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Abstract
Plant leaf litter is an important source of soil chemicals that are essential for the ecosystem

and changes in leaf litter chemical traits during decomposition will determine the availability

of multiple chemical elements recycling in the ecosystem. However, it is unclear whether

the changes in litter chemical traits during decomposition and their similarities across spe-

cies can be predicted, respectively, using other leaf traits or using the phylogenetic related-

ness of the litter species. Here we examined the fragmentation levels, mass losses, and the

changes of 10 litter chemical traits during 1-yr decomposition under different environmental

conditions (within/above surrounding litter layer) for 48 temperate tree species and related

them to an important leaf functional trait, i.e. leaf toughness. Leaf toughness could predict

the changes well in terms of amounts, but poorly in terms of concentrations. Changes of 7

out of 10 litter chemical traits during decomposition showed a significant phylogenetic signal

notably when litter was exposed above surrounding litter. These phylogenetic signals in ele-

ment dynamics were stronger than those of initial elementary composition. Overall, rela-

tively hard-to-measure ecosystem processes like element dynamics during decomposition

could be partly predicted simply from phylogenies and leaf toughness measures. We sug-

gest that the strong phylogenetic signals in chemical ecosystem functioning of species may

reflect the concerted control by multiple moderately conserved traits, notably if interacting

biota suffer microclimatic stress and spatial isolation from ambient litter.
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Introduction
Leaf litter decomposition is an important ecosystem process [1–3]. Many studies focus on over-
all mass loss of leaf litter, but during the decomposition processes also chemical traits might
change significantly due to the release of various chemical elements from or their immobiliza-
tion in litter [2–5]. For instance, amounts of phosphorus (P), and sometimes sulphur (S) may
increase during the initial stages of decomposition (possibly owing to import by microbes), fol-
lowed by a decrease [6,7], while Ca, K, Mg and Mn amounts usually continuously decrease [1].
Concentration of N, P and Ca increase in most litter, while Mg and S remain constant and K
sometimes decreases [1,6–9], see also [4,10,11]. Previous studies mainly focused on litter chem-
ical transformation of single species [11–16] or of litter mixtures [12,17]. Many of these studies
found differences among elements or ecosystems concerned [4,10,12,17], but see
[1,8,12,18,19,20]. However, studies across many species comparing species traits to chemical
litter transformation are still missing.

Ecosystem processes may be driven by plant traits [21]. Mass loss during decomposition,
for instance, can often be represented by easy-to-assess ‘soft’ leaf trait values [22]. However,
few studies have tried to examine whether and how the patterns of change of litter chemical
traits during decomposition across species can be predicted from species traits. Changes of lit-
ter chemical traits during decomposition are considered to be determined by the initial litter
traits and the nutrient availability to decomposers [3,6,23,24]. Moreover, litter chemical
changes might also link to initial litter physical traits, such as litter toughness (usually termed
as leaf tensile strength). This physical soft trait was proven to have strong negative effects on
the decomposition rates across multiple species [25,26]. In fact, given that leaf and litter tough-
ness are strongly correlated, leaf toughness was usually chosen as an indicator of physical after-
life litter quality and related to litter decomposition rate [10,25,26]. However, no study has sys-
tematically tested whether litter or leave toughness is a good predictor for the changes of multi-
ple litter chemical traits during decomposition. Here, we hypothesized that leaf toughness
might be a good driver for the changes of litter chemical traits during decomposition.

Functional traits may be more similar among close than among distantly related species
(phylogenetic signal, e.g. [27]) and it has been suggested that phylogenetic structure of commu-
nities may influence their ecosystem functioning (e.g. [28]). The phylogenetic signal in species
functional traits may hence translate into a phylogenetic signal in the ecosystem functioning of
species, including in the chemical transformation of plant litter. Phylogenetic signal of species
functioning might be weaker than that of traits as functioning is related to phylogeny only indi-
rectly via the phylogenetic signal in traits [28]. However, functioning may also show a compar-
atively stronger phylogenetic signal if functioning results from multiple traits each shows a
moderate signal. To our knowledge there exist few of any assessments of phylogenetic signals
in ecosystem functioning of species [29] and no direct comparisons with functional traits. For
instance, we do not know whether elementary changes during decomposition show stronger or
weaker phylogenetic signal than elementary concentrations of the fresh litter. We here hypoth-
esize that phylogenetic signals are weaker in traits (elementary concentrations) than in pro-
cesses (elementary changes during decomposition).

