, the examiner was blinded to the treatment groups. Analysis of
follicles within tissue fragments was performed on every section under the
light microscope with a crossed micrometre under 40X magnification.
Follicle developmental stage was categorised using a modification of an
established system (Pedersen and Peters, [968). Primordial and transitory
follicles were classified as non-growing due to the evidence suggesting that
in the bovine ovary these follicles are in quiescence (van Wezel and
Rodgers, 1996). The number of follicles within each stage of development
was recorded, for Day 0 and Day 6 of each treatment. The classification of
healthy follicles was based on the same criteria as in Telfer et al. with modi-
fications (Telfer et al., 2008). For follicles to be categorised as morpho-
logically normal the oocyte must be grossly circular, surrounded by a zona
pellucida, have a visible germinal vesicle and defined nucleolus and have
<10% of pyknotic granulosa cells present. The proportion of follicles at dif-
ferent developmental stages was defined as a percentage of morphologic-
ally healthy follicles over the total follicle count (Brunet et al., 1999).

Immunohistochemistry

Quantitative analysis of DNA damage was performed using immunofluor-
escence. DNA damage repair proteins were localised in tissue sections
using antibodies against Rad5| (137323; 1:500; Abcam), meiotic recom-
bination (MRE) 11 (NBI00-142; 1:1000; Novusbio), BRCAI (Abl6781;
1:200; Abcam), ATM (ab78; 1:500; Abcam) and BRCA2 (Ab27976; 1:200;
Abcam). Nuclear exclusion of FOXO3 was detected using immunohisto-
chemistry (NBP2-24579; 1:500; Novusbio).

Tissue sections mounted on slides were dewaxed in xylene and rehy-
drated through decreasing concentrations of alcohol before being
immersed in tris-buffered saline with 0.05% (v/v) Tween 20 (TBST).
Antigen retrieval was performed by microwaving the slides in 10 mM
sodium citrate (pH 6.0) at simmer setting for 20 min. Following antigen
retrieval, the slides were washed in TBST (2 X 5 min) and then immersed
in 3% (v/v) hydrogen peroxide to quench endogenous peroxidase activity.
After 2 X 5 min washes in TBST, sections were incubated with appropriate
blocking solution for | h (150 pl goat serum or horse serum in 10 ml TBST
followed by overnight incubation with the diluted primary antibodies at
4°C. Primary antibody was replaced with blocking solution for negative
controls.

Primary antibody was washed off, and sections were incubated for
30min with biotinylated secondary antibody at room temperature
(Vectastain Elite ABC kit; Vector Laboratories, Peterborough, UK) and
then washed in TBST (2x5min). Slides were then incubated with
Streptavidin Horseradish Peroxidase (Streptavidin horse-radish peroxid-
ase; HRP) for 30 min at room temperature. Following a TBST wash DAB
(3,3’-diaminobenzidine) peroxidase substrate kit (Vector Laboratories)
solution was added to the sections for between 2 and 5 min and counter-
stained with haematoxylin for 20 s, dehydrated in graded alcohol, cleared
and then mounted with dibutylphthalate polystyrene xylene (DPX).

Immunofluorescence

Localisation of yH2AX (a marker of DNA damage) was detected by
immunofluorescence. As previously described mounted tissue sections
were deparaffinised and rehydrated and then washed in PBS with 0.1% (v/v)
Triton X-100 (PBST) (pH 7.2—7.4) for 2 X 5 min. Then, the slides were sub-
jected to high temperature antigen retrieval as described earlier and incu-
bated for | h at RT with blocking solution (5%, v/v, goat serum in PBST).
Tissue sections were then probed with primary antibody (1:1000) against
YH2AX (NB100-384; Novusbio) overnight at 4°C. Blocking solution without
primary antibody served as negative control. After washing with PBST (4 x
|0 min), sections were incubated with appropriate secondary antibodies
(Cy3-conjugated affinity pure donkey anti rabbit IgG [H + L], 1:250; Jackson
Laboratories) for 2 hours and then washed for 2 X |0 min. The slides were
then mounted in Vectashield hardset with 4’-6-diamidino-2-phenylindole
(DAPI) (H-1500; Vector Laboratories).

