
polymers

Review

Chelators for Treatment of Iron and Copper Overload: Shift
from Low-Molecular-Weight Compounds to Polymers

Martin Hruby 1,*, Irma Ivette Santana Martínez 2, Holger Stephan 2 , Pavla Pouckova 3, Jiri Benes 3

and Petr Stepanek 1

����������
�������

Citation: Hruby, M.; Martínez, I.I.S.;

Stephan, H.; Pouckova, P.; Benes, J.;

Stepanek, P. Chelators for Treatment

of Iron and Copper Overload: Shift

from Low-Molecular-Weight

Compounds to Polymers. Polymers

2021, 13, 3969. https://doi.org/

10.3390/polym13223969

Academic Editor: Donatella Duraccio

Received: 12 October 2021

Accepted: 15 November 2021

Published: 17 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2,
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Abstract: Iron and copper are essential micronutrients needed for the proper function of every cell.
However, in excessive amounts, these elements are toxic, as they may cause oxidative stress, resulting
in damage to the liver and other organs. This may happen due to poisoning, as a side effect of
thalassemia infusion therapy or due to hereditary diseases hemochromatosis or Wilson’s disease. The
current golden standard of therapy of iron and copper overload is the use of low-molecular-weight
chelators of these elements. However, these agents suffer from severe side effects, are often expensive
and possess unfavorable pharmacokinetics, thus limiting the usability of such therapy. The emerging
concepts are polymer-supported iron- and copper-chelating therapeutics, either for parenteral or
oral use, which shows vivid potential to keep the therapeutic efficacy of low-molecular-weight
agents, while avoiding their drawbacks, especially their side effects. Critical evaluation of this new
perspective polymer approach is the purpose of this review article.

Keywords: iron; copper; polymer; chelator; Wilson’s disease; hemochromatosis

1. Introduction

The essential elements iron and copper are needed for the proper function of redox
processes in every organism, and their metabolism is strictly regulated [1–4]. Deficiencies of
iron and copper are common and are reviewed elsewhere [5,6]. However, the excess of iron
and copper is dangerous, as these elements as free ions catalyze the formation of reactive
oxygen species (ROS), which may damage the organism in an even fatal way if untreated.
The main organ damaged is always the liver, as it is the key storage organ for both iron
and copper, but also more specific organ damages (e.g., of neural system for copper or
of gonads for iron) occur (for a more detailed discussion, see Sections 3 and 4). The
current state of the art iron and copper overload therapies mostly rely on low-molecular-
weight chelators. As these low-molecular-weight metal chelators possess strong side
effects (e.g., ophthalmic and auditory toxicity; pulmonary, renal and neurological effects for
deferoxamine or gastrointestinal problems; leucopenia and liver problems for penicillamine;
for a more detailed discussion, see Sections 3 and 4), new treatment paradigms are to be
discovered, for which polymers hold great promise. The purpose of this review article is
to critically compare the advantages and disadvantages of currently developed polymer-
based treatment approaches for iron and copper overload with a special focus on the
correlation structure–properties–function–observed advantages/disadvantages and to
propose new ways ahead.
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2. Coordination Chemistry of Iron and Copper

The design of iron- and copper-chelating agents was initially based on relatively simple
structures of complexing agents [7–10]. Essentially, principles of classical coordination
chemistry, which goes back to Alfred Werner, have been used for this purpose [11]. This
has led to a series of small chelating ligands for sequestering iron and copper ions, which,
with a better understanding of the coordination and pharmacokinetic properties, as well as
improvement of the art of synthesis, have led to metal–ligand complexes that have both a
matched thermodynamic stability and a desired kinetic inertness. In the following, classical
complexing agents, as well as new structures, for the stable and selective binding of iron
and copper ions are shown and briefly discussed.