Effect of traits or phylogenetic lineages on ecosystem function might be weakened or
strengthened in particular environments. Strong abiotic stress has been suggested to filter out
trait states within lineages [30] and these are putatively the ancestral trait states. Ancestral traits
may correspond to ancestral functioning [31]. More generally, species traits may be particularly
important for ecosystem functioning under abiotic stress [32]. For decomposition processes
such an effect of abiotic stress is particularly plausible given the effect of stress decomposers
[14,23], decomposition [12,33–37] and specifically on elementary dynamics [12,13]. However,
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to our knowledge the effect of environments on the strength of phylogenetic signal in ecosys-
tem functioning has not been studies so far. For instance, we do not know whether elementary
changes during decomposition show stronger or weaker phylogenetic signal when exposing the
litter to more stressful environments. This would require comparative studies of elementary
changes during decomposition for many plant species, which to our knowledge do not exist.
We hypothesize that elementary changes during decomposition depend on microenvironment
and that phylogenetic signal is stronger when micro-environmental stress is high.

To test our hypothesis we conducted a 1-yr litter bag experiment involving 48 temperate
tree species litter under two contrasting environments: being decomposed “aboveground” ver-
sus “belowground”. For the aboveground treatment, litter bags were suspended in the air [38]
and the decomposition process was presumably mainly affected by abiotic factors (see above)
but not directly by soil microbe or invertebrates [38]. For the belowground treatment, litter
bags were put on the soil surface and covered by a layer of a soil-litter mixture and abiotic stress
was low and decomposition processes were mainly influenced by biotic factors, i.e. the micro-
bial decomposition. We measured the leaf toughness and litter chemical traits before and after
1-yr decomposition and quantified the changes of litter chemical traits during decomposition
in terms of both the amounts and the concentrations. Then we related the leaf toughness to the
litter chemical traits and their changes, and examined the phylogenetic signals for leaf tough-
ness, initial litter chemical traits and their changes during decomposition. We accounted for
elementary changes in terms of both amounts and concentrations of different elements.

Materials and Methods

Ethics statement
Since all species are located on Beijing Botanical Garden (BJBG), the Chinese Academy of Sci-
ences, permission from director of BJBG to enter the garden and collect plant material was pro-
vided before conducting this research.

Study site and species selection
The study was conducted in the Beijing Botanical Garden (BJBG), China (116.216°E, 39.992°N,
a.l.s. 76 m), with a history of more than 80 years. This site has a rather dry, monsoon-influ-
enced humid continental climate, characterized by hot, humid summers and cold, windy, dry
winters. The mean annual temperature is 11.8°C and the mean annual precipitation is 638.8
mm. The selected species in our study were all woody plants because woody plants produce
much larger amounts of litters every year than other growth forms. Among the woody species,
Rosales constituted a particularly important clade both in species numbers and in natural
abundance in this temperate area. Therefore, we selected 23 angiosperm species within the
clades of Rosales. We also selected another 25 woody species outside the Rosales clade includ-
ing one gymnosperm species (Ginkgo biloba) based on their representation in the study region
and the availability of litters in BJBG (full species list can be seen in S1 File). These species in
total encompassed a wide range of temperate tree species and formed a good dataset to exam-
ine the phylogenetic similarities of litter chemical trait changes during decomposition [39].

Leaf litter decomposition experiment
Leaf litter was sampled by either gently shaking the branches of at least five individuals of each
species or from the ground below them in order to obtain newly senesced (i.e. still undecom-
posed) leaves. Litters were air-dried for at least two weeks at room temperature and five sub-
samples for each species litter were selected for initial trait measurements and initial water
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content of the air-dry litter (for the estimation of initial dry weight). After initial trait measure-
ments, each species litter was placed into 10 nylon litter bags respectively: 5 replicates for each
treatment (see below). The sizes of litterbags were 10 × 15 cm, 15 × 20 cm, 15 × 25 cm, depend-
ing on the leaf size of different species. The mesh size was 1 mm for all the litterbags. Each litter
bag was filled with 2 ± 0.1 g pre-weighed litters and sealed with staples.