Images were analysed using Image) and YH2AX expression in oocytes
and granulosa cells determined. The number of oocytes with YH2AX foci
per total number of follicles was calculated. The YH2AX expression in
granulosa cells was quantitatively analysed by calculating the proportion of
YH2AX positive granulosa cells per total number of granulosa cells per fol-
licle. Images were captured using a Zeiss LSM 800 confocal microscope
with X20 magnification in the IMPACT imaging facility (Centre for
Discovery Brain Sciences, The University of Edinburgh).

Western blotting

Ovarian cortical strips (6-9 per group per experiment) were suspended in
radio immunoprecipitation assay buffer (RIPA) extraction buffer (Fisher
Scientific, Loughborough, UK) supplemented with 1% v/v Halt Protease
and Phosphatase Inhibitor Cocktail (Pl) (Thermo Scientific, Loughborough,
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UK). The tissue was cut with scissors and homogenised. Proteins were
detected using a slightly modified protocol as previously described
(Clarkson et al., 2018). In brief, the sample was centrifuged at 3400 X g for
5min and protein was purified using Vivaspin tubes (Sartorius
Mechatronics Ltd, Epsom, UK) with 50 kDa filters. Protein concentration
was measured using Coomassie-Plus Reagent (Thermo Scientific Pierce,
Northumberland, UK). Protein samples were denatured at 100°C for
10 min, 20 pg was loaded onto 4-20% gradient gels (Life Technologies,
Paisley, UK) in Tris-glycine/SDS running buffer (25 mM Tris-HCl, 52 mM
glycine, 0.1% SDS) and run at 125V for | h. Proteins were transferred to
nitrocellulose membranes (Amersham Pharmacia). Bovine serum albumin
(BSA) (5%, w/v) in TBST was used to block the nitrocellulose membranes
for | h at room temperature with gentle agitation. Blots were then incu-
bated, with a rabbit monoclonal antibody against Akt (9272, 1:5000; Cell
Signaling) or rabbit polyclonal antibody against Akt phosphorylated at ser-
ine 473 (ab81283, 1:500; Abcam) and with a mouse monoclonal antibody
against alpha tubulin (ab7291, 1:5000; Abcam) as a loading control, over-
night at 4°C with gentle agitation. Blots were washed in 0.1% TBST and
then incubated with appropriate secondary antibodies, a goat polyclonal
antibody raised against mouse IgG (heavy and light chain) (1 15-035-146;
Jackson Laboratory) or rabbit IgG (H + L) (111-035-003) 1:5000 in 5%
BSA for | h at room temperature. To enhance chemiluminescence detec-
tion, nitrocellulose membranes were placed in Amersham (ECL) prime
Western blotting detection reagent (GE Health Care) for | min and
exposed to autoradiographic film. Western blots were digitally scanned
and analysed using Image). All analysis was normalised to alpha tubulin.

Statistical analyses

All data were analysed using the SPSS statistical software version 22 (SPSS,
Inc., Chicago, USA) and GraphPad Software version 7 (GraphPad
Software Inc., San Diego, CA, USA). Quantitative data are presented as
mean = SEM. Chi-squared test was used to analyse the percentage of
healthy and unhealthy follicles, the distribution of follicle stages and the
proportion of oocytes expressing proteins related to DNA damage and
DNA DSB repair. Granulosa cell expression of yH2AX, MREI |, ATM,
Rad51, BRCAI and BRCA2 was determined using one-way ANOVA test
followed by Bonferroni post hoc test. Statistical significance was assigned at
P <0.05.

Results

Analysis of follicle distribution

A total of 32 ovarian cortical fragments were obtained on Day 0 from
three culture replicates, and a total of 8833 follicles were analysed.
Non-growing follicles were the most prevalent on Day 0, constituting
79.6% of total follicle number. The majority of the remaining follicles
were at the primary stage (19.0%) and a small percentage were at sec-
ondary stage (1.4%) (Table I). More than 80% of all follicles at Day 0
were healthy (Fig. |). No antral follicles were observed at Day 0 (DO0)
in any tissue fragments.

