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Over the past years, a wide variety of in vivo mouse models have been generated in order to unravel the molecular pathology of
Chronic Myeloid Leukemia (CML) and to develop and improve therapeutic approaches. These models range from (conditional)
transgenic models, knock-in models, and murine bone marrow retroviral transduction models followed by transplantation. With
the advancement of immunodeficient xenograft models, it has become possible to use human stem/progenitor cells for in vivo
studies as well as cells directly derived from CML patients. These models not only mimic CML but also have been instrumental in
uncovering various fundamental mechanisms of CML disease progression and tyrosine kinase inhibitor (TKI) resistance. With the
availability of iPSC technology, it has become feasible to derive, maintain, and expand CML subclones that are at least genetically
identical to those in patients. The following review provides an overview of all murine as well as human xenograft models for CML
established till date.

1. Introduction

CML is a myeloproliferative disorder characterized by accu-
mulation of several types of myeloid precursor cells. CML is
caused by a reciprocal translocation between chromosomes 9
and 22, also known as the Philadelphia (Ph+) chromosome,
which leads to the formation of BCR-ABL fusion protein
depending on precise break point and splicing of final BCR-
ABLmRNA [1]. More than 90% of the patients are diagnosed
at a relatively early stage of the disease known as chronic
phase (CP). It is generally accepted that acquisition of the
t(9;22) BCR-ABL translocation is the initiating event in the
CML CP [2, 3]. It is believed that this acquisition initially
occurs in a single HSC that gains proliferative advantage
and/or aberrant differentiation capacity over the normal cells,
giving rise to expansion of the myeloid compartment [4, 5].
Before the discovery of the tyrosine kinase inhibitors (TKIs),
all patients with CML-CP progressed to advanced disease in
a median of 5 years after treatment. This phase is divided
into an accelerated phase (AP) followed by a myeloid blast
crisis (BC) [6], although transition to a lymphoid blast crisis
can occur as well.Themolecularmechanisms underlying this

disease progression are still not entirely understood, but it is
likely that they involve activation of oncogenic factors and
inactivation of tumor suppressors. The phenotype of the self-
renewing leukemic stem cells that maintain CML remains
obscure. In CML-CP, LSCs reside within Lin−CD34+38−
fraction, suggesting that the first cell that gains the BCR-
ABL translocation is a stem cell or immature progenitor cell
[7–9]. By performing engraftment studies in SCID (severe
combined immunodeficiency) mice, Cobaleda et al. showed
that the self-renewal and phenotypic properties of leukemia-
initiating cells (SL-ICs) in BCR-ABL p190 Ph-ALL were
similar to those of normal stem cells, suggesting that HSCs
act as cell of origin in CML [10]. Many other studies have also
supported this idea and established a basic understanding
of the CML hierarchy [11, 12]. Furthermore, in contrast to
other oncogenes like MOZ-TIF2 and MLL-ENL, BCR-ABL
cannot confer self-renewal properties on committed progen-
itor cells, again suggesting that immature stem/progenitor
cells are most likely the cell of origin in CML [13–15]. Upon
progression to BC-AML, it has been shown that the phe-
notype of the leukemia-maintaining stem cell changes and
starts to resemble the phenotype of granulocyte/macrophage
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progenitors (GMPs). Jamieson et al. reported in vitro self-
renewal capacity of leukemic GMPs due to increased levels
of nuclear 𝛽-Catenin compared to normal GMPs [16]. Fur-
thermore, Minami et al. provided evidence that BCR-ABL
transformed GMPs with abnormal 𝛽-Catenin activity can
function as LSCs that maintain the disease [17]. These data
demonstrate that LSCs that initiate and later on maintain
CML can possess versatile characteristics that change upon
progression of the disease.

Treatment of CML patients with the inhibitor imatinib
leads to response rates of over 95% [18]. Yet, the leukemia-
initiating cells are not targeted efficiently [12, 19, 20], and
patients might need to stay on therapy lifelong. A significant
proportion of patients develop primary resistance to therapy,
often due to mutations in the activation loop, phosphate
binding P-loop, or the catalytic kinase domain of BCR-ABL
[21–23]. Second and third generation TKIs have been devel-
oped such as dasatinib, nilotinib, ponatinib, and bafetinib but
TKI resistance appears to remain a challenge. Furthermore,
acquired resistance during the course of therapy due to
whether resistant clonal selection by protective microenvi-
ronment, increased efflux of drug, or BCR-ABL signaling
mechanism renders TKI ineffective for CML treatment [24–
26].Thus, identification of additional targets that facilitate the
eradication of BCR-ABL+ leukemia-initiating cells is needed.