Contrasting environments were achieved by either suspending the litter bags in the air
(aboveground treatment) or putting litterbags on the ground covered by soil-litter mixtures
(belowground treatment). The aboveground and belowground treatments were significantly
different in the following aspects. Specifically, litters in the aboveground treatment were
exposed mostly to by abiotic processes, such as leaching, physical fragmentation, thermal
decomposition and/or photodegradation (see Introduction). On the other hand, litters in
belowground treatment were directly exposed to soil microbes and soil invertebrates which
exist in the soil-litter mixtures, but were not exposed to solar radiation (shaded by soil-litter
mixtures). Therefore, mass loss and litter chemical changes in belowground treatment are
expected to be mainly determined by biotic processes, i.e. microbial decomposition. In addi-
tion, there might also be differences in temperature and moisture between the aboveground
and belowground litter bags.

The litter bed was built in a quiet and open space in BJBG. We cleared the aboveground veg-
etation and ploughed the soil surface (0–5 cm) of the whole litter bed (3 × 10 m) and evenly
mixed the soil with an additional litter mixture collected from several areas of BJBG. This litter
bed was enclosed by a wooden board covered by several metal meshes, which was used to sus-
pend the litter bags aboveground. The metal mesh was about 25 cm above the litter layers in
the litter bed and the size of the metal mesh was 5 cm. Litter bags were randomly arranged on
the ground or on the metal meshes. For the aboveground treatment, we fixed the litterbags
tightly onto the metal mesh in order to decrease the physical fragmentation by wind. The
whole experiment ran for 1 year, because temperate tree species will produce huge amounts of
fresh litters every year and the newly fallen litters may alter the chemical changes of litter from
the previous year. We only harvested our litter bags once after 1 year. The harvested litter in
each litter bag was carefully picked out and contaminants such as soil, little stones, grass roots
and visible invertebrates were removed. Then we used a 2 cm sieve to separate the remaining
litters into big and small pieces. These two parts were put in the paper bags separately for later
dry mass measurements. Those two parts of decomposed litters were then oven-dried at 75°C
for 48 hr and weighed. We documented the two weights and used the proportion of bigger par-
ticles to describe the fragmentation of the remaining litter i.e. the fragmentation index, and the
initial fragmentation index for all species litters approximately equaled 1. The sum of those two
weights was used to calculate the percentage mass loss of each litter bags.

Leaf toughness and litter chemical trait measurements
One important functional trait, i.e. leaf tensile strength, was measured from green leaves of the
respective species. We always collected fresh, mature, non-senescent sun leaves without signifi-
cant herbivory symptoms to measure leaf tensile strength for all species [40]. The leaf tensile
strength, termed as leaf toughness in our study, was measured as the force needed to break the
leaf, expressed by per unit of width of a leaf sample rather than per cross-sectional area, thus
incorporating leaf thickness as a component of tensile strength (unit: N cm-1). The measure-
ments were taken following [41]. Moreover, litter chemical traits were measured on the initial
litters and decomposed litters respectively. These included C, N, P, S, K, Ca, Mg, Mn, Fe and
Zn. The C and N concentrations were determined by oven drying the litter at 75°C overnight
with subsequent grinding using a modified ball mill [42]. The ground plant materials were
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analyzed on an automated elemental analyzer. The other element concentrations were analyzed
by inductively coupled plasma emission spectroscopy (Perkin Elmer Optima 3000 ICP Spec-
trometer, Waltham, MA).

