
Citation: Li, L.; Liu, X.; Li, L.; Wei, S.;

Huang, Q. Preparation of

Rosin-Based Composite Membranes

and Study of Their Dencichine

Adsorption Properties. Polymers 2022,

14, 2161. https://doi.org/10.3390/

polym14112161

Academic Editors: Wei Wu,

Hao-Yang Mi, Chongxing Huang,

Hui Zhao and Tao Liu

Received: 20 April 2022

Accepted: 11 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Preparation of Rosin-Based Composite Membranes and Study
of Their Dencichine Adsorption Properties
Long Li 1,2,3,4, Xiuyu Liu 1,2,3,4 , Lanfu Li 1, Sentao Wei 1 and Qin Huang 1,2,3,4,*

1 School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China;
lilong19980227@163.com (L.L.); xiuyu.liu@gxun.edu.cn (X.L.); a17876072393@163.com (L.L.);
a1184306866@163.com (S.W.)

2 Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission,
Nanning 530006, China

3 Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, China
4 Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products,

Guangxi Minzu University, Nanning 530006, China
* Correspondence: huangqin@gxun.edu.cn

Abstract: In this work, rosin-based composite membranes (RCMs) were developed as selective
sorbents for the preparation of dencichine for the first time. The rosin-based polymer microspheres
(RPMs) were synthesized using 4-ethylpyridine as a functional monomer and ethylene glycol maleic
rosinate acrylate as a crosslinking. RCMs were prepared by spinning the RPMs onto the membranes
by electrostatic spinning technology. The optimization of various parameters that affect RCMs was
carried out, such as the ratio concentration and voltage intensity of electrospinning membrane. The
RCMs were characterized by SEM, TGA and FT-IR. The performances of RCMs were assessed, which
included adsorption isotherms, selective recognition and adsorption kinetics. The adsorption of
dencichine on RCMs followed pseudo-second-order and adapted Langmuir–Freundlich isotherm
model. As for the RCMs, the fast adsorption stage appeared within the first 45 min, and the
experimental maximum adsorption capacity was 1.056 mg/g, which is much higher than the previous
dencichine adsorbents reported in the literature. The initial decomposition temperature of RCMs is
297 ◦C, the tensile strength is 2.15 MPa and the elongation at break is 215.1%. The RCMs have good
thermal stability and mechanical properties. These results indicated that RCMs are a tremendously
promising adsorbent for enriching and purifying dencichine from the notoginseng extracts.

Keywords: rosin-based composite membranes; dencichine; electrostatic spinning technology;
notoginseng extracts

1. Introduction

Pharmacologically active natural products have gained unprecedented popularity
in recent decades [1]. They have made great contributions historically to drug devel-
opment, and many of them have had profound effects on our lives. Dencichine (b-N-
oxalyl-L-a, b-diaminopropionic acid, b-ODAP), isolated from the roots of panax notogin-
seng, has a high medicinal value [2]. Dencichine has been reported to show beneficial
effects against numerous diseases, such as dispersing stasis and hemostasis, improving
platelet number, relieving swelling and pain, kidney diseases, neuroprotection, lowering
blood glucose [2–5] and rheumatic diseases [6]. Natural ingredients in plants are charac-
terized by low concentration [7], the existence of multi-component mixtures, structural
diversity and similarity, which pose great challenges to the separation and purification
of natural ingredients [8]. Therefore, it is essential to explore efficient extraction and
purification processes for dencichine. According to several literature reviews, various
methods have been developed to carry ou the separation, determination and enrichment
of dencichine in panax notoginseng, such as colorimetry [9], high-performance liquid
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chromatography (HPLC) [10], gas chromatography–mass spectrometry (GC/MS) [11], liq-
uid chromatographic–tandem mass spectrometric (LC/MS) [12], ultra-high-performance
liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) [13], water-methanol
method [14] and ultrasonic/microwave-assisted method [15]. The instrumental method
employed a specific type of specialization and sophistication of the instruments. The sepa-
ration method is not highly efficient and profitless to mass production. At the same time,
the separated products need to be purified to remove harmful solvents such as acetoni-
trile. Water-methanol extraction is a traditional and easy-to-operate extraction approach,
although inefficient. The ultrasonic/microwave-assisted method in the extraction process
has a low separation effect on the structural analogs of dencichine. Molecularly imprinted
technology is an easy and efficient method for the preparation of tailor-made polymeric
materials with molecular recognition abilities [16]. However, the imprinting of dencichine
is problematic and easy to cause template molecule waste. An efficient, low-cost material
for dencichine extraction and purification is currently lacking.