Having assessed the cause of disease, the goal lies in
identifying characteristics of remnant CML LSCs which
lead to disease progression, TKI resistance, and relapse of
disease. One of the approaches centers on modeling CML
in appropriate in vivo mouse models in order to study
the molecular pathogenesis of this disease and develop and
improve therapeutical approaches. This review summarizes
the recent advances, current challenges, and ongoing research
in establishing mouse as well as a human xenograft in vivo
model. Advantages and limitations of upcoming approaches
such as iPSC technology and humanized xenograft mouse
models for CML will be discussed as well (Figure 1) (Table 1).

2. Transgenic Mice Models

2.1. ConventionalModels. Thefirst transgenicmodel to assess
the oncogenic potential of BCR-ABL was developed by
introducing a synthetic BCR-ABL gene into the mouse germ
line. A fusion of bcr and v-ablwas expressed under the control
of the immunoglobulin heavy-chain enhancer (E𝜇) or to
the promoter/enhancer of the long terminal repeat (LTR)
of the myeloproliferative sarcoma virus (MPSV) [27]. The
enhancers of both constructs were capable of functioning
in diverse hematopoietic cells including B/T lymphocytes
as well as some myeloid cell lines, reasoning that they
might be also functional in primitive HSCs from which
these progenitors arise. The expression of the transgene
during early development resulted in decreased offspring
yield. Furthermore, only 3 out of 12 mice bearing E𝜇-driven
BCR-ABL expression succumbed to pre-B and T lymphomas,
while 1 out of 3 mice harboring MPSV LTR-driven BCR-ABL
expression developed T lymphomas. No myeloid leukemias
were developed with either construct. Another disadvantage

was that BCR-v-ABL differed from BCR-ABL in that it
lacked parts of the bcr- and abl-derived regions and it had
several amino acid substitutions in the latter.Thus, the results
obtained with the p210 BCR-v-ABL transgenic mice may not
accurately reflect the biological properties of the original
hybrid protein [27].

A more consistent outcome was achieved by using the
delta metallothionein-1 promoter. This promoter is constitu-
tively active in all tissues and was used to drive expression of
the p190 BCR-ABL gene. Ten out of 60 p190/deltaMT trans-
genicmice were obtained, out of which 8 succumbed to death
due to myeloid (2/8 mice) and lymphoid (6/8 mice) leukemia
between 10 and 58 days of birth [28]. In follow-up studies with
a bigger cohort of mice transplantable ALL/lymphoma was
shown with same construct [28, 29]. Furthermore, in animals
expressing the p210 BCR-ABL construct under control of the
MT promoter T cell leukemias developed with no signs of B-
ALL as was seen in p190 BCR-ABL mice [30].

In another study, the same group used the tec promoter
to drive p210 BCR-ABL expression in transgenic mice. The
tec gene encodes for a cytoplasmic kinase that is prefer-
entially expressed in hematopoietic precursor cells. Using
this transgenic model, 5 founders were generated, out of
which 2 developed ALL shortly after birth, while transgenic
progeny exhibitedMPDs resembling humanCML aftermuch
longer latency of 4–8 moths [31]. These results indicated
that tec-driven p210 BCR-ABL transgenic mice could exhibit
fundamental features of CML malignancy.

2.2. Conditional Models. Huettner and colleagues took a new
approach by establishing a conditional transgenic mouse
model for CML [32]. Transgenic mice with p210 BCR-ABL
under control of a tetracycline response element (TRE) were
generated and offspring of 4 such transresponder transgenic
mice were mated with transactivator mice (tTA under con-
trol of MMTV-LTR) under continuous administration of
tetracycline in the drinking water, starting 5 days prior to
mating. Double transgenic mice were obtained with the esti-
mated Mendelian frequency in all 4 lines. Upon tetracycline
withdrawal, BCR-ABL1 was expressed and 100% incidence
of lethal B-ALL was observed without any signs of myeloid
or T cell malignancy. This was probably due to B-cell type
specific promoter, the MMTV-LTR directing expression of
tTA to B220+ cells. However, this study was the first of its
kind to show that blast cell counts in advanced-stage leukemic
mice were reduced upon tetracycline administration to block
BCR-ABL expression. These data indicated that BCR-ABL1
was important for both the induction and the maintenance
of the disease in these mice. Nevertheless, all reverted mice
from one of the founder lines did succumb to BCR-ABL1-
independent B-ALL in 2–4 weeks probably due to acquisition
of secondary mutation(s) during disease progression [32].