Iron and copper are transition metals of the fourth period. With regard to the coordi-
nation behavior, there are clear differences for these two elements, mainly coming from
different preferred coordination geometry, size, charge and polarizability of their ions (see
below). This is due in particular to the different electronic and redox properties of these ions.
Iron ions occur in biological systems mainly in the oxidation states 2+ (d6 configuration)
and 3+ (d5), which are stabilized by different ligands according to Pearson’s hard and
soft (Lewis) acids and bases (HSAB) concept [12]. This concept deems species that are
small, highly charged and weakly polarizable as “hard” and species that are large, lowly
charged and highly polarizable as “soft”. “Hard” Lewis acids prefer “hard” Lewis bases
and vice versa. While the hard Lewis acid Fe(III) forms coordination compounds preferably
with hard Lewis bases, such as oxygen-containing ligands (hydroxide, phenolate and
carboxylate), Fe(II) tends to prefer nitrogen ligands, such as amines and imidazole, due
to lower charge density. Under aerobic conditions, mainly Fe(III) is found in biological
systems. The coordination chemistry of iron is dominated by hexacoordinate complexes
with an octahedral coordination geometry. This can be achieved by complexation with
six mono-, three bi-, two tri- or one hexadentate, or by the combination of ligands with
different denticities (Figure 1).
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Multidentate ligands are favored due to a higher stability, which is achieved by a
chelating effect [13]. The search for ideal chelating agents for the treatment of systemic
iron overload has been the subject of intensive research for years [14–16]. With a radius
of 0.65 Å, Fe(III) is a small cation. To achieve saturation of the coordination sphere, small
sterically undemanding ligands are required. These include, in particular, bidentate ligands,
such as catechols, hydroxamates, 8-hydoxyquinolines (8HQ) and hydroxypyridinones
(HOPO). Due to their high flexibility, multidentate aminocarboxylates, such as EDTA, are
also suitable for the formation of hexacoordinate complexes with Fe(III) (Figure 2). The
hexadentate iron chelator Deferoxamine DFO (vide infra), consisting of four hydroxamate
groups, also forms hexacoordinate Fe(III) complexes.
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With regard to their use in chelation therapy for iron, derivatives of 8-hydoxyquinoline
and hydroxypyridinone should be discussed in particular. For instance, 8HQ forms very
stable 3:1 complexes with Fe(III) (log K1 = 13.7, log β3 = 37) [17]. Due to the redox labil-
ity of these complexes, in vivo use is not harmless [18]. Clioquinol, PBT2, HLA20, M30
and VK-28 have been the subject of clinical trials for the treatment of neurogenerative
diseases where sequestering of Fe(III) is required [19–22]. However, due to a rather low
chelation selectivity of these 8-hydroxyquinoline derivatives (clioquinol, PBT2, HLA20,
M30 and VK-28) for iron(III) ions, these derivatives may exhibit in vivo toxicity. This is
because they may chelate, e.g., copper(II) or zinc(II) along with iron(III), causing deple-
tion of these essential micronutrients and further leading to inhibition of metalloenzymes
dependent on them [23]. HOPO ligands also bind Fe(III) very strongly. Of the three po-
sitional isomers, 3-hydoxypyridin-4-one forms Fe(III) complexes of the highest stability
(log K1 = 14.2, log β3 = 37.2) [24]. This structural element can be incorporated into a wide
range of ligand structures of different denticities [25]. The overall favorable complexation
properties of the bidentate 3-hydoxypyridin-4-one ligand have led to the development
of Deferiprone (1,2-dimethyl-3-hydroxypyridin-4-one) for clinical use in iron detoxifica-
tion [14]. Deferasirox is an iron chelating agent based on 1,2,4-triazol with three appending
aromatic rings that forms a 2:1 complex with Fe(III) having a distorted octahedral struc-
ture. The Fe(III) complex of deferasirox has very high stability and is hydrophobic in
character, enabling to chelate iron from hepatocellular stores [26,27]. The DFO forms a
hexacoordinate complex with Fe(III) with distorted octahedral geometry [28]. In terms of
thermodynamic stability and kinetic inertness, DFO embodies ideal properties for clinical
use as a Fe(III) chelator.

Due to its electron configuration, copper can assume the oxidation states 1+ to 4+, but
the oxidation numbers 1+ and 2+ dominate in stable copper complex compounds. The
d10 configured Cu(I) forms diamagnetic complex compounds, whereby the tetrahedral
geometry is favored. Cu(I) prefers ligands based on soft Lewis bases with donor groups
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such as isocyanides, sulfur in thioethers (methionine), phosphorus in phosphanes or also
thiolates (cysteine). The rather low stability of many Cu(I) complexes under physiological
conditions largely precludes in vivo applications [29].

The Cu(II) can be classified as a “borderline” (something between “hard” and “soft”
Lewis acid) element according to Pearson’s HSAB concept. The Cu(II) complexes have
coordination numbers four, five and six and usually favor nitrogen-containing ligands
such as amines, but especially heteroaromatics such as pyridine, pyridazine and imidazole.
The d9 configuration in the paramagnetic Cu(II) complexes is often characterized by
a tetragonal distortion of the coordination geometry due to the Jahn-Teller effect [30].
Consequently, an octahedral geometry results in an elongation of axial ligands, which in
extreme cases leads to the loss of ligands along the z-axis and thus to a square-planar or
square-pyramidal structure of the corresponding Cu(II) complexes. Overall, the copper(II)
coordination chemistry shows a high diversity and includes tetracoordinate square-planar,
pentacoordinate square-pyramidal and trigonal-bipyramidal, as well as hexacoordinate
octahedral and trigonal-prismatic, complexes (Figure 3).
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A large variety of amine-based polydentate chelating agents have been investigated,
such as polyaminocarboxylates (ethylenediaminetetraacetic acid (EDTA) and diethylene-
triaminepentaacetic acid (DTPA)) [31,32]; cyclic polyamines (azamacrocycles TACN, cy-
clen and cyclam) [33–35]; cyclic polyaminocarboxylates (1,4,7-triazacyclononane-1,4,7-
triacetic acid (NOTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and
1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA)) [36–38]; and cage com-
pounds, such as Sargeson’s sarcophagine systems (sar-type) [39,40]. Due to the high
complementarity of the electronic properties of Cu(II) with the pyridyl group, pyri-
dine compounds play a prominent role in the development of Cu(II) complexes of high
stability and selectivity [41]. These include both open-chain and macrocyclic pyridine-
containing polyamines (N,N′,N′ ′-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane—
tachpyr, 2-[4,7-bis(2-pyridylmethyl)-1,4,7-triazacyclononan-1-yl]acetic acid—DMPTACN-
COOH) [34,42–44]. The ligand developments have been significantly advanced with a
view to use in radiopharmacy [45–47]. Copper complexes of very high kinetic inertness
are required here, and complex formation may require harsh conditions. This applies, for
example, to crossbridged macrocyclic compounds such as tetraazabicyclo[6.6.2]hexadecane-
4,11-diacetic acid—CB-TE2A [48,49]. For use in chelation therapy, however, there are other
requirements. Here, stable and selective complex formation of the metal ion under physio-
logical conditions is important and must take place very quickly. The complex formed must
then be excreted from the body. This means that open-chain compounds, in particular, are
in demand. There are a number of new developments in this field. This concerns, in partic-
ular, open-chain ligands that are very rigid, optimally pre-organized and complementary to
Cu(II). These include pyridine-containing bispidine (3,7-diazabicyclo[3.3.1]nonane) ligands
that form highly stable Cu(II) hexacoordinate complexes of distorted octahedral geometry
under mild conditions with high complex formation kinetics [50–53]. The metal ion selec-
tivity can be varied by variation of the donor groups [54]. Very recently, the ligand H2pyhox
based on an ethylenediamine backbone and containing pyridine and 8-hydroxyquinoline
groups was developed [55]. This ligand has high rigidity and optimal pre-organization
for Cu(II) and forms a hexacoordinate complex of very high thermodynamic stability (log
KCu-L = 26.63) under physiological conditions, which also exhibits high kinetic inertness
in vivo.