In recent years, adsorption-based methods have been widely used in the separation
and enrichment of bioactive compounds from many natural products. For example, RPM
separation of total alkaloids from coptidis [17] and chitosan membrane purification of
artemisinin [18]. The adsorption effect depends on the type and quality of the adsorp-
tion material. At present, many kinds of adsorption materials have been developed and
deployed for the purification and separation of natural products. The commonly used
adsorbents are activated carbon, iron oxide, silica gel, starch, adsorption resin, clay min-
erals and composite membranes. They use the porous matrices [19–21] as an adsorption
platform and have good application prospects in the mass transfer and adsorption process.
Among them, the composite membranes [22–25] have excellent thermal stability, high
adsorption capacities and stable three-dimensional structure. In addition, they are used
repeatedly, so they are widely used for isolating and the enrichment of active ingredients
from natural products, such as half terpene [26], flavonoids [27], alkaloids [17] and other
active compounds. Poly-ethersulfone (PES) [28], poly-sulfone (PSF) [29], poly-vinylidene
fluoride (PVDF) [30,31], poly-vinylpyrrolidone (PVP) [32], poly-acrylonitrile (PAN) [33],
poly-vinyl alcohol (PVA) [34] and natural product cellulose [35–38] are widely used as the
polymeric membranes. With people paying more attention to the environment, porous
chitosan, cellulose, rosin and other natural polymers appear in people’s field of vision, and
the use of natural adsorption materials is becoming more and more prevalent. The rosin-
based crosslinking agent has excellent rigidity and contains three double bonds, non-toxic,
non-carcinogenic, high abundance, low cost, environmental protection and other advan-
tages. The polymer materials prepared from rosin have the advantages of degradation,
high mechanical strength and excellent luster. Rosin-based polymers have been generally
implemented not only in traditional fields such as coatings [39] and adhesives [40], but
also in emerging fields such as energy [41], environment [42], drug delivery [43] and drug
analysis. There are several methods for the preparation of composite membranes, including
the casting flow method [44], freeze-drying approach [45] and electrostatic spinning et al.
The composite membranes prepared by electrospinning have unique properties such as
high specific surface area and uniform nanofiber structure. Electrospinning is currently
applied in various applications including electrochemistry, natural product extraction,
medicine, the environment and batteries.

In this work, RCMs were developed as excellent adsorbents for the preparation of
dencichine for the first time. The preparation of RPMs was carried out using ethylene
glycol maleic rosinate acrylate as a crosslinking by precipitation polymerization, and the
RCMs were further prepared by electrospinning. Furthermore, we also study the feasibility
of RCMs as effective sorptive materials for the dissociation and enrichment of dencichine.
The RCMs were characterized by SEM, TGA and FT-IR. Then, the RCMs were evaluated
for their sorbent performance of dencichine from notoginseng extracts. The adsorption
kinetics of dencichine on RCMs was studied, and the adsorption mechanism was analyzed
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in detail. Studies have shown that the membranes have excellent application prospects for
the extraction of dencichine.

2. Materials and Methods
2.1. Materials

Dencichine was provided from Chengdu Plant standard pure Biotechnology Co., Ltd.
(Chengdu, China). 4-ethylpyridine and 2,2′-azobisisobutyronitrile (AIBN) were provided
from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). N, N′-
methylenebis (acrylamide) and acetic acid were provided from Shanghai Maclin Biochemi-
cal Technology Co., Ltd. (Shanghai, China). Methyl alcohol was obtained from Chengdu
Cologne Chemicals Co., Ltd. (Chengdu, China). Glycine-DL-leucine (GL) and glycyl-L-
phenylalanine (GP) were provided from Aladdin Chemistry Co. Ltd. (Shanghai, China).
HPLC-grade acetonitrile and methanol were provided from Agilent Technologies (Shang-
hai, China) Co., Ltd. Ethylene glycol maleic rosinate acrylate (EGMRA) was purchased by
Wuzhou Sun Shine Forestry & Chemicals Co., Ltd. (Wuzhou, China) [17].

2.2. Preparation of RPMs

The functional monomers 4-VP (2.4 mmol) and the EGMEA (0.48 mmol) and MBA
(9.6 mmol) were dissolved in 100 mL of methanol in a 250 mL flask. Subsequently, 0.1260 g
AIBN was added to the mixed solutions and the organic phase was formed by ultra-
sound. Then, the mixture was heated followed by mechanical agitation (50 rpm), and
heat-polymerized at 70 ◦C for 11 h. The unreacted monomers were removed by methanol
extraction for 48 h. The RPMs were dried under vacuo at 50 ◦C for 12 h.