Later studies from the same group further modified
this tet-off inducible transgenic model by placing tTA
expression under control of the 3󸀠 enhancer of the murine
stem cell leukemia (scl) gene [33]. SCL is a critical regu-
lator of hematopoiesis and is normally expressed in ery-
throid and megakaryocytic cells, mast cells, and multipotent
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Figure 1: CML human andmurinemodels till date.This figure summarizes establishedmodels for CML using chimeric mouse strains as well
as different immunocompromised strains. Different experimental approaches and strategies along the time are also highlighted. “∗” refers to
generation of serially transplantable leukemia and reference numbers (as indicated in Table 1) are denoted for each mouse model.

stem/progenitor cells. In these mice, induction of BCR-
ABL resulted in neutrophilia and leukocytosis, bone marrow
hyperplasia, and extramedullarymyeloid infiltration, thereby
recapitulating many features of CML [33]. Furthermore, 31%
of animals with myeloproliferative disease progressed to B-
ALL [33]. Also, a reversion of the myeloid and lymphoid
phenotypes was shown upon loss of BCR-ABL expres-
sion, although further experiments were required to assess
whether loss of BCR-ABL can be tolerated during advanced
stages of disease.

2.3. Homologous Recombination Approach. Homologous re-
combination was used as an alternative approach to create
p190 BCR-ABL transgenic mice by inserting the BCR-ABL
cDNA into exon1 of the mouse bcr locus. The construct was
electroporated into ES E14 cells, thereby generating ES cells
that contained 1 intact bcr allele and another rearranged
allele due to the BCR-ABL fusion. When these correctly
modified ES cells were injected into recipient C57BL/6 blas-
tocytes, all chimericmice developed B-ALL. Similar leukemia

phenotypes were observed in 37 out of 40 chimeric mice
that were obtained in the absence of the endogenous bcr
allele [35]. This strategy was very useful for studying the
leukemogenic potential of p190 BCR-ABL expressed under
normal transcriptional control elements.

In summary, transgenic models were first of their kind to
validate the oncogenic potential of BCR-ABL and to support
the expression of BCR-ABL as the prime initiating event
for CML induction by p190 BCR-ABL [29]. Furthermore,
conditional models largely contributed to understanding the
course of human CML as well as studying CML leukemic
stem cells. It was using this inducible scl/p210 BCR-ABL
transgenic murine model that the studies from group of
Sengupta et al. confirmed the role of BMI1 in collaboration
with BCR-ABL to transform chronic phase lymphoid pro-
genitors to induce serially transplantable B-ALL [34]. The
use of transgenic (conditional) models can thus play a major
role in understanding secondary collaborating events in the
progression of CML. However, generation of new founder
transgenic mice every time as well as BCR-ABL toxicity and
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silencing for establishing CML transgenic models remains a
cumbersome and challenging effort.

3. Transduction/Transplantation Models

A murine bone marrow transduction approach was set up
by Daley and colleagues with a retrovirus encoding p210
BCR-ABL in order to model CML [5]. Transduced cells were
transplanted into 30 lethally irradiated syngeneic recipients.
13 out of 30 (43%) transplanted mice developed 3 distinct
hematological malignancies within 5 months after recon-
stitution: a CML-like myeloproliferative syndrome with a
mean latency of approximately 9 weeks, ALL with a mean
latency of approximately 14 weeks, and a tumor containing
macrophage cell types with a mean latency of approximately
16.5 weeks [5]. Bone marrow from one of the affected mice
was transplanted into lethally irradiated secondary recipients
that also developed a CML-like syndrome [5].

Kelliher and colleagues also transduced bone marrow
cells from 5-FU treated mice with either v-abl or p210
BCR-ABL retroviruses and transplanted these into lethally
irradiated mice. Half of the mice developed a myeloprolif-
erative disease resembling chronic phase CML, while the
remaining animals developed pre-B-cell lymphomas [36].
All 19 mice that received Abelson murine leukemia virus
(Ab-MLV) infected cells succumbed 4–10 weeks later due to
myelomonocytic leukemia and pre-B-cell lymphoma, while
11 out of 12 mice that received BCR-ABL transduced cells
died 9–12 weeks after reconstitution due to myelomonocytic
leukemia, granulocytic leukemia, and pre-B-cell lymphoma
[36]. A great asset of this transduction model was that
clonality could be assessed by making use of the unique
integration sites as clonal markers.

Follow-up studies by several groups in which trans-
duction efficiencies were further improved led to retroviral
transduction/transplantation models that resulted in a rapid
induction of CML-like myeloproliferative disease (MPD) in
100% of the cases, possibly due to efficient BCR-ABL expres-
sion in appropriate target cells.This disease was characterized
by increased granulocytosis, splenomegaly, dissemination to
other organs (lung), and efficient secondary transplantations
[37–40]. However, variability in viral titers still affected
the reproducibility of such models. Also, the use of strong
promoters to drive BCR-ABL expression hindered modeling
of leukemia with longer latency.