A variety of ligands have been optimized for complexation of Cu(II); in particular,
triethylenetetramine (trien), tetrathiomolybdate ([MoS4]2−]) and penicillamine have been
used for copper chelation therapy [9,23]. Trien forms 1:1 complex with Cu(II), which
shows high thermodynamic stability (log KCu-L = 20.3). The complex has an octahedral
coordination geometry, whereby the four nitrogen atoms of the ligand are arranged in an
equatorial plane and the remaining two positions are occupied by anions or water [56,57].
Tetrathiomolybdate and penicillamine form polynuclear cluster structures with copper
ions [58,59].

The chelator types are summarized in Table 1 for both iron and copper. In general,
complexing agents for chelation therapy must possess even optimal complexing prop-
erties, favorable pharmacokinetics and biodistribution behavior, as well as a reasonable
elimination rate from the body.
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Table 1. Summary of most relevant iron and copper chelator types.

Important Iron Chelator Types

Chemistry Donor Atoms Examples References

Hydroxamate type N,O DFO [28]
Hydroxypyridone type O,O Diferiprone, DIBI, 3,4-HOPO [14,24,25]
8-Hydroxyquinoline type N,O Clioquinol, PBT2, HLA20, M30, VK-28 [18–23]
1,2,4-Triazol type N,O Deferasirox [26,27]

Important Copper Chelator Types

Chemistry Donor Atoms Examples References

Open-chain polyamines N Trien [9,23,56,57]
Open-chain polyaminocarboxylates N,O EDTA, DTPA [31,32]
Azamacrocycles N TACN, cyclen, cyclam [33–35]
Macrocyclic polyaminocarboxylates N,O DOTA, NOTA, TETA [36–38]
Caged azamacrocyclic systems N CB-TE2A, Sarcophagine [39,40,48,49]
Pyridine ligands N tachpyr, dipicolylamine, DMPTACNCOOH, bispydine [41–47,50–54]
8-Hydroxyquinoline type N,O H2Pyhox [55]
Thiol-amine type S,N D-penicillamine [58,59]
Tetrathiomolybdate S Tetrathiomolybdate [9,23,58,59]

3. Iron Uptake and Metabolism, Diseases Connected with Iron Overload and Current
Treatment Strategies

Iron is an essential element needed for many redox processes of the cell. Most iron in
the diet is in the form of iron(III), weakly or more strongly bound to organic ligands present
in the biological matrix [60]. During digestion, iron(III) is released, and because it is practi-
cally not absorbable, it must be reduced by intestinal oxidoreductase to iron(II) [61]. Iron(II)
is then uptaken into intestinal mucosa cells by divalent metal transporter 1 (DMT1) [61].
Meat contains mainly heme-bound iron, which is the most bioavailable form of iron in
the diet [60]. Heme-bound iron uptake is different; after digestion of protein part of the
hemoproteins, heme is uptaken into intestinal mucosa cells by a dedicated heme trans-
porter mechanism, and then iron is decomplexed intracellularly by oxidation with heme
oxygenase [62,63].

Compounds in food that themselves reduce iron(III) to iron(II) (e.g., ascorbate or
lactate) promote iron absorption [64,65], while compounds complexing iron (e.g., phytin
or tannins; see below) [60] decrease its bioavailability. Dietary beta carotene significantly
increases the bioavailability of iron [66,67] by means of a not yet fully understood process.