2.3. Preparation of RCMs

The RCMs were prepared via the electrospinning method. First, the mixed solution
with contents of 10 wt% (PAN) and 1 wt% (RPMs) was prepared by adding PAN (2.0000 g)
and RPMs (0.2000 g) into DMSO (20 mL) under continuous magnetic stirring at 85 ◦C for
2.5 h. The mixed solution was extracted 10 mL by using a 10 mL disposable syringe and
then the composite membranes were prepared by electrostatic spinning. Electrospinning
was carried out at a temperature of 25 ± 5 ◦C, humidity of 30 ± 5%, the fixed voltage of
20 KV, feeding rate of 0.1 mL/h and a distance of 16 cm. Electrospinning was stopped after
10 h. Finally, RCMs were obtained after methanol extraction for 24 h and vacuum dried at
60 ◦C for 12 h. The scheme for preparing the RCMs was represented in Figure 1.
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2.4. Characterization of RCMs and RPMs

The RCMs and RPMs were investigated by FT-IR (MagnA-IR550, Thermo Fisher
Scientific, Waltham, MA, USA) in the range 4000–400 cm−1. The analysis of the size and
morphology of the RCMs and RPMs were performed using field-emission scanning electron
microscopy (SEM, Supra 55 Sapphire, Carl Zeiss, Jena, Germany)). Thermogravimetric
analysis of the RCMs and RPMs performed using TGA-DSC/DTA analyzer (STA 449 F5,
NETZSCH-Gerätebau GmbH, Selb, Germany). The RCMs and RPMs were weighed by
analytical balance with an accuracy of 0.1 mg (Practum124-1cn, Sartorius AG, Göttingen,
Germany). The zeta potentials of the RCMs and RPMs were measured using a Laser
Nanoparticle Size and Zeta Potential Analyzer (Zetasizer Nano, Malvern, UK). The RCM
and RPM pore and specific surface area were measured at 77 k using surface area and pore
size analyzer (ASAP2020, Micromeritics, Norcross, GA, USA). The mechanical properties
of RCM were tested by an electronic universal testing machine (JDL-10000N, Yangzhou
Tianfa test Machinery Co., Ltd., Yangzhou, China).

2.4.1. Scanning Electron Microscopy (SEM)

The surface morphology of the RCMs and RPMs was determined by SEM analysis
(SEM, Supra 55 Sapphire, Carl Zeiss Germany, Oberkochen, Germany). The samples were
evenly coated on the conductive adhesive of the sample sheet and then sprayed with gold
for 0.5 h. The surface morphology of the RCMs and RPMs after the samples were sprayed
with gold was observed by SEM under low vacuum conditions.

2.4.2. Thermogravimetric Analysis (TGA)

The thermal stability of the RCMs and RPMs was determined by thermogravimetric
analysis (TGA) (STA 449 F5, NETZSCH-Gerätebau GmbH, Selb, Germany). The sample
was heated from 30 ◦C to 800 ◦C for thermal degradation under nitrogen protection at
a rate of 10 ◦C/min.

2.4.3. Dynamic Mechanical Analyzer

The samples were cut to 1 cm in width and 4 cm in length, and the stress–strain curve
of the RCMs was measured at a lifting rate of 1 mm/min by the electronic universal testing
machine (JDL-10000N, Yangzhou Tianfa test Machinery Co., Ltd., Yangzhou, China). The
tensile strength of the RCMs was calculated based on the following Equation (1) [46]:

σb =
P

A0
=

P
bd

(1)

where σb represents the tensile strength, P represents the maximum tensile load, A represents
the cross sectional area of the sample, b represents the width and d represents thickness.

The elongation at the break of RCMs was calculated based on the following
Equation (2) [46]:

δ =
∆Lb
L0

(2)

where δ represents the elongation at the break, ∆Lb represents the increase in length at the
breaking point and L0 represents the original length.

2.5. HPLC Analysis

All analysis were performed on an Agilent Series 1260 (Agilent Technologies, La Jolla,
CA, USA) system, equipped with an autosampler, a quaternary pump, a diode-array
detector and a column compartment, controlled by Agilent1260 LC software. Separation
was achieved on a ZORBAX SB-C18 analytical column (4.6 × 250 mm, 5 µm, USA) [47].
The mobile phase was 0.05% H3PO4 aqueous solution and acetonitrile, and the ratio was
95:5. The detection wavelength was 213 nm, the mobile phase flow rate was 1 mL/min and
the injected sample volume was 10 µL. The temperature remained at 25 ◦C.
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2.6. Static Adsorption
2.6.1. Standard Curve of Dencichine

The content of examined dencichine was determined by HPLC. Dencichine solution
with concentration of 0, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16 mg/mL was prepared. The
contents of dencichine at different concentrations were analyzed by HPLC (Agilent
Technologies, La Jolla, CA, USA) at 213 nm. The standard curve is represented by the
following fitting Equation (3).