Assessment of follicle activation and survival

Analysis of 20717 follicles from a total of 147 ovarian cortical tissue
fragments (n = 15—18 fragments per group per culture) after 6 days of
culture showed that the proportion of non-growing follicles declined
significantly in all groups compared to DO (Table I). This decline was
balanced by a significant increase in the percentage of growing follicles
(primary and secondary follicles in DO: 20.4%, control: 70.5%, | pM

bpv(HOpic): 78.6% and 10 pM bpv(HOpic): 88.7%) (P < 0.001 for all
groups). A greater proportion of growing follicles was observed in
|0 uM bpv(HOpic) compared to control and | pM bpv(HOpic) (P <
0.001 for all groups). Secondary follicles were the most mature grow-
ing follicle stage observed in all groups. The proportion of follicles pro-
gressing to the secondary stage in the presence of bpv(HOpic) was
significantly higher compared to control (I pM: 9.7%, 10 uM: 10.6%,
control: 6.2%) (P < 0.05). No significant difference was observed
between | and 10 pM bpv(HOpic) (P = 0.530). The higher concentration
of bpv(HOpic) resulted in a reduction in the proportion of morphologic-
ally healthy follicles at all stages. This was seen for both non-growing (P <
0.05 for all groups) and growing follicles (P < 0.001 for primary and sec-
ondary follicles) compared to control and | pM bpv(HOpic) (Fig. 1).

The effects of bpv(HOpic) on PI3K
downstream pathway activation

To assess the nuclear exclusion of FOXO3 as an effect of PTEN inhibi-
tor on the PI3K pathway, FOXO3 localisation was determined by
immunohistochemistry (Fig. 2A-D). A total of 1704 follicles were ana-
lysed over three separate cultures and the mean percentage + SEM of
oocytes showing nuclear exclusion of FOXO3 was calculated (Fig. 2A).
A significant increase in nuclear exclusion of FOXO3 was observed in
oocytes contained within tissue exposed to bpv(HOpic) | pM (69.1 +
I'1.7%; P =0.008) and 10 uM (81.2 + 12.4%; P = 0.003) compared to
controls (38.3 +9.2%). Furthermore, the proportion of follicles with
nuclear exclusion of FOXO3 was significantly higher in 10 pM compared
to | pM (P = 0.020) (Fig. 2A).

Western blot analysis showed an increase in the ratio of pAkt
(Ser473) to Akt in bpv(HOpic) exposed tissue compared to control
(2.25- and 6.23-fold higher in | and 10 pM bpv(HOpic) respectively,
P < 0.05) (Fig. 2E and F). A significant increase was observed in the
higher concentration of bpv(HOpic) compared to | pM (P = 0.030)
(Fig. 2F).

The effects of PTEN inhibitor on DNA
damage and DNA DSB repair capacity in
follicles

YH2AX binds at DNA strand breaks and is a marker of DNA damage.
Localisation of yH2AX in each of the groups was analysed in oocytes
(Fig. 3A-E) and granulosa cells (Fig. 3F-H). After 6 days of culture,
YH2AX expression was reduced from 79% (DO) to 30 and 59% in
non-growing and primary follicles respectively (P < 0.001) (Fig. 3lI).
Culture did not significantly affect yH2AX expression in oocytes of
secondary follicles. However, bpv(HOpic) increased yH2AX expres-
sion in oocytes of all follicle types at both concentrations of bpv(HO)
pic (I pM: non-growing, 83%; primary, 76%; secondary, 77%; 10 uM:
non-growing, 77%; primary, 84%; secondary, 89%) (P < 0.05), with no
difference between doses (Fig. 3I).

In granulosa cells, YH2AX expression in non-growing follicles did
not significantly differ between groups (Fig. 3)). Similarly, no significant
differences were observed between DO, control and the lower con-
centration of bpv(HOpic) in primary follicles (Fig. 3J). A significant
increase in expression in primary follicles was observed in the higher
(36.9 +£4.2) compared to the lower concentration (11.8 +3.39) and
control (16.9+2.9) (P < 0.001) (Fig. 3)). No differences in yH2AX
expression in granulosa cells of secondary follicles were observed
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Table |l Total number of follicles in each treatment group, at Day 0 and after 6 days of culture. (2), (b), (c) and (d) denote a
significant difference between treatment groups. A significantly greater proportion of primary and secondary follicles were observed in

treatment groups compared to control (P < 0.05).