Hemochromatosis is a group of hereditary recessive genetic disorders characterized
by the toxic accumulation of iron in parenchymal organs with normal iron-driven ery-
thropoiesis. It can be caused by mutations in any gene that limits iron entry into the
blood, resulting in unregulated excessive iron uptake into the body [68]. Five major
categories of hereditary hemochromatosis have been described according to different
types of mutations [69,70]: (i) high Fe-related hemochromatosis (type 1, variation in HFE
gene, which is responsible for regulation of the intestinal uptake and biodistribution of
iron) [71], (ii) juvenile hemochromatosis (type 2A and 2B) [72], (iii) transferrin receptor 2
hemochromatosis (type 3) [69], (iv) ferroportin disease (type 4A and 4B) [73] and (v) aceru-
loplasminemia/hypoceruloplasminemia [74]. Worldwide prevalence of the most common
type 1 is 1:200–400 (depending on the population studied), and clinical presentation usually
occurs in middle age [74,75]. Progressive accumulation of iron occurs in the liver and
in many other tissues, including the pancreas, skin, heart, joints and the gonadotrophin-
secreting cells of the pituitary. When reaching toxic iron levels, i.e., after depletion of
protective mechanisms, these organs become oxidatively damaged by reactive oxygen
species produced by the Fenton reaction catalyzed by iron. This leads to hepatic fibrosis,
diabetes mellitus, arthropathy, pigmentation, cardiomyopathy and hypogonadotropic hy-
pogonadism [70,74]. Serum ferritin levels and transferrin saturation are typically raised in
presence of the disease [70,71]. The two most common complications of the disease that
can affect prognosis and survival are cirrhosis and hepatocellular carcinoma [71,76].
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Homeostatic balance requires only 1–3 mg of absorbed iron per day to replenish
losses from desquamated cells. Higher iron losses may occur physiologically (due to
menstrual bleeding or higher consumption during pregnancy of women) or generally due
to any injury or pathological bleeding. It is very important that there are no regulated
means of iron excretion, and therefore dietary iron absorption (primarily from duodenal
enterocytes) is to be highly regulated [60]. Reticuloendothelial cells serve as the major
hepcidin-regulated iron repository. They obtain most of their iron from the phagocytosis of
senescent erythrocytes. At equilibrium, these cells release about 25 mg of iron each day.
Similar to reticuloendothelial cells, hepatocytes have the importance of iron storage in the
form of ferritin. Most importantly, they have a central role in iron homeostasis as the site
of production of the hormone hepcidin. Hepcidin production is regulated by iron status,
erythropoietic activity, oxygen tension and inflammation [3,6,74,77].

The first-line therapy of hemochromatosis treatment is phlebotomy [70,76]. This
approach involves the removal of 450–500 mL of blood once in two weeks to twice a
week until ferritin reduction to required serum levels is reached. Although phlebotomy is
usually well tolerated by patients, this procedure is painful, uncomfortable and disruptive
to their daily routine, and some patients have poor venous access. Moreover, some side
effects are often experienced after phlebotomy as a result of decreasing overall blood
volume, namely tiredness [70,76]. An option to phlebotomy (in case of intolerance or
contraindication) is therapy with iron chelators [70,73,76]. The traditional chelator is
deferoxamine (see Figure 2 for structure), but it is poorly absorbed from the gastrointestinal
tract, so therefore it must be administered intravenously or subcutaneously and has also
short serum half-life requiring frequent applications. Moreover, some side effects have
been noticed, including hypotension, limiting the rate of administration, ophthalmic and
auditory toxicity; bacterial and fungal infections; changes in blood histology; allergic and
skin reactions, especially at the site of application; and pulmonary, renal and neurological
effects. Another problem with deferoxamine treatment is that it is rather expensive. Orally
administrable low-molecular-weight iron chelators, such as deferiprone (Ferriprox®) and
deferasirox (Exjade®) (see Figure 2 for structures), are efficient, but they also have severe
side effects, such as agranulocytosis, hepatic fibrosis and renal toxicity, because they are
absorbed from the gastrointestinal tract [70,73,76]. Low-iron diets have been discussed [60];
nevertheless, the important issue is avoidance of alcohol to protect oxidatively damaged
liver and maintaining a broadly healthy diet.

Another case where overload occurs is as a result of transfusion therapy of thalassemia.
Alfa and beta thalassemias are recessive hereditary genetic disorders associated with
decreased levels of hemoglobin production leading to malfunctioning red blood cells,
which do not efficiently transfer oxygen [78,79]. Thalassemias differ in severity depending
on which of the hemoglobin-coding genes is the damage and how many mistakes are
there. Thalassemias generally lead to anemia. Clinical manifestation varies greatly from
none through mild and severe to fatal if untreated. The primary cure is regular blood
transfusions, plus folate to support hemopoiesis [78,79]. However, functional blood of
healthy donators used for transfusion also contains a lot of iron in its hemoglobin causing
severe iron overload after regular transfusions. Thalassemia treatment, therefore, combines
infusions to replenish functional blood as primary cure together with iron chelation therapy
with the same chelators as in the case of hemochromatosis (deferoxamine, deferiprone
and deferasirox) to suppress iron overload and shift the iron balance to normal, i.e., to
suppress side effect of the primary therapy [80]. Due to obvious reasons, phlebotomy is not
indicated. The simplified overview of iron metabolism, iron flow in the organism, showing
points where the overload occurs due to hemochromatosis and thalassemia, and where
the effect of both low-molecular-weight and polymer-drug effect takes place is shown in
Figure 5.
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Figure 5. Simplified overview of iron metabolism and iron flow in organism shows where the overload occurs due to
hemochromatosis and thalassemia and where the effect of both low-molecular-weight and polymer-drug effect takes place.