The transduction/transplantation models prove to be
more efficient as compared to transgenic mice in terms of
quick and simple approach which facilitate easy determina-
tion of clonality of leukemias and secondary transplantations
as well as studying collaborating events synergistic for BCR-
ABL induced disease. Studies from Bousquet et al. showed
that miR-125b overexpression independently induced lym-
phoid or myeloid leukemia as well as acting as a secondary
event by accelerating the development of p210 BCR-ABL
induced leukemia [41]. Studies from Chang et al. have
highlighted the role of Vav3 as critical GEF in p190 BCR-
ABL mediated activation of RAC GTPase and downregu-
lation of proapoptotic signals required for leukemogenesis
[42]. Although current murine transduction/transplantation

models fail to mimic the longer latency of human CML
and transplantable myeloid secondaries, it is of utmost
importance to validate results of suchmurinemodels by using
appropriate xenograft models.

4. Xenotransplant Models

One of the earliest attempts to model human CML in
immunodeficient mouse models dates back to the late ’70s,
where the BCR-ABL+ cell line K562 was injected into nude
micewhich grew as solid vascularized tumors containing cells
like those seen in the patient and in the cultures [43]. Similar
observations with the K562 cell line were later reported
by Caretto and colleagues [44]. Sawyers and colleagues
observed that cell lines and BM samples from patients with
myeloid blast crisis CML could be transplanted into SCID
mice by injecting the cells into a localized area, either by
intraperitoneal (i.p.) injection or within the renal capsule
[45]. Efficient engraftment and dissemination of leukemia
was observed in BM and PB. Interestingly, differential growth
in the spleenwas seen in thesemyeloid blast cells as compared
to lymphoid cells. Engraftment of chronic phase CML patient
samples was infrequent and only limited myeloid growth
was observed [45]. Sirard et al. also provided evidence of
engraftment of both normal and leukemic hematopoietic
cells from CML patients in sublethally irradiated SCID mice
without exogenous treatment of cytokines [46]. However,
high cell numbers for transplantation and infrequent and
limited lymphoid as well as myeloid outgrowth were still a
drawback in these SCIDmice, perhaps due to residual innate
immunity of these SCID mice.

Over the years, with the development of better immun-
odeficient models such as the severe combined immune
deficiency (SCID) mouse model, transplantation of human
normal and leukemic cells improved significantly. In par-
ticular, improvement of engraftment of lymphoid cells was
achieved. However, engraftment of myeloid (malignant) cells
remained challenging and many researchers focused their
efforts on developing a system that would permit efficient
interactions between human cells and their microenviron-
ment. A first model that attempted to recreate a human envi-
ronment to allow long-termmultilineage human hematopoi-
etic activity was reported by McCune and colleagues by
coimplantation of small fragments of human fetal thymus
and fetal liver into immunodeficient SCID mice, although
this model was not used to study myeloid transformation
[55]. With the development of NOD-SCID mice with func-
tionally defective lymphocytes and NK cells several groups
successfully showed engraftment ofmononuclear andCD34+
cells from PB of CML patients using lower cell numbers
than those reported for SCID mouse models of CML [47–
49]. One of the challenges in developing in vivo models
for human CML that remained was that normal stem cells
frequently outcompeted chronic phase CML stem cells. By
identifying patients in which the in vitro long-term culture-
initiating cells (LTC-ICs) were predominantly leukemic and
by injecting those cells into NOD-SCID or NOD-SCID
𝛽2m−/− mice more consistent engraftment was seen for 5
months after transplantation [8]. At late time points mice
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succumbed to endogenously derived thymomas, but no
indication of progressive disease was evident, indicating that
this model only represented the chronic phase of the disease
[8].

The group of Connie Eaves presented a preleukemic
in vivo model for CML by transducing primary human
cord blood CD34+ cells with MSCV driven p210 BCR-ABL
followed by transplantation intoNOD-SCID andNOD-SCID
𝛽2−/− mice. Increased engraftment was observed with a
reduction in B-lineage output and enhanced production of
erythroid and megakaryocytic cells [50]. However, only 4
out of 28 mice displayed elevated WBC counts and/or
gross splenomegaly with a latency of 5-6 months. Although
progression to blast crisis CML was not observed, these data
clearly indicated that expression of BCR-ABL resulted in
deregulated growth and differentiation which in some cases
progressed to early stage disease.