Statistical analysis
We characterized the litter chemical changes during decomposition by two different variables:
the change in the amounts and the change in the concentrations, both of which are considered
to be important from an ecological point of view [12]. Then, we calculated the changes in the
amounts by multiplying the concentration of a particular element after 1 yr decomposition by
the remaining dry mass, which was expressed as a percentage of the initial amount of that par-
ticular element in the initial litters [17,43]. For each particular element, the change in the
amount, which was calibrated by the remaining dry mass, represented the remaining amount
of that particular element in the remaining litters after 1 year decomposition divided by the ini-
tial amount. Thus, values< 1 indicated a decrease and values> 1 an increase in the absolute
amounts. Moreover, larges values in the changes of the amounts indicate that that particular
element is released more slowly or (if> 1) even accumulated after 1 year of decomposition.
We calculated the change in the concentrations by dividing the concentration of a particular
element after 1 yr decomposition by the initial concentration. The change in the concentrations
was the percentage of the initial concentration. The change in the concentration was calculated
as for the change in the amount, but without calibration for remaining dry mass. Data were
tested using a Shapiro-Wilk’sW-test to examine the assumptions of normality before the anal-
yses, and non-normal data were log transformed when needed. One-way ANOVA was used to
examine the difference in mass loss, fragmentation, litter chemical changes during decomposi-
tion between aboveground and belowground treatments. Moreover, a linear regression model
was used to test whether leaf toughness was a good predictor for the litter chemical changes
under both treatments. We verified the residuals for all the regression analyses, removed the
extreme values (outliers) from the dataset and did the regression analyses again. Analyses were
conducted in R (version 3.2.0) and in Statistica 7.0.

In addition, we estimated a plant phylogeny including 48 temperate tree species using ‘Phy-
lomatic’ software online (http://phylodiversity.net/phylomatic/html/pm2_form.html, see also
[39]. The species names and the taxonomic levels followed Angiosperm Phylogeny Group III
[44]. For resolving polytomies, randomization was carried out with the help of the function
‘multi2di’ in the package ‘picante’ [45,46]. Branch length in the Phylomatic phylogeny was esti-
mated using the ‘Bladj’ function in the ‘Phylocom’ software. In the end, we estimated the phy-
logenetic signals of the initial leaf toughness, initial litter chemical traits and the changes of
litter chemical traits during decomposition under both aboveground and belowground treat-
ments. We selected Blomberg’s K as a metric of phylogenetic signal [47], which was estimated
using the function multiPhylosignal (Package picante) for all the chemical elements.

Results

Litter mass loss and litter fragmentation under different environmental
conditions
After 1 year of decomposition, litter mass losses in aboveground and belowground treatments
were on average 0.620 and 0.589 respectively (Table 1), and litter fragmentation in aboveground
and belowground treatments were on average 0.651 and 0.629, respectively. There was no signif-
icant difference in either litter mass losses or litter fragmentation between both treatments
(One-way ANOVA, Table 1). Note that litter mass losses across species can be seen in Fig 1.
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Changes of litter chemical traits during decomposition under different
environmental conditions
The amounts of C, N, P, S, K, Ca and Mg decreased, but Fe and Zn increased after decomposi-
tion in both aboveground and belowground treatments (Table 1). The change in the amounts
of P, K, Ca, Mg, Mn and Zn differed significantly between aboveground and belowground
treatments (One-way ANOVA, Table 1). However, no significant difference was detected in C,
N, S and Fe (Table 1). The concentrations of N, S, Ca, Fe, Mn and Zn increased, while the con-
centration of C, K and Mg decreased (Table 1). The change in the concentration of most chem-
ical elements differed significantly between aboveground and belowground treatments except
for N and S (One-way ANOVA, Table 1).

Relationships between leaf toughness and changes of litter chemical
traits during decomposition in aboveground and belowground
treatments
In terms of the changes in the amounts of chemical traits, there were positive correlations
between leaf toughness and most litter chemical traits except for litter [P] and [S] in the above-
ground treatment and litter [S] and [Mn] in the belowground treatment (Fig 2). However, in
terms of the change in the concentrations of chemical traits, significant correlations between

Table 1. Changes in litter mass, litter fragmentation index and, litter chemical traits during decomposition in aboveground and belowground treat-
ments. Elements in the table are calculated as the fraction of the initial amount or concentration of particular element. For the change in elements (as frac-
tions of final / initial), values < 1 indicate a decrease and values > 1 an increase in the absolute amounts (see main text). One-way ANOVA was used to
examine the significance of differences between treatments.