4. Copper Metabolism, Diseases Connected with Its Overload and Current Treatment

Copper, another essential element, is released from the diet in acid stomach con-
tent and uptaken in the form of copper(II) by DMT1 and human copper transporter 1
(hCTR1) [81,82]. It is noteworthy that copper is secreted into the gastrointestinal tract, and
further reuptake represents even more copper than what is present in food [83]. The main
copper-storage organ in the body is the liver (Figure 6).
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Wilson’s disease is an autosomal recessive genetic disorder caused by mutation of gene
ATP7B on chromosome 13 with incidence regionally varying in the range of 1–4 cases per
100,000 (but the genetic prevalence is considerably higher, even 1:7000) [85–87]. Impaired
function of the corresponding protein leads to high accumulation of copper in the organism,
especially in the liver and central neural system, as the product of this gene is responsible
for copper elimination from the liver into bile, the main regulated physiological way of
excessive copper elimination from the organism. High concentrations of copper lead to
typical symptoms coming from toxic oxidative damage of the liver, neural system and other
organs [86]. The symptoms usually appear in teenagers as liver damage and neurological
disorders. Later Wilson’s disease leads to often fatal complications as liver failure, hepatic
encephalopathy and massive bleeding from esophageal varices which develop as a result
of portal hypertension [85]. Liver damage usually can be at least partly restored by therapy;
the progression of neurological damage can be significantly slowed down by therapy, but
existing damage is typically irreversible.

Current treatment is based on lowering copper concentration in the organism by
administration of copper-chelating agents [86,88,89] (penicillamine, triethylenetetramine–
trientine or tetrathiomolybdate salts; see Figure 4 for structures), which lead to decreased
uptake and increased elimination of copper into the urine. British anti-lewisite (dimer-
caprol) [90], the first agent of this type revolutionizing Wilson’s disease therapy in 1950-s,
is currently obsolete, although still stockpiled chemical warfare antidote. In addition, high
doses of zinc salts (even more than 1 g zinc equivalent daily, mostly as sulfate) are adminis-
trated as maintenance therapy, since they block copper uptake from the gastrointestinal
tract by competitive antagonism of zinc and copper on the DMT1 [81,91]. All of these
treatments, however, suffer from severe side effects [88,89], e.g., lupus and myasthenia for
penicillamine, which come from the general recomplexation of essential elements within
the body after uptake from the gastrointestinal tract. Severe gastrointestinal disorders and
gastrointestinal irritation are frequent for zinc therapy (in fact, the doses applied cause
weak zinc poisoning). The usual dietary income of copper is 0.6–1.6 mg per day, so a
low-copper diet is recommended as an adjuvant measure at the beginning of therapy.
Copper status is to be continuously monitored, as efficient therapy may lead to copper
deficiency, also dangerous. However, copper is contained in nearly all consumables, so a
copper-free diet is almost impossible [91,92]. Thus, the diet usually consists in avoiding
food with high copper content (e.g., liver, mushrooms or nuts) only.

Acute high uptake of iron and copper may lead to poisoning, described from the
mining industry and also for children who are susceptible, as they do not possess fully
developed detoxication mechanisms. Symptoms of iron poisoning usually include gas-
trointestinal disorders (nausea, vomiting and diarrhea), while for copper, also jaundice
and hypotension accompany gastrointestinal symptoms [23]. Therapy of acute poisoning
utilizes the same chelators as therapy of hereditary diseases associated with pathological
accumulation of these metals [23]. Namely, deferoxamine, deferiprone, deferasirox and
clioquinol are most commonly used for acute iron poisoning [14–16], and penicillamine is
used for acute copper poisoning [86,88,89].

5. Polymer Iron and Copper Chelators for Metal Overload Treatment

Polymers with bound chelators are a newer paradigm for the improvement of unfavor-
able pharmacokinetics and reduction of side effects of the currently used iron and copper
chelators. The specific benefits of polymers depend on the way of their administration and
can be roughly divided into (i) polymers to be applied parenterally and (ii) polymers to be
applied orally.

5.1. Polymers and Nanospecies with Bound Chelators to Be Applied Parenterally

Polymers and nanospecies with bound chelators to be applied parenterally are de-
signed to prolong the blood-circulation time of such chelators, which is especially the
problem of deferoxamine. Here, the molecular weight plays the crucial role as a thresh-
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old for renal elimination, lying in the range of 6 nm diameter (corresponding to a molar
mass, e.g., ca. 45 kDa for acrylamide-type polymers) [93,94]. Polymers and nanospecies
(e.g., micelles, liposomes, nanogels and inorganic nanoparticles) smaller than this size may
be readily eliminated by kidneys and usually possess fast elimination kinetics. Larger
polymers and nanoparticles show prolonged circulation. Linear polymers usually have
more diffuse renal threshold as molecules with diameter somewhat larger than the renal
threshold can diffuse through the glomerular membrane via a worm-like effect in their con-
formations with minor probability, however much slower than the smaller molecules [95].
The prerequisite for prolonged blood-circulation time is biocompatibility.

In this way, conjugation of deferoxamine to 140 kDa polymer with Rh 10.6 nm pro-
longed blood-circulation time of deferoxamine 768-fold to half-life (t1/2) 64 h in mice [96].
Conjugation of deferoxamine to hyperbranched polyglycerol increases blood-circulation
time 484-fold to t1/2 44 h [97]. Polymers and nanoparticles also typically decrease the
cytotoxicity of the chelators, e.g., conjugation to poly(ethylene glycol methacrylate)-based
copolymers with molecular weight 27–127 kDa decreased cytotoxicity of deferoxamine
more than 100-fold [98]. The reason for this effect is the limitation of biodistribution
of the chelator to enter the cells when comparing low-molecular-weight and polymer-
bound chelators.