A = 4071.577C − 0.1569 (3)

where A represents the absorption peak area of dencichine solution at 213 nm, C repre-
sents the concentration of the different dencichine standards (mg/mL) and the correlation
coefficient (R2) for this equation was 0.9995.

2.6.2. Static Adsorption of Dencichine on RCMs and RPMs

The RPMs were accurately weighed (0.02 ± 0.0002 g) and placed into round 50 mL
conical flasks. After adding 20 mL of dencichine solution, it was adsorbed for 5 h in
an 80 rpm air constant temperature oscillator at 25 ◦C. The content of dencichine after
adsorption was determined by HPLC. The adsorption amount of the RPMs on dencichine
was calculated based on the following Equation (4) [17].

Qe =
(C0 −Ce)×V

W
(4)

Here, Qe represents the amount adsorbed (mg/g), Ce represents the equilibrium solu-
tion concentration (mg/mL), C0 represents the initial concentration (mg/mL), V represents
adsorbed solution volume (mL) and W represents the mass of the RPMs (g).

Similarly, the RCMs were accurately weighed (0.15 ± 0.0001 g) and placed into round
50 mL conical flasks. After adding 20 mL of dencichine solution, it was adsorbed for 5 h
in an 80 rpm air constant temperature oscillator at 25 ◦C. The content of dencichine after
adsorption was determined by HPLC. The dencichine adsorption amount of the RCMs was
calculated based on Equation (4).

2.6.3. Adsorption of Dencichine on Different Mass RCMs and RPMs

The RPMs (10, 15, 20, 25, 30, 35, 40 mg) were weighed with an analytical balance and
placed into round 50 mL conical flasks. After adding 20 mL of dencichine solution, it was
adsorbed for 5 h in an 80 rpm air constant temperature oscillator at 25 ◦C. The RCMs (75, 100,
125, 150, 175 mg) were weighed with an analytical balance. After adding 20 mL of dencichine
solution, it was adsorbed for 5 h in an 80 rpm air constant temperature oscillator at 25 ◦C. The
content of dencichine after adsorption was determined by HPLC. The dencichine adsorption
amount of RCMs and RPMs was calculated based on Equation (4).

2.6.4. Adsorption Kinetics of Dencichine on RCMs and RPMs

The adsorption process of dencichine was studied with the optimal experimental
mass. The RCMs and RPMs were used to adsorb dencichine (0.1 mg/mL) in an 80 rpm
air constant temperature oscillator at 25 ◦C. Samples of 0.5 mL were absorbed with 1 mL
syringe at 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 20, 25, 30, 45, 60, 75, 90, 105, 120, 135, 150,
180, 240, 300 min, respectively, and the content of dencichine was determined by HPLC.
Subsequently, the adsorption kinetic curve according to the relationship between time and
adsorption amount was plotted.

2.6.5. Adsorption Isotherm and Thermodynamics of Dencichine on the RCMs and RPMs

To evaluate the adsorption isotherm of dencichine on RCMs and RPMs, the adsorption
was carried out by the addition of 150 mg RCMs or 20mg RPMs into 20 mL of dencichine
solution with different concentrations (0.08, 0.10, 0.12, 0.14, 0.16, 0.18 mg/mL). The adsorp-
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tion equilibrium time was determined by adsorption kinetics experiments. Following the
experiment, the adsorption content of RCMs for dencichine in each sample was measured.

To evaluate the thermodynamics of dencichine on the RCMs and RPMs, a series of
adsorption tests were carried out, including different temperatures 15, 25, 35, 45 and 55 ◦C.

2.6.6. Adsorption of Dencichine on the RCMs and RPMs at Different PH

To evaluate the influence of PH on the adsorption performance of dencichine on RCMs
and RPMs, a series of adsorption tests were carried out at different pH values (1, 3, 5, 6, 7, 8,
9, 11). The adsorption tests were carried out at 25 ◦C, 80 rpm with 0.1 mg/mL of dencichine.