Character changes during decomposition Aboveground treatment (Mean ± SD) Belowground treatment (Mean ± SD) N F P

Change in litter mass (i.e. mass loss) 0.620 ± 0.139 0.589 ± 0.140 48 1.183 0.28

Change in litter fragmentation index 0.651 ± 0.151 0.629 ± 0.151 48 0.515 0.47

Change in amounts

C 0.372 ± 0.133 0.365 ± 0.133 48 0.058 0.81

N 0.673 ± 0.247 0.754 ± 0.261 48 2.460 0.12

P 0.363 ± 0.151 0.582 ± 0.211 48 34.39 < 0.01

S 0.647 ± 0.348 0.643 ± 0.279 48 0.004 0.95

K 0.097 ± 0.090 0.168 ± 0.153 48 7.641 < 0.01

Ca 0.492 ± 0.273 0.677 ± 0.228 48 12.93 < 0.01

Mg 0.161 ± 0.107 0.484 ± 0.229 48 78.29 < 0.01

Mn 0.758 ± 0.460 1.279 ± 0.648 48 20.59 < 0.01

Fe 2.709 ± 1.337 2.474 ± 1.157 48 0.845 0.36

Zn 4.228 ± 2.956 1.311 ± 0.788 48 43.64 < 0.01

Change in concentrations

C 0.982 ± 0.051 0.883 ± 0.045 48 100.8 < 0.01

N 1.801 ± 0.370 1.855 ± 0.346 48 0.554 0.46

P 0.963 ± 0.229 1.445 ± 0.341 48 66.09 < 0.01

S 1.753 ± 0.727 1.620 ± 0.565 48 1.000 0.32

K 0.239 ± 0.182 0.378 ± 0.285 48 9.167 < 0.01

Ca 1.263 ± 0.458 1.680 ± 0.247 48 29.34 < 0.01

Mg 0.413 ± 0.164 1.169 ± 0.330 48 202.7 < 0.01

Mn 2.212 ± 1.256 3.404 ± 1.962 48 12.57 < 0.01

Fe 7.195 ± 2.585 6.133 ± 2.361 48 4.418 0.04

Zn 11.48 ± 5.720 3.253 ± 1.562 48 92.46 < 0.01

doi:10.1371/journal.pone.0143140.t001
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leaf toughness and changes of chemical traits during decomposition were only found in litter
[K] in both treatments, in litter [Mg] in aboveground treatment and in litter [Zn] in below-
ground treatment (Fig 2).

Phylogenetic signals of initial leaf toughness, initial litter chemical traits
and changes of litter chemical traits during decomposition under
different environmental conditions
There was a marginally significant phylogenetic signal in the initial leaf toughness (Fig 1:
K = 0.46, P = 0.06), and a significant phylogenetic signal was also found in 5 out of 10 initial

Fig 1. Leaf toughness, litter mass losses in aboveground and belowground treatments across our plant phylogeny of 48 species. Plant phylogeny
came from the online software phylomatic and branch length was estimated using ‘Phylocom’ software. K represents the Blomberg’s K which is widely used
to examine phylogenetic signals of traits and permits comparison among studies. The significance for the phylogenetic signals of leaf toughness and litter
mass losses in aboveground and belowground treatments were 0.06, 0.05 and 0.05 respectively.

doi:10.1371/journal.pone.0143140.g001
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chemical traits, i.e. for [C], [N], [S], [K] and [Ca] (Table 2, P< 0.05); but not for [P], [Mg],
[Mn], [Fe] and [Zn] (Table 1, P� 0.19). Moreover, after 1 year decomposition, there was a sig-
nificant phylogenetic signal in the changes of [C], [S] and [K] in both aboveground and below-
ground treatments, but no significant phylogentic signal was found in the changes of [N], [P]
and [Fe] in either above- or belowground treatment (Table 2). In addition, for the amount
changes, there was also a significant phylogenetic signal in the changes of [Mg] and [Zn] in the
aboveground treatment; for the concentration changes, a significant phylogenetic signal was
also found in the changes of [Mg] and [Mn] in the aboveground treatment (Table 2).