Higher molecular weight and prolonged circulation, however, may lead to a redistri-
bution of iron within the body [99], rather than elimination from the organism, although,
even for non-degradable high-molecular-weight carriers, increased iron elimination was re-
ported, perhaps by induction of hepatobiliary route of elimination [97]. Body redistribution
was, for example, demonstrated on polyglycidol, where conjugation to high-molecular-
weight (637 kDa) polyglycidol leads to the redistribution of iron to, e.g., liver, while lower-
molecular-weight 75 kDa polyglycidol did not lead to significant organ redistribution [99].
Long polymer retention in the body is also raising the issue of polymer accumulation in the
body after repeated administration with subsequent long-term toxicity. This is especially
the problem of non-biodegradable polymer carriers, such as polyglycidol [99]. To solve
this, biodegradable polymer carriers were proposed, such as deferoxamine-conjugated
alginate cleavable by reactive oxygen species [100,101], or acid-cleavable ketal crosslinkers
were employed to the polymer carriers [96]. For alginate, however, its calcium-chelating
ability connected with gelation can be an issue. Analogously, deferoxamine was conjugated
to enzymatically activable polyrotaxane to promote polymer carrier degradation after it
fulfills its task [102,103]. Alternatively, enzymatically degradable hydroxyethylated starch
can be employed [104,105].

Binding to polymer generally decreases the rate of metal chelation and especially
trans-chelation from natural iron-containing proteins, such as ferritin, compared to free
chelator; however, the rate is usually sufficient even for polymers or combination with
low-molecular-weight chelator can be utilized [106]. This effect can be easily explained by
steric reasons (trans-chelation of iron from one macromolecule to another most plausibly
requires direct contact of chelating sites, as binding constants for iron are usually very
high for both native biomolecule and the polymer trans-chelator) and diffusion reasons
(this is especially the case of systems where the chelator is “buried” inside the polymer).
Consistently with this, trans-chelation rate is less dependent on whether the trans-chelator
is polymer-bound for low-molecular-weight iron-donor species. Nevertheless, polymer
chelators are efficient even in vitro on cells and in vivo on animal models [96–106].

Chelator loading in the conjugate varies greatly in the reported systems for deferoxam-
ine, e.g., in the range of 0.5% w/w [107] to 51% w/w [96]. The higher the chelator loading
is, the lower the dosage of the conjugate is and the lower the burden for elimination is;
however, higher chelator loadings may influence the biocompatibility and physicochemical
characteristics of the conjugates in an unfavorable way.

Polymer architecture plays a key role in the blood-circulation time, route and ways of
elimination of the carriers.
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Linear polymers, such as hydroxymethylated starch [104], starch [108],
poly(N-vinylpyrrolidone) [109] or poly(ethylene glycol methacrylate) [98], allow inter-
mediate loadings and can be, in some cases (polysaccharides), biodegradable. They allow
renal elimination even slightly above the renal threshold. If their molecular weight is
sufficiently below the renal threshold, as is the case of poly(ε-lysine)-conjugated deferox-
amine [110], elimination is easier; however, it also reduces blood-circulation time. If the
bound chelator is bidentate, e.g., 3-hydroxypyridin-4-one, 8-hydroxyquinoline-5-sulfonic
acid or hydroxamic acid, metal chelation may lead to ionic gelation and ionic crosslinking
of the polymers by the chelated metal ion. If the polymer backbone is chelating and bears
hydrophilic polymer biocompatible grafts, sterically stabilized defined nanoparticles may
be self-assembled by iron and copper addition in this way [111–114]. Branched and hyper-
branched polymers, such as dextran [104] and polyglycerol [97], are more compact and in
some cases longer circulating than the linear polymers.

Dendrimers are highly defined hierarchical structures, much more regular than struc-
turally somehow-related hyperbranched polymers, with the hydrodynamic radius usually
below the renal threshold and therefore with renal elimination as the primary way of
elimination. Iron-chelating dendrimers were synthesized [102,115] with deferoxamine
iron-chelating moieties. Nanogels are gel-structured nanoparticles and with appropriate
iron-chelating moieties [116–119]; however, due to their larger size, they must be biodegrad-
able to allow elimination. The use of rotaxanes, where cyclodextrin rings with conjugated
deferoxamine threaded on poly(ethylene oxide) axis end-capped with enzyme cleavable
stoppers, is a supramolecular approach to biodegradability [103].

Another strategy is not to use a covalently bound chelator, but to modify unfavorable
pharmacokinetics by sustained release of the free chelator. The advantage is that the elimi-
nation route of the chelate is essentially the same as if the chelator would be administrated
without carrier; however, the polymer carrier still has to be degradable and eliminable
from the organism. I.p. and s.c. applications of polymer devices releasing iron- chelating
drugs deferoxamine and salicylaldehyde isonicotinoyl hydrazone in the course of seven
days were described [120]. Encapsulation of deferoxamine into liposomes has a similar
effect [121].

The abovementioned cases are iron sequestrants. Polymer copper chelators have
been described not as excessive copper sequestrants, but as carriers of 64Cu, which is an
excellent theranostic radionuclide for nuclear medicine that is especially useful in oncologi-
cal positron emission tomography (PET) diagnostics and internal radiotherapy [122–125].
Here, the thermodynamically stable and kinetically inert complexes of radioactive copper
are applied parenterally in a complexing agent with a targeting feature to the tissue of
interest. Reviewing these polymer and nanoparticle 64Cu carriers for nuclear medicine is
beyond the scope of this review and can be found elsewhere [122–125]. Moreover, chem-
istry applied to their construction may undoubtedly bring inspiration to the development
of polymer therapeutics of copper overload.