Group Non-growing follicle n (%) Primary follicle n (%) Secondary follicle n (%) Total
Day-0 7029 (79.6)* 1681 (19.0)* 123 (1.4)* 8833
Control 1896 (29.5)° 4129 (64.3)° 401 (6.2)° 6426
| uM bpv(HOpic) 1400 (21.4)° 4513 (68.9)° 633 (9.7)° 6546
6 days of culture
10 M bPV(HOP'C)} 880 (11.4)° 6047 (78.1)° 818 (10.6)° 7745
Total 29,550
(Fig. 4B6). In granulosa cells, ATM expression in bpv(HOpic) groups of
— S e e non-growing and primary follicles was significantly lower compared to
g —_ wht . control (P < 0.05) (Fig. 4B7).
§ 80 = BRCAI, BRCA2 and RADS5I| were localised within oocytes and
35 granulosa cells (Fig. 5A—C). Analysis of 1315 follicles revealed that the
Z 60+ proportion of BRCAI positive oocytes of non-growing and primary
E follicles decreased significantly after 6 days of culture in control group
= 40+ (19 versus 13% and 22 versus 14% in non-growing and primary folli-
'% cles, respectively) (P < 0.05) (Fig. 5A6). BRCAI expression in all fol-
;2 1 licle types treated with | pM bpv(HOpic) did not change significantly
g 0 compared to control (P > 0.05). However, there was very low expres-
Non-growing  Primary Secondary sion of BRCAI in all follicle groups treated with [0 uM bpv(HOpic)

Figure | Proportion of morphologically healthy follicles at
each stage of development. Day O (yellow), control medium
(green), | pM bpv(HOpic) (red) and 10pM bpv(HOpic) (blue).
*#%<0.001, *#<0.01 and *<0.05. The total number of follicles analysed
for each stage and treatment is shown in Table |. Data here represent
the proportion that were classified as healthy.

between DO and control; however, significant increases were
observed in both bpv(HOpic) treatment groups (I pM: 76.9 + 12.2,
P = 0.024; 10 upM bpv[HOpic]: 77.8 + 14.0, P = 0.01 1) compared to
control (16.7 + 16.7) (Fig. 3F-]). There was no significant difference
between the two concentrations.

Expression of the DNA DSBs repair proteins MREI | (Fig. 4A1-5)
and ATM (Fig. 4B1-5) was observed in all stages of follicle develop-
ment after 6 days of culture (Fig. 4A and B). MREI | was decreased in
oocytes in | pM (42%) and |0 pM bpv(HOpic) (47%) of primary folli-
cles compared to control (68%) (P < 0.001) (Fig. 4 Aé). Similarly, the
expression of MREI | in granulosa cells declined significantly in the
presence of bpv(HOpic) in non-growing (I pM: 41.2 +2.9%; 10 pM:
52.3 +3.9%) and primary follicles (I pM: 56.2 + 1.9%; 10 uM: 58.3 +
2.5%), compared to control (non-growing: 75.9 + |.4% and primary
follicles: 79.0 + 1.8%) (P < 0.05 for all groups). No significant reduction
was observed in secondary follicles with either dose (Fig. 4A7).

ATM, a regulator of the DNA repair downstream pathway, declined
significantly in all types of follicles in bpv(HOpic) groups at Day 6 of
culture. bpv(HOpic) reduced ATM expression in oocytes of primary
follicles from 26% in | pM to 18% in 10 uM bpv(HOpic) (P < 0.001)

(P < 0.001) (Fig. 5A6). Similarly, low expression of BRCA| was seen in
granulosa cells of growing follicles treated with 10 pM bpv(HOpic)
although granulosa cells of non-growing follicles showed a high level of
expression (Fig. 5A7). BRCA2 expression in oocytes was markedly
increased in | pM bpv(HOpic) in primary follicles (36%) compared to
control (20%, P = 0.010) (Fig. 5B6). There was no significant difference
in expression within granulosa cells among all the groups in primary
and secondary follicles (Fig. 5B7).

In contrast, Rad5| expression in oocytes was significantly reduced in
both bpv(HOpic) groups in primary follicles (control versus | and
|0 uM bpv[HOpic]: 48 versus 34 versus 24%) (P < 0.05), without sig-
nificant changes in secondary follicles (Fig. 5C6). Rad5| expression
was observed infrequently (<10%) in granulosa cells, mainly in second-
ary follicles with no significant changes observed among the groups
(P> 0.05) (Fig. 5C7).