Discussion

Changes of litter chemical traits during decomposition across species
The amounts of most litter chemical traits (C, N, P, S, K, Ca and Mg) decreased after 1 year of
decomposition, indicating a net release of those elements from leaf litters to the temperate eco-
systems. However, the other three litter chemical traits (Mn, Fe and Zn) showed a net accumu-
lation after 1 year of decomposition. These results indicate that leaf litters of temperate tree
species are still the source of most nutrient elements, but a sink for several metal elements. Our

Fig 2. Relationships between leaf toughness and litter chemical trait changes (as fractions of final / initial) in amounts or in concentrations under
different environment conditions. * stands for the changes of litter chemical traits, including both the amount and the concentration changes. Values < 1
indicate a decrease and values > 1 an increase in the absolute amounts (see main text). Each point represents a single species in our study. Circle points
and dashed lines correspond to the aboveground treatment; and solid points and solid lines correspond to the belowground treatments. Significant (P<0.05)
and marginally significant (P < 0.10) correlations are shown as regression lines.

doi:10.1371/journal.pone.0143140.g002
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results on the changes of litter chemical traits during decomposition across 48 temperate tree
species are in agreement with studies on the nutrient dynamics of single species, such as the sil-
ver birch, Norway spruce or multiple tropical forest species [15,16,24,49,50], but only in part
consistent with the study in the Karri forest of south-western Australia [1], which showed that
leaf litters of 3 out of 5 species accumulated phosphorus after 1 year of decomposition. How-
ever we did not find any evidence of phosphorus accumulation after 1 year of decomposition.
The concentrations of most litter chemical traits (N, P, S, Ca, Mn, Fe and Zn) increased relative
to the initial concentrations, but the concentrations of C and K decreased after 1 year of
decomposition. These chemical trait changes across species were in agreement with studies on
native or invasive species litters in Hawai’i [51], but only in part consistent with studies in the
Karri forest of south-western Australia [1], which showed relatively constant concentrations of
Mg and S. In contrast, we found significant increases in [Mg] and [S] after 1 year of decomposi-
tion. Possibly, the relatively short duration of decomposition in our study may explain the
observed increase in [Mg] and [S].

Leaf toughness as a predictor for the changes of litter chemical traits
during decomposition
Our results showed that leaf toughness was a good predictor for the changes of litter chemical
traits in terms of amounts. In species with tougher leaves, the amounts of elements after
decomposition were higher in the remaining litters. Leaf toughness can enhance the litter resis-
tance to soil decomposers [10,25,40], retard the leaf litter mass losses and hence lead to slower
losses in the amounts of elements during decomposition. Therefore, there was a consistent cor-
relation between leaf toughness and the change in the amounts of litter chemical traits across
species. These results indicate that leaf toughness determines the amounts of litter nutrient
release from litter back to the environment. They also provide us a physical trait that is easily
and inexpensively measurable to predict the amounts of litter chemical changes during decom-
position, the latter being relatively difficult and expensive to measure. However, leaf toughness
was a poor predictor for the changes in litter chemical traits in terms of the concentration
changes. One explanation might be that litter chemical trait changes in terms of the

Table 2. Tests for phylogenetic signals on initial values (as concentrations in mg/g) and the changes of litter chemical traits in absolute amounts
and concentrations respectively, after 1-yr decomposition. K represents the Blomberg’s K which is widely used to examine phylogenetic signals of traits
and permits comparison among studies. P represents the statistical significance of phylogenetic signal following the approach of [47]. P < 0.05 reflects close
relatives being more similar than expected by chance [48].