2.7. Selective Adsorption on the RCMs and RPMs

To evaluate the selective adsorption on the RCMs and RPMs, the adsorption tests
were carried out at different solutions (0.10 mg/mL dencichine, 0.10 mg/mL glycine-DL-
leucine (GL), 0.10 mg/mL glycyl-L-phenylalanine (GP)). An aqueous GL solution with
concentration of 0, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16 mg/mL was prepared. The concentrations
of different solutions were measured at 200 nm (GL) using HPLC (Agilent Technologies,
La Jolla, CA, USA). The standard curve was represented by the following Equation (5).

A2 = 4251.53C2 − 0.4393 (5)

Here, A2 represents the absorption peak area of GL solution at 200 nm, C2 represents
the concentration of different GL standards (mg/mL) and the correlation coefficient (R2)
for this equation was 0.9999.

An aqueous GP solution with a concentration of 0, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16 mg/mL
was prepared. The concentrations of different solutions were measured at 210 nm (GP)
using HPLC (Agilent Technologies, La Jolla, CA, USA). The standard curve is represented
by the following Equation (6).

A3 = 7873.23C3 − 4.6747 (6)

Here, A3 represents the absorption peak area of GP solution at 210 nm, C3 represents
the concentration of different GP standards (mg/mL) and the correlation coefficient (R2)
for this equation was 0.9999.

3. Results and Discussion
3.1. Characterization of the RCMs and RPMs

SEM was used to study the surface morphology of RCMs and RPMs, and the results
are represented in Figure 2. As can be seen in Figure 2a,b, the RPMs are found to be
spherical or nearly spherical objects, and the surfaces of the microspheres had a porous,
large surface area. These pores are formed as a result of the diffusion of methanol from
the particle to the surface during the polymerization of the polymer. This interconnected
porous network provides accessibility and active sites for dencichine adsorption, thus
facilitating adsorption. In Figure 2b, it can be seen that the RCMs and the RPMs form
a three-dimensional network structure, and the polymers are encased in the membranes.
As can be seen from Figure 2c,d, the diameter of the composite membrane fiber prepared by
electrostatic spinning is at the nanometer level, with a range of 322.9± 73.49 nm. The RCMs
present random distributions and are very uniform with dense structure and interconnected
large pores. Therefore, electrospinning can provide a rigid frame for the RPMs, which is
conducive to the further recycling of the RPMs.
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The structure of the RCMs and RPMs was investigated by FT-IR spectroscopy, and the
results are represented in Figure 3. In Figure 3a, the RPMs display a stretching vibration
peak of -NH occurs at 3308 cm−1, a stretching vibration peak of -C=O occurs at 1653 cm−1, a
-C=C stretching vibration absorption peak is observed at 1521 cm−1 and a -COO- stretching
vibration absorption peak is observed at 2359 cm−1, indicating the successful preparation
of RPMs. In the RCM curve, the stretching vibration absorption peak of -C≡N is observed
at 2243 cm−1, indicating the presence of PAN. Compared with RPMs, the presence of PAN
leads to a blue shift in -C=O and a red shift in -C=C. In addition, the FT-IR spectra of the
RCMs and RPMs samples are similar, indicating the successful preparation of RCMs.

N2 adsorption–desorption experiments were carried out to study the pore volumes [48],
pore size distributions, average pore diameters and specific surface areas of the RPMs, and
the results are shown in Figure 3b. The pore volume and surface area of the RPMs are
2.756 × 10−3 cm3/g and 6.1776 ± 0.1204 m2/g, respectively. The RPMs have a high specific
surface area, which was favorable for the adsorption and extraction of analytes.

TGA curves were presented in Figure 3c, and they were used to describe the thermal
stability of the RCMs and RPMs. The RPMs start to decompose at 360 ◦C, the temperature
of the fastest decomposition rate occurs at 381 ◦C and the maximum decomposition tem-
perature (Tmax) is 462 ◦C. The decomposition process is divided into two stages, including
dehydration in the low temperature zone (100–360 ◦C) and decomposition in the high
temperature zone (381–462 ◦C). The initial decomposition temperature for the RCMs is
297 ◦C, the temperature of the fastest decomposition rate occurred at 306 ◦C, and the Tmax
is 333 ◦C. Decomposition occurs in two stages, including dehydration (100–297 ◦C) and
decomposition (297–333 ◦C). The second stage of decomposition is due to the breakdown of
the PAN in the RCMs. Compared with RCMs, the RPMs have different thermal degradation
behavior. The RPMs lost more mass in the high-temperature region from 360 to 500 ◦C. The
TGA results demonstrate that the RCMs and RPMs have excellent thermal stability.
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The mechanical properties stability of the membrane long-term stability is one of
the significant parameters. Figure 3e shows the stress–strain curves of the as-prepared
membranes measured by a dynamic mechanical analyzer. In Figure 3e, it can be seen that
the RCMs exhibited excellent mechanical stability with the tensile strength of 2.15 MPa,
along with the elongation at the break of 215.1%. The stress–strain curve results demonstrate
that the RCMs had excellent mechanical properties.
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3.2. Optimization Preparation Conditions of the RCMs