Discussion

Consistent with our previous finding using human tissue (McLaughlin
et al., 2014), bovine ovarian tissue fragments exposed to | and 10 pM
bpv(HOpic) for 24 h showed increased primordial follicle activation.
The culture system used in this study supports significant primordial
follicle activation in the control group: recent studies indicate that this
is as a result of disrupting the Hippo signaling pathway during the prep-
aration of the tissue (Kawamura et al., 2013; Hsueh et al., 2015).
Hippo disruption increases expression of downstream growth factors
but manipulation of the PI3K pathway results in further activation
(Kawamura et al., 2013; McLaughlin et al., 2014; Hsueh et al., 2015;
Grosbois and Demeestere, 2018). PI3K pathway activation resulting
from PTEN inhibition was confirmed by increased phosphorylated Akt
expression and nuclear exclusion of FOXO3. However, a deleterious
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Figure 2 Expression of nuclear export of FOXO3 and ratio of phosphorylated Akt and Akt in control and bpv(HOpic) treated tis-
sue. (A) Comparison of oocyte nuclear export of FOXO3 in control and bpv(HOpic) groups. Histogram shows mean percentage + SEM (from three
cultures per treatment with a minimum of 100 follicles analysed per group) of oocytes showing non-nuclear detection of FOXO3. B-D:
Photomicrographs showing localisation of FOXO3 in bovine follicles. Negative control (B). Non-growing follicles with brown staining in the nucleus
indicating inactivated FOXO3 (red arrow, C), nuclear export of FOXO3 from the nucleus of the activated primary follicles in bpv(HOpic) group indi-
cated by brown staining in the ooplasm and negative staining in the nucleus (black arrow, D). Scale bar = 20 pm. (E) Western blot showing Akt and
phosphorylated Akt (pAkt) expression in all groups. (F) pAkt/Akt ratio following 24 h exposure cultured control (green), | pM bpv(HOpic) (red),
10 uM bpv(HOpic) (blue). Lines represent significant differences between groups with a P value of <0.05 *.

effect on follicle morphological health was observed with the higher : this by demonstrating that increased activation is associated with
dose bpv(HOpic), in agreement with data from human ovary (Lerer- : increased DNA damage and reduced DNA repair in ovarian follicles
Serfaty et al., 2013; McLaughlin et al., 2014). The present data extend : and, particularly, in oocytes.
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Figure 3 Representative images showing localisation by immunofluorescence of YH2AX bovine ovarian tissue in each treatment
group. YH2AX (red) and DAPI (blue) staining in oocyte and granulosa cells (A—H). YH2AX staining appeared as bright points (foci) within nuclei
(white arrows) in oocytes (A-E). The green arrows indicate areas where there is no YH2AX expression (B,C). Negative control (A), yH2AX positive
and negative in the oocytes of day zero (DO) (B) positive and negative staining in cultured control (C); positive staining in | pM bpv(HOpic) (D) and
10 pM bpv(HOpic) (E). Localisation of YH2AX expression (white arrows) in granulosa cells (F-H) in control (F), | pM (G) and 10 uM bpv(HOpic) (H).
Scale bar = 20 um. Comparison of proportion of follicles showing YH2AX positive staining in the oocytes (I) and granulosa cells (J) of all groups.
Analysis of 567 follicles from three independent experiments (I and J). The proportion of YH2AX positive oocytes per total number of follicles in each
stage of follicle development (l); expression of yH2AX in granulosa cells (J), mean + SEM. **P < 0.001, **P < 0.01 and *P < 0.05. Yellow, DO; green,

cultured control; red, | pM bpv(HOpic) and blue, 10 pM bpv(HOpic).

The findings in this study support the view that the PTEN/Akt/PI3K
pathway involves other intracellular pathways (Blanco-Aparicio et al.,
2007) that may have negative impacts on follicle growth. PTEN/PI3K/
Akt activity impacts on DNA damage and repair (Hunt et al., 2012;
Ming and He, 2012) and has a central role in coordinating the apop-
tosis cascade activity (Weng et al., 2001; Lu et al., 2016). As DNA
damage precedes the apoptotic process and can be present without
any significant morphological changes, we investigated the effect of
PTEN inhibition on DNA damage and DNA repair capacity of oocytes
and granulosa cells. The bpv(HOpic) concentrations used in this study
were low with a short-term incubation compared to other studies in

human (Novella-Maestre et al., 2015). However, these low concentra-
tions clearly increased DNA damage and compromised DNA repair
capacity of the follicles.