Litter traits Initial value The amount changes The concentration changes

Aboveground Belowground Aboveground Belowground

K P K P K P K P K P

C 0.52 <0.01 0.41 0.05 0.40 0.05 0.44 <0.01 0.44 0.05

N 0.42 0.01 0.37 0.07 0.36 0.08 0.26 0.49 0.23 0.70

P 0.34 0.30 0.33 0.08 0.39 0.09 0.31 0.38 0.19 0.90

S 0.81 0.02 0.51 <0.01 0.44 0.02 0.63 0.01 0.68 <0.01

K 0.50 0.05 1.98 <0.01 0.49 0.02 1.72 <0.01 0.54 0.01

Ca 0.34 0.05 0.39 0.02 0.36 0.09 0.36 0.06 0.24 0.72

Mg 0.26 0.53 0.33 0.15 0.27 0.37 0.37 0.05 0.28 0.73

Mn 0.41 0.19 0.49 0.09 0.37 0.16 0.42 0.02 0.27 0.45

Fe 0.33 0.43 0.41 0.13 0.29 0.26 0.36 0.09 0.29 0.27

Zn 0.35 0.33 1.03 0.02 0.54 0.31 0.58 0.09 0.32 0.69

doi:10.1371/journal.pone.0143140.t002
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concentrations are not only determined by initial litter quality and the decomposers, but also
determined by the relationships among the changes of multiple chemical traits during decom-
position. For example, a large decrease of the amounts of carbon might increase the concentra-
tions of other chemical traits, even though in fact the latter also decrease in absolute amounts
during decomposition.

Phylogenetic signal as a predictor for the similarities of the changes of
litter chemical traits during decomposition among species
Our results showed that there were significant phylogenetic signals of initial litter C, S and K,
and the changes of those three litter chemical traits also showed significant phylogenetic signal,
regardless of the way of quantifying litter chemical trait changes or the environmental condi-
tions for litter incubation. For C, there was a large decrease in the amount during decomposi-
tion, while the concentrations of C also decreased only slightly. Together these changes led to
the convergence of litter C across species and the significant phylogenetic signals in initial litter
C remained but became weaker during decomposition [18]. This matches the fact that chemi-
cal traits will become more and more similar across species with the progression of litter
decomposition. However, the detected strong phylogenetic signal of S and K during decompo-
sition became even stronger than the initial phylogenetic signals. Moreover, our results also
showed that there was a significant phylogenetic signal in initial litter N, but there was no phy-
logenetic signal in the changes of litter N during decomposition. This might be due to the rela-
tively small decrease of initial amounts of N and the increase of the concentration of nitrogen
during decomposition, leading to the disappearance of phylogenetic signal of litter N during
decomposition. In addition, there was neither significant phylogenetic signal in the initial litter
P and Fe, nor in the changes in P and Fe. These results indicate that there was no similarity
among closely related species in P and Fe or their changes during decomposition.

Overall, phylogenetic signals in elementary dynamics seem to be stronger than those in ini-
tial concentrations of the same elements (in particular above ground). Such a situation is sur-
prising at first sight as ecosystem functioning of species such as elementary dynamics during
decomposition is related to phylogenetic position of species only indirectly, via differences in
functional traits. Such an indirect relationship should be weaker than the more direct one
between phylogenetic position and trait states. However, we can imagine a scenario that does
produces stronger phylogenetic signals in ecosystem processes than in traits. Imagine a process
that depends on the combined effect of multiple traits, each of which with a moderate phyloge-
netic signal. A major change in this process hence requires a concerted change of all traits
together. Given their phylogenetic signals, such a concerted major change is likely to happen
only among distant relatives belonging to different lineages, even if each of the traits may show
some minor variation within each of the lineages. The phylogenetic signal at the level of the
ecosystem process might hence be stronger than that at level of the individual traits involved.
In the present case, a major change among species in the dynamics of a given element may
require a concerted, major change of both the composition of this element, of other elements
and of leaf toughness and may hence be unlikely to happen among closely related species.