5.2. Polymers with Bound Chelators to Be Applied Orally

The uptake–elimination balance of iron and copper can be shifted towards elimination
by inhibiting uptake from the diet by (polymer) sequestrants. Should such a sequestrant be
present in the gastrointestinal tract, it can irreversibly bind the metal after its release from
the diet during the digestion process and prevent its uptake into the organism. As polymer
cannot be uptaken from the gastrointestinal tract, it is eliminated with feces together with
the metal chelated to it.

This approach was first developed not for the treatment of metal overload, but for
sequestering bile acids to prohibit their recycling to in result reduce blood cholesterol levels
as bile acids are cholesterol metabolites [126,127]. Inorganic metal-chelating materials can
be also used in this way; for example, Prussian blue is stockpiled as 137Cs radionuclide
antidote sequestrant for the case of nuclear reactor accidents [128].
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Oral use of polymers brings much less safety issues than the parenteral one (see above)
as polymers are inherently non-absorbable from the diet unless they are degradable to low-
molecular-weight fragments. Therefore, if we assure non-biodegradability, the polymer
is automatically safe from the bioaccumulation point of view. However, there is also one
limitation compared to parenterally applied systems—such polymers can be used to treat
diseases where the metal input is from the diet (e.g., Wilson’s disease, hemochromatosis or
copper/iron acute oral poisoning), but they are inefficient to treat blood infusion-induced
iron overload occurring during the therapy of thalassemia where the iron input is not from
diet. There is also an unanswered question of how such chelating polymers would influence
gut microbiota, as copper and especially iron chelators possess antimicrobial action by
depleting these essential metal micronutrients to bacteria. For example, bacteriostatic
effects under in vitro conditions on several opportunistic pathogens have been clearly
demonstrated for polymer-bound iron chelators [109]. However, especially in vivo data
are missing.

The design of polymers for oral use is quite different from the design of parenteral
systems. Linear polymers [129] and dendrimers [130] have also been described; however,
most described systems for this use are crosslinked polymer beads and hydrogel micropar-
ticles. Microparticles with limited diffusion of proteins into their structures possess the
advantages of reducing unwanted interactions with the highly complex environment of the
intestinal content (partly digested diet, as well as gastrointestinal tract mucosa). Interaction
with a partly digested diet is typical for plant polyphenols, namely for tannins. Tannins are
strong chelators of iron(III) and other polyvalent ions present in a vegetarian diet (e.g., for
these reasons, tannin-rich tea is recommended for hemochromatosis patients) [60]. How-
ever, a high-protein diet causes the formation of interpolyelectrolyte complex precipitates
between anionic tannins and proteins and their fragments which can be cationic [131,132].
These complexes do not possess the astringent bitter taste of tannins (e.g., this is why milk
is sometimes added to coffee and tea to make them tastier), but they also do not efficiently
complex metal ions. In fact, gelatin tannate is used as an antidiarrheal with proven non-
interference with metal nutrients uptake [133]. Most oral polymer iron scavengers under
development (see below) are phenolics, so this is a major issue. The interaction with the
mucosa of the gastrointestinal tract may be beneficial to form a temporary barrier depot
increasing efficacy of the treatment [134], but may potentially disturb the digestion process
in long-term effects; however, this was not shown in (mostly short term) animal studies.

The polymer architecture is also of great importance. Hydrogel structures [84,135–138]
limit diffusion of higher-molecular-weight substances into the microparticle and provide
conformational freedom to the chelating ligands, which is of special advantage for bidentate
ligands that readily form complexes with more than one ligand per metal ion stoichiom-
etry [112,113]. The same was seen for micellar systems [112,113,139]. Ion imprinting can
further facilitate pre-adjustment of the ligands to appropriate geometry [117]. However, the
introduction of hydrophobic ligands may together with this additional crosslinking lead to
limitation in metal binding capacity [137]. Macroreticular resin microparticles [134,140,141]
with double molecular porosity (gaining access to the chelated metal to the moieties) and
meso/macropores (accelerating strongly metal chelation kinetics) have the main advantage
of fast metal uptake kinetics, usually within a few minutes; metal is completely complexed
from solution (see Figure 6, for example), even for larger particles, where diffusion would
otherwise slow down the uptake.

However, the trade-off is lower chelation capacity as considerable weight fraction of
the macroreticular structure is non-chelating crosslinker.

Material chemistry of the polymer support of the microparticle also matters. It must
be hydrophilic to allow swelling in aqueous media, providing accessibility of metal to the
ligands as some metal chelating ligands are hydrophobic. Overall charge also matters, poly-
cationic carriers (e.g., polyethyleneimine, polyallylamine and chitosan) [135,137,142,143]
may Coulombically repulse metal cations, thus decreasing overall chelating capacity, while
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polyanionic (e.g., carboxymethyl cellulose and alginate) [100,143] may also nonspecifically
bind other polyvalent cations, such as calcium or zinc.