The results of the investigation into the preparation conditions of the RCMs are
represented in Figure 4. As can be seen in Figure 4a, the adsorption amount of dencichine
increases as the RPM concentration increases. When the RPM concentration exceeds 1 wt%,
the adsorption amount decreases with the increase in the RPM concentration. The sediment
volume is also increased, for a certain PAN concentration, when the polymer concentration
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increases. Thus, the optimal concentration of the RPMs is 1.0 wt%. In Figure 4b, it can
be seen that the adsorption amount of dencichine increases with the increase in the PAN
concentration. When the concentration exceeds 10 wt%, the adsorption amount decreases
with the increase in the PAN concentration. This may be because the spinning solution
with low PAN content has low adhesion, poor spinning effect and poor adsorption amount
of the dencichine. PAN content continues to increase, the spinning effect is excellent, and
the preparation of the RCMs has also increased the adsorption amount. However, as the
content of PAN continues to increase, the spinning solution surface tension increases, the
droplet formation of jet flow in the electric field tension is difficult, even blocking the
syringe needle which affects the spinning, and the preparation of the morphology of the
RCMs will become worse, reducing the adsorption amount. In Figure 4c, it can be seen
that the adsorption amount of dencichine increased as the voltage increased. When the
concentration exceeds 20 KV, the adsorption amount decreases with the increased voltage.
When the voltage concentration is increased, membranes thickness is also increased. With
the further increase in the electric field, the drop gradually stays in the electric field for
a shorter time and the radius of the RCM center circle decreases. This may be due to the
RPMs being wrapped in membranes, thus reduce reducing the adsorption amount.
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3.3. Adsorption of Dencichine on Different Mass RCMs and RPMs

The adsorption of dencichine (0.1 mg/mL) on different mass RCMs and RPMs is
represented in Figure 5. As can be seen in Figure 5a, the adsorption amount of dencichine
is increased by increasing the mass of the RPMs. When the mass exceeds 20 mg, the
adsorption amount decreases with the increase in the RPM mass. In Figure 5b, it can be
seen that the adsorption amount of dencichine increases with the increase in the RCM
mass. When the mass exceeds 150 mg, the adsorption amount decreases with the increase
in the RCM mass. Under the same concentration conditions, more adsorption sites are
provided to dencichine at a small increase, which raises the effective contact area and the
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amount of dencichine adsorption. With the increase in mass, the RCMs and RPMs had
inadequate adsorption of dencichine, and the adsorption amount decreased. In other words,
the adsorption of the sorption system stays correlated with the availability of adsorption
sites on the surface of the adsorbent and the concentration of the dencichine solution.
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3.4. Adsorption Kinetics of Dencichine on the RCMs and RPMs

The adsorption kinetics curves of dencichine on the RCMs and RPMs at initial concentra-
tions (0.1 mg/mL) are represented in Figure 6a. The adsorption of dencichine on the RCMs
and RPMs showed excellent characteristics of the adsorption kinetics, the adsorption capacity
increased with the increase in the adsorption time, and the adsorption rate decreased gradu-
ally with increasing adsorption time. As for the RPMs, the fast adsorption stage appeared
within the first 15 min, while the slow adsorption stage appeared at 15 to 60 min and the
adsorption equilibrium appeared after 150 min. As for the RCMs, the fast adsorption stage
appeared within the first 45 min, while the slow adsorption stage appeared at 45 to 90 min and
the adsorption equilibrium appeared after 240 min. Compared with RPMs, the RCMs have
different adsorption kinetics behavior. This is because dencichine molecules are adsorbed on
the 4-VP surface of the RPMs and RCMs during the initial stages. Then, over time, it becomes
increasingly difficult for the dencichine to enter the RCMs.
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To determine the mass transfer mechanisms and rate controlling, adsorption kinetics
of dencichine onto the RCMs and RPMs are evaluated using fitting pseudo-second-order
(PSO) and pseudo-first-order (PFO) models [49–53].