Role of environmental conditions in predicting the changes of litter
chemical traits during decomposition
Environment significantly influenced the litter chemical changes in terms of amounts during
decomposition across species (Table 1). Our results showed that the changes in the amounts of
most litter chemical traits, except for C, N, S and Fe, differed significantly between the above-
ground and belowground treatments and in all cases the amounts of litter elements in the
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aboveground treatment decreased or increased faster than those in belowground treatments.
About 80–90% of the initial amounts of K was released after 1 yr decomposition, and a similar
phenomenon was observed in a broad range of forest ecosystems [52].This might be due to
fast-turnover elements such as K remain in plant residues as water soluble salts [50] and the
changes in K might be dominated by the leaching process in ecosystems [52]. Together our
results suggest that abiotic processes might contribute more to the litter chemical changes dur-
ing decomposition than microbial activity. However, the small mesh size of the litter bags in
our study might have excluded certain groups of invertebrates that might also be important for
leaf litter decomposition processes, especially fragmentation. Therefore, the biotic contribution
to litter chemical changes during decomposition might have been underestimated in our study.

Environment also significantly influenced the litter chemical changes in the concentrations
during decomposition across species (Table 1). Our results showed that the increases in P, Ca,
Mg and Mn were bigger in the belowground treatment than that in the aboveground treatment.
The increase in concentrations of most chemical elements was suggested to be due to the
immobilization of the amounts in litter by microbial biomass and humic substances [12].
Larger increases in the concentrations in belowground treatments may be due to the stronger
immobilization by soil microbes; however in the aboveground treatment they can also be due
to the same immobilization by microbes (possibly airborne microbes colonizing the litter) in
combination with stronger leaching. The latter was also confirmed by the decrease of Mg con-
centration in the aboveground treatment, in contrast to an increase of Mg concentration in the
belowground treatment. Indeed the decrease of Mg concentration has been considered to be
determined by leaching rather than biological processes [53]. Moreover, our results also
showed that the increase in Fe and Zn concentrations in the belowground treatment was even
smaller than that in the aboveground treatment, which was perhaps due to the exclusion of soil
invertebrates (see above). The mechanisms for the accumulation of Fe or Zn were suggested to
be abiotic absorption on humified litters or an effect of accumulation of metal elements in
fungi [54–56]. Our results indicate that the concentrations of Fe and Zn might also increase via
other processes, such as the input with through fall, biological translocation by fungi from
deeper soil layers [9] or possibly by microbes from the air. Different fungi, i.e. airborne fungi
versus soil fungi in aboveground and belowground treatments respectively, might determine
how litter chemical trait changed during decomposition [57].

We found that the phylogenetic signal of elementary dynamics tends to be stronger above
ground than below ground. Signals of plant phylogeny on decomposition of plant litter may result
from litter of different plant lineages differentially sorting decomposers. The sorting of decompos-
ers by a type of litter may be more powerful if decomposers are at their physiological limits, i.e.
under abiotically more stressful conditions. Filtering by a type of litter may also be more powerful
the litter is spatially isolated from other types of litter, as decomposers cannot easily emigrate to
use adjacent complementary litter types nor spill over from such adjacent litter types. Indeed,
above-ground treatments were abiotically more extreme and spatially more isolated from the sur-
rounding litter than below ground treatments. Together this might render sorting of decomposers
by plant traits more powerful. These traits are to some degree phylogenetically conserved, result-
ing potentially in comparatively strong phylogenetic signals in decomposer biota, and in the ele-
mentary dynamics induced by these decomposers. We stress that this interpretation remains
speculative and each of the mechanisms suggested needs to be tested in future research.

Conclusion
Our study was the first to predict litter chemical changes during decomposition from other leaf
traits and their similarities by their phylogenetic relatedness. These results thereby contribute
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to the growing literature on litter chemical changes during decomposition, which has received
much less attention than the mass loss, or k-values in former decomposition studies. Our
results indicate that the dynamics of key ecologically relevant elements during decomposition
in terms of the amounts can be well predicted using leaf toughness, while changes in these ele-
ments in terms of their concentration were poorly predicted by leaf toughness. These results
might improve our confidence to predict different aspects of element cycling in ecosystems
using plant functional traits in future. Moreover, litter chemical trait changes showed interest-
ing evolutionary patterns and we found significant phylogenetic signals in 7 out of 10 chemical
traits. These results provide us a possibility to predict the ecosystem functioning in an evolu-
tionary perspective.
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