The DNA damage repair pathway involves YH2AX, and this binds
specifically to the location of damage and controls recruitment of
DNA repair proteins. Phosphorylation of yH2AX initiates the down-
stream pathway that leads to DNA repair or cell cycle arrest (Oktay
etal., 2015). We found that yH2AX expression was significantly higher
in uncultured DO tissue compared to control. However, the high
YH2AX expression level in the DO group was associated with
increased expression of the DNA DSBs repair proteins MREI |, ATM
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Photomicrographs of MREI | localisation (Al1-5) and ATM (B-5) expression in oocytes and granulosa cells. Negative control (1); positive staining
(brown) in the oocytes and granulosa cells of day zero (DO; 2), control (3); | pM (4) and 10 pM bpv(HOpic) (5). Scale bar = 20 pm. The proportion of
MREI I and ATM in oocytes (A6, B6) and granulosa cells (A7, B7) shown as mean percentage + SEM. Yellow bars, DO; green bars, cultured control;
red bars, bpv(HOpic) | pM and blue bars, bpv(HOpic) 10 pM. Total number of follicles analysed: 4659 (MRE) and 5309 (ATM). **<0.001, **<0.01,

*<0.05. P value was assigned at <0.05.
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Figure 5 Immunohistochemical detection of BRCAI, BRCA2 and Rad5I. Photomicrographs of BRCAI (Al[-5), BRCA2 (BI-5) and
Rad51 (C1-5) expression in oocytes and granulosa cells. Negative control (Al, Bl and Cl); positive staining (brown) in the oocytes and granulosa cells
of day zero (DO; A2,B2,C2), control cultures (A3, B3 and C3); | pM (A4, B4 and C4) and |0 pM bpv(HOpic) (A5, B and Bé). Scale bar = 20 pm. The
proportion of oocytes (A6, B6 and Cé) and granulosa cells (A7, B7 and C7) expressing BRCAI, BRCA2 and Rad51 in each treatment group (yellow
bars, DO; green bars, cultured control; red bars, bpv(HOpic) | pM and blue bars, bpv(HOpic) 10 uM). Analysis of 1315 (BRCALI), 1134 (BRCA2) and
4148 (Rad51) follicles. ***<0.001, **<0.01, *<0.05. P value was assigned at <0.05.

and Rad5| at all stages of follicle development. These breaks could
reflect latent damage due to mild injury during tissue preparation and
transport that appear to be rapidly resolved and may not cause serious
consequences. This type of damage can be repaired directly without

cell cycle arrest (Menezo et al., 2010), as was indicated by the reduc-
tion in YH2AX expression following tissue culture and there being few-
er morphologically unhealthy follicles in the cultured control tissue. All
types of follicles in control cultures generated adequate DNA repair
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capacity compared to treatment groups, which may reflect a culture
medium with a nutrient-rich environment that is beneficial to cell
metabolism (Paynter et al., 1999).

DNA damage persisted or increased in the oocytes of both bpv
(HOpic) treatment groups and was not associated with increasing
DNA repair protein expression. In the DNA damage repair pathway,
BRCAZ2 is indispensable in regulating the activity of Rad51. Increased
BRCA2 expression in oocytes was consistent with the expression of
Rad51 except in the higher dose of bpv(HOpic) of non-growing folli-
cles wherein low level of BRCA2 did not affect Rad5| expression. In
contrast, BRCA2 expression was high in | pM bpv(HOpic) exposed
primary follicles but was not associated with increased Rad5| expres-
sion. This may indicate compromised homologous recombination.
This finding may describe the association between Akt activation by
bpv(HOpic) and defects in DNA damage repair protein interactions.
Deficiencies in these interactions have previously been reported in
human and mouse ovarian studies and associated with ageing (Titus
etal.,, 2013). DNA DSB repair capacity as reflected in BRCAI, BRCA2
and Rad5| was markedly reduced in oocytes exposed to the higher
dose of bpv(HOpic). Activation of Akt has been shown to abolish the
G2 cell cycle checkpoint by delaying nuclear translocation of BRCAI
during DNA DSB repair in a breast cancer cell line. This leads to
deactivation of Chkl following DNA damage process (Tonic et al.,
2010; Wu et al., 2010). Although we did not quantitatively measure
the intensity of DNA damage indicated by YH2AX expression in this
study, our findings suggest that the DNA damage in the presence of
bpV(HOpic) might be severe with limited repair, which may result in
permanent cell cycle arrest.