PFO adsorption kinetics models:

ln(Qe −Qt) = lnQe −
K1

2.303
t (7)

PSO adsorption kinetics models:

t
Qt

=
1

K2Q2
e
+

1
Qe

t (8)

where Qe represents the adsorbed amount at equilibrium (mg/g), Qt represents the amounts
adsorbed at time t (mg/g), K1 represents the PFO adsorption kinetics models rate constant
(min−1) and K2 represents the PSO adsorption kinetics models rate constant (g/(mg min)).

The corresponding kinetic parameters calculated by Origin are shown in Table 1. The
PFO kinetic model is based on the assumption that adsorption controls diffusion and the PSO
kinetic model assumes that the adsorption rate is controlled by the chemisorption process.

Table 1. Kinetic data of PFO kinetic model and PSO kinetic model.

Samples PFO Kinetic PSO Kinetic
K1 (min−1) R2 K2 (g mg−1 min−1) R2

RCMs 0.0678 0.8235 0.3662 0.9992
RPMs 0.0758 0.9082 0.0603 0.9999

Figure 6b shows the relationship between ln (Qe − Qt) and time (t), and Figure 6c
shows the relationship between t/Qt and time t. It can be seen from the kinetics parameters
of both adsorbents presented that the coefficient of determination of PFO kinetics R2 (the
RPMs) and R2 (the RCMs) are 0.9082 and 0.8235, respectively, and that of PSO kinetics R2

(the RPMs) and R2 (the RCMs) are 0.9999 and 0.9992. The results indicate that the PSO
kinetics model fits well with experimental data, and the R2 values of the PSO kinetics
model are higher than that of the PFO kinetics model. This phenomenon also indicates that
chemisorption is a dominant role in the adsorption process.

3.5. Adsorption Isotherm and Thermodynamics of Dencichine on the RCMs and RPMs

The adsorption isotherms of dencichine on the RCMs and RPMs at (298 K) with
dencichine concentrations of 80, 100, 120, 140, 160 and 180 µg/mL are shown in Figure 7a.
As can be seen in Figure 7, the adsorption process of dencichine on RCMs and RPMs was
obviously affected by the initial concentration. The dencichine adsorption amount for
RCMs and RPMs increased with increasing dencichine concentration.
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In order to analyze the adsorption mechanism, fitting Langmuir Freundlich isotherm
models to the experimental data (Figure 7b,c) is helpful and allows further understanding
of the adsorption mechanism. The equations of these two models are as follows [54–56].

Langmuir isotherm equation:

1
Qe

=
1

Qm
+

1
K3Qm

× 1
Ce

(9)

Freundlich isotherm equation:

lnQe = lnk4 +
1
n

lnCe (10)

where Ce represents the concentration of dencichine at equilibrium (mg/mL), Qe represents
the dencichine adsorption amount for the RCMs and RPMs at equilibrium (mg/g), 1/n is
the dimensionless Freundlich constant, Qm represents the saturation adsorption capacities
of monolayer coverage (mg/g), K3 represents the Langmuir constant (mL/mg) and K4
represent the Freundlich constant (mg/mL).

The Freundlich and Langmuir isotherms for the adsorption of dencichine on the RCMs
and RPMs are represented in Figure 7b,c, and the fitting data is shown in Table 2. From
the adsorption isotherms data, it is observed that the correlation coefficient (R2) for the
adsorption of dencichine on the RPMs adsorption has a higher value for the Freundlich
equation (0.9976) than the Langmuir (0.9968), indicating that the Freundlich model is more
suitable for the adsorption process of dencichine on RPMs. Overall, 0 < 1/n < 1 indicates
that the adsorption process easily occurs and has excellent adsorption capacity, 1/n (0.7988)
in the Freundlich equation can be seen as a reflection of the easy adsorption behavior. The
Langmuir model (0.9570) fits the adsorption data less than the Freundlich model (0.9842)
for the adsorption of dencichine on the RCMs. In total, 1/n (2.062) in the Freundlich
equation can be seen as a reflection of the adsorption behavior. These results indicated that
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the adsorption of dencichine on the RCMs was multilayer adsorption. According to the
prediction of the Langmuir isothermal model, the maximum adsorption capacity of RPMs
for dencichine at 25 ◦C is 85.11 mg/g. These results further proved the application prospect
of RCMs in the separation of dencichine.

Table 2. Parameters of Langmuir adsorption model and Freundlich adsorption model.