The chelating iron ligands used for microparticles are mostly inspired by bacterial
siderophores such as deferoxamines and enterobactin or plant phenolics, e.g., catechol, caf-
feic acid, 2,5-dihydroxybenzoic acid, [134,135] 3-hydroxypyridin-4-ones, [111,130,143–145]
2,3-dihydroxybenzoic acid [137] or hydroxamic acid [136]. These groups efficiently com-
plex iron(III) which is the most abundant form of iron in the diet, but not iron(II). As
the reduction of iron(III) to iron(II) is the prerequisite for iron uptake (Fe(III) as-is is not
uptaken), binding also iron(II) brings additional benefits. Our group successfully utilized
polymer-bound 9,10-phenantroline, as it readily complexes both iron (II) and iron (III) for
this purpose [134].

Copper chelation ligands involved are mainly inspired by those used for the treatment
of Wilson’s disease in low molecular form (triethylenetetramine in our studies), [84,140,141]
for copper removal from wastewater (dipicolylamine or hydroxamic acid in our stud-
ies) [84,112,140,141] or by cloroxine, antibacterial agent widely used for the treatment of
diarrhea (conjugated by Mannich reaction, in non-sulfonated of sulfonated form, in our
studies) (see Figure 7 for structures) [84,113,140,141].
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Strong phosphate–iron(III) binding is of great importance for plant nutrition in agri-
culture, but as it is not completely specific for iron, it is of limited use in medicine.
From the dietary point of view, phytin, a micro/nanoparticulate myo-inositol-1,2,3,4,5,6-
hexakisphosphate calcium/magnesium/zinc complex, ubiquitous in plant material, greatly
decreases the bioavailability of iron (but also of zinc, magnesium and calcium) from a vege-
tarian diet. Phytin also has a strong influence on gut microbiota (see References [60,146–148].

Another approach to prolonging the action of orally applied chelating therapeutics is
a sustained release oral formulation, as demonstrated on deferiprone [149].

The approaches are summarized in Table 2.
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Table 2. Summary of polymer chelator approaches.

Administration Route System Architecture Biodegradable References

Parenteral Linear No [98]
Parenteral Linear Yes [100,101,104,105,109,110]
Parenteral Hyperbranched No [97,99]
Parenteral Crosslinked Yes [96]
Parenteral Polyrotaxane Yes [102,103]
Parenteral Nanogel No [111–114,116–119]
Parenteral Dendrimer No [106,115]

Sustained release of free drug Device No [120]
Sustained release of free drug Liposome Yes [121]

Oral Linear No [129]
Oral Dendrimer No [130]
Oral Hydrogel No [84,135–138]
Oral Micelles Yes [112,113,139]
Oral Crosslinked, imprinted No [117]
Oral Macroreticular No [84,134,140,141]

Sustained release of free drug Device No [149]

6. Conclusions and Further Challenges in Polymer Iron- and
Copper-Chelating Therapeutics

Although efficient treatment of iron and copper overload with low-molecular-weight
chelators has already existed for decades, serious side effects, often unfavorable pharma-
cokinetics and limited efficacy of these agents force the development of new avenues to
more safe and efficient therapeutics. Polymers hold great promise to become therapeutics
of the future; however, there are questions to be answered and challenges to be overcome.

For the therapy of iron overload, most polymers described so far chelate just iron(III),
which is most abundant in the diet, but also the least absorbable. Its uptake requires
reduction to Fe(II) following transport by DMT1 into cells of the intestinal mucosa, and
both of these steps can be inhibited. There exist experimental low-molecular-weight
inhibitors for both these steps (e.g., hexacyanoferrate for iron(III) reduction [150] and
bis-thiuronium salts for DMT1 inhibition [151]), but polymer inhibitors with these moieties
bound to a macromolecular carrier may be beneficial and synergic with iron(III) chelation
and may utilize the advantage of macromolecules of reducing side effects by keeping the
effect to be limited to intestinal content. To the best of our knowledge, no such polymers
have been described so far. In fact, DMT1 transporter inhibitors may be beneficial not only
for treatment of iron overload, but also for treatment of Wilson’s disease (copper(II) is also
uptaken by DMT1 transporter; therapy with zinc(II) salts is based on this fact) and lead
poisoning. There are also only rare cases of polymers complexing iron(II) [134].

Another challenge is hem chelation as heme-bound iron is uptaken in heme complex
with a separate transporter and decomplexed inside cells only after uptake; here, polymer-
bound heme-complexing agents, such as chloroquine, may find use (chloroquine is an
antimalarial agent antiparasitic effect of which is strongly believed to be due to heme
complexing in plasmodium-infected erythrocytes).

Another unanswered challenge is long-circulating injectable polymer copper(II) chela-
tors as Wilson’s disease therapeutics.

Iron- and copper-chelating polymers may also find use not only as metal overload
therapeutics but also in other medical applications—as antibacterial agents (as copper
and especially iron [109] are essential and growth-limiting for bacteria) [18,152], as anti-
cancer agents [153,154] (essentiality of iron and copper is especially pronounced in quickly
growing cells) and treatment of inflammation-caused blood clots after COVID-19 infec-
tion and brain injuries (here, fibrin clots are reinforced and made less biodegradable by
reactive oxygen species, for which the production of iron is essential) [155–157]. The ROS-
generating metals play a key role in the development of Alzheimer’s disease by direct
interaction with the beta amyloid [18,21,89], as well as in the development of some other
neurodegenerative diseases.
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