Increased expression of YH2AX was observed in granulosa cells of
growing follicles in the bpv(HOpic) treated groups. DNA DSB repair
capacity of secondary follicles was not compromised in all groups,
except BRCAI, which was apparently decreased with higher dose bpv
(HOpic). Interestingly, the lower dose bpv(HOpic) did not affect
expression of BRCAI in all follicle types. Most of the follicles in higher
dose bpv(HOpic) showed apoptosis after 6 days of culture. One pos-
sible explanation of these findings is that as actively dividing cells, such
as granulosa cells, demonstrate a high metabolic activity and prolifer-
ation rate that will increase with the activation of Akt. In this context,
granulosa cells of secondary follicles are more vulnerable to DNA
induced damage. It seems likely that a decline in the capacity of DNA
repair in granulosa cells happens more slowly than DNA damage, simi-
lar to the process that occurs with ageing (Zhang et al., 2015). The
proportion of morphologically normal follicles did not vary between
| pM bpv(HOpic) and control group regardless of the presence of
DNA damage and lack of DNA repair capacity. This may reflect a bet-
ter response to DNA damage in low-dose compared to high-dose
group but a study on human tissue has shown that the growth of
apparently healthy preantral follicles isolated after treatment with
| pM bpv(HOpic) was compromised after a further six days of culture
(McLaughlin et al., 2014). It has been reported that different factors
affect the time period between the occurrence of DNA damage and
apoptotic events (Xiao et al., 2017). This study indicates that the dose
of bpv(HOpic) could also affect this time frame.

It is worth considering the broader significance of these findings
since PTEN inhibition has been used to activate primordial follicles in
POI patients by activating follicles in tissue that is subsequently grafted
back to patients (Suzuki et al., 2015). The present data suggest that

this strategy may be associated with increased DNA breaks and
reduced DNA repair capacity. The impact of DNA damage on
oocytes may range from meiotic dysfunction to cell death (Oktay
etal.,, 2015), possibly leading to reduced fertility (Kirk and Lyon, 1982;
Meirow et al., 2001; Menezo et al., 2007; Adriaens et al., 2009). More
than 50% of oocytes with severe DNA DSBs can escape apoptosis and
eventually achieve resumption of meiosis to the germinal vesicle break-
down stage in mice, but none of these oocytes develop to metaphase
Il (Lin et al., 2014). This indicates that intact DNA DSB repair capacity
in oocytes is pivotal to achieving mature and competent oocytes cap-
able of fertilisation. This study is limited to primordial follicle activation
and implications for later stages of follicle development have not been
assessed. Impairment of human preantral follicle growth has been
demonstrated after bpv(HOpic) treatment in vitro (McLaughlin et al.,
2014), but the implications for mature oocyte development are unex-
plored. We have recently demonstrated that a human in vitro growth
(IVG) system (whose first stage is as used here) can support complete
follicle development resulting in metaphase Il oocytes (McLaughlin
et al., 2018). This methodology may be useful to provide additional
insights into DNA damage and DNA repair of oocytes and granulosa
cells, which may subsequently lead to improved IVG systems.

In summary, this study demonstrates that increasing activity of the
PI3AKT pathway by a short exposure of bovine ovarian tissue frag-
ments to bpV(HOpic) results in increased primordial follicle activation.
However, this was accompanied by increased DNA damage and com-
promised DNA DSB repair capacity, in both oocytes and granulosa
cells. These findings highlight the complexities and interactions
between the regulation of initiation of follicle growth and the mainten-
ance of follicle health and indicate the need for caution in developing
pharmacological approaches to manipulation of this pathway for clin-
ical use.
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