Samples
Langmuir Isotherm Freundlich Isotherm

K3
(mL·mg−1) R2 Qm

(mg·g−1)
K4

(mL·mg−1) R2 1/n

RCMs −4.990 0.9570 0.6864 84.19 0.9842 2.062
RPMs 2.511 0.9968 85.11 106.8 0.9976 0.7988

To understand the effect of temperature on the adsorption amount of dencichine on the
RCMs and RPMs, the results are discussed for the different temperatures, and the results
are represented in Figure 8. As shown in this figure, the adsorption process of dencichine
on the RCMs and RPMs is affected by temperature. At low temperatures, the dencichine
adsorption capacities for the RCMs and RPMs increased with increasing temperature. The
contact probability of the RCMs of dencichine increases with the increase in temperature.
The RCMs and RPMs have temperature sensitivity because of the hydrogen bonding
interaction with the dencichine molecules, and the hydrogen bond is destroyed gradually
with the increase in temperature. With the increase in temperature, the adsorption capacity
of the RCMs decreased, indicating that high temperature is not conducive to the progress
of the adsorption process. This phenomenon proves that chemisorption is dominant in the
adsorption process.
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3.6. Adsorption of Dencichine on the RCMs and RPMs at Different PH Levels

To understand the effect of PH on the adsorption amount of dencichine on the RCMs
and RPMs, the results were discussed for the different PH levels, and the results are shown
in Figure 9. The adsorption of dencichine on the RCMs and RPMs at the different PH levels
of 1, 3, 5, 6, 7, 8, 9 and 11 are shown in Figure 9a.
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As shown in this Figure 9a, the maximum dencichine adsorption amount of the RPMs
is reached when the pH is 6, and the RCMs are reached when the pH is 7. The results
are due to the fact that dencichine is acidic and 4-ethylpyridine is basic, and proves that
a weakly acidic or neutral condition could favor the adsorption process. The zeta potentials
of the RCMs and RPMs at various pH levels were measured, and the results are presented
in Figure 9b. The points of zero charges are at the pH values: 1.7 for RCMs and 8.0 for
RPMs, the zeta potential of the RCMs and RPMs decreased as PH increased, and RCMs
have more surface negative charge than RPMs. The results indicate that the amino group
in PAN reduces the surface charge. Therefore, the adsorption of dencichine by RCMs
may be affected by electrostatic interactions. These results further prove that RCMs have
exceptional promise for the separation and enrichment of dencichine.

3.7. Selective Adsorption on RCMs and RPMs

The selectivity study of RCMs and RPMs was evaluated by using dencichine, two ana-
logues including GL and GP, compared with the adsorption of dencichine in a single
solution and the mixed solution (Table 3). Table 3 illustrated the data obtained from the
selectivity experiment for both RCMs and RPMs, concerning the adsorption quantity.

Table 3. Preferential adsorption of dencichine on RCMs and RPMs.

Material The Single Adsorption (mg/g) The Compound Adsorption (mg/g)

Dencichine GL GP Dencichine GL GP

RPMs 15.57 1.148 0.5734 13.79 1.261 0.3456
PCMs 1.056 0.0260 0.1841 0.8625 0.2930 0.4494

In the single solution of three substances, the adsorption amount for dencichine on the
RPMs and RCMs is 15.57 mg/g and 1.056 mg/g, respectively. The adsorption amount is
better than those for the two analogues. Similarly, in the mixed solution of three substances,
the adsorption amount for dencichine on the RPMs and RCMs was 13.79 mg/g and
0.8625 mg/g, respectively, which is significantly higher than those for the two analogues.
This phenomenon illustrates a high discrimination property of RCMs and RPMs between
dencichine and analogues. These results further proved the application prospect of RCMs
in the separation of dencichine.

4. Conclusions

In the present work, RPMs were synthesized using 4-VP as a functional monomer
and EGMRA as a crosslinker and RCMs were further prepared by electrospinning. Their
physicochemical properties and chemical structures were analyzed and characterized. It
was observed that RCMs have a negative charge on the surface and have an excellent
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adsorption effect on dencichine in an aqueous solution and the RCMs showed excellent
mechanical and thermodynamic properties. The support of the adsorption isotherm model
for Langmuir-Freundlich indicated that the adsorption of dencichine and its analogues by
RCMs was multilayers adsorption, and the kinetic adsorption suggested that chemisorption
was the main adsorption mechanism. In the meantime, the RCMs showed excellent water
solubility and were highly discriminating against dencichine and its analogues, and were
conducive to the extraction and purification of a water-soluble bioactive component from
natural products. This synthetic method is green, efficient, eco-friendly and cost effective.
Therefore, our study provides a novel, efficient and green polymer for the concentration
and the purification of dencichine and will open up a new avenue for the purification
of dencichine.
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