Since BCR-ABL by itself appeared to be insufficient to
induce leukemia in xenograft models, it has been proposed
that additional pathways might be necessary to cooperate
with BCR-ABL in the transition from CP-CML into BC-
CML, such as the Wnt and Hedgehog pathways [16, 56,
57]. Alternatively, it has been observed that expression of
the polycomb gene BMI1, which is implicated in normal
and leukemic stem cell proliferation [58, 59], is significantly
higher in patients with advanced disease than in patients in
CP [60].Therefore, we evaluated whether BMI1 could act as a
collaborating factor together with BCR-ABL. We confirmed
that coexpression of BMI1 and BCR-ABL in human CB
CD34+ cells is sufficient to induce transplantable leukemia in
NOD-SCID mice [51]. The disease progressed to lymphoid
blast crisis phase and serially transplantable B-ALL could be
established [51].

Although the development of xenograft mouse models
has allowed the ability to work with primary patient samples
in vivo, the pathogenesis of CP-CML progressing into a BC-
CML was still very difficult to model. And while in human
retroviral transduction models a serially transplantable B-
ALL could be established, the development of myeloid
malignancies in xenograft models remained rather challeng-
ing. Various phenomena could underlie these observations
including residual host immunity in the xenograft models
that were used or possibly even more importantly the lack
of a proper human microenvironment for sustaining human
myeloid leukemias.

5. Humanized Mice Models

The most immune deficient mouse model till date is the
IL2R𝛾−/− mouse (NSG), which features the NOD/ShiLtJ
background, the severe combined immune deficiency muta-
tion (scid), and loss of the IL-2 receptor gamma and com-
pletely lacks T, B, andNK cells. After their development, NSG
xenograft transplantation models soon emerged as the gold
standard for accessing in vivo repopulation of HSCs as well
as LSCs. However, in 2011, the group of Dominique Bonnet
reported the failure of engraftment of 60–70% primary AML
cells [61]. Importantly, these NSG mice remained rather
biased towards lymphopoiesis, and normal or malignant

myelopoiesis remained difficult to achieve. Despite the fact
that these xenograft models are immunodeficient and would
tolerate a human graft, the absence of a human microenvi-
ronment might still prevent appropriate growth of human
cells. Indeed, various growth factors are species-specific,
and, for instance, murine IL-3 or GM-CSF fail to activate
human receptors, which might, at least in part, explain the
lymphoid bias. The group of Donna Hogge and Connie
Eaves established NOD-SCID mice transgenic for human
SCF, IL-3, and GM-CSF [62, 63]. A number of AML samples
that failed to engraft in the regular NOD-SCID mice could
now engraft in the human cytokine NOD-SCID mice. The
group of Jim Mulloy then crossed these mice into the NSG
background and also reported better engraftment of AML
samples in NSG transgenic for hSCF, hIL-3, and hGM-CSF
[64].

Although these mouse xenograft models clearly hold
promise, there are some potential pitfalls also. Since these
are transgenic models and the human alleles are not knocked
into their endogenous loci, expression levels might differ
from the physiological levels, which might have important
consequences for the normal self-renewal and differentiation
programs. Possibly, this is tackled in the MYSTRG mice
generated by the Flavell lab, in which 4 human cytokines
are knocked into their respective mouse loci [65]. However,
an appropriate niche obviously consists of more factors than
just these cytokines. Direct interactions with the niche not
only are important for normal HSCs but also are critical
for LSCs [66]. For instance, N-cadherin mediates critical
interactions between CML LSCs and their niche [67]. In
fact, there is a continuous crosstalk between LSCs and their
niche and in particular in the case of CML it has been
documented that LSCs gradually change their niche so that
it favors leukemogenesis [68, 69]. Thus, an ultimate model in
which human hematopoiesis and leukemogenesis might be
studied is amodel inwhich the niche is of human (malignant)
origin as well. Richard Groen has described a humanized
model using NSG mice in which ceramic scaffolds seeded
with human mesenchymal stromal cells were implanted to
generate a human bone marrow- (huBM-) like niche [70, 71].
We have extensively studied our retroviral CB CD34+ BCR-
ABL model within these humanized niche NSG mice as well,
and our data indicate that BCR-ABL overexpression alone
was sufficient to induce both AML and ALL, which could
be serially transplanted [72]. By comparing transcriptomes of
leukemias derived frommurine niches versus leukemias from
huBM-like scaffold- (huBMsc-) based niches, we observed
striking differences in expression of genes associated with
hypoxia, mitochondria, and metabolism. Efficient engraft-
ment of blast-crisis CML patient cells was also observed,
whereby the immature blast-like phenotype was maintained
in the human scaffold niche but to a much lesser extent
in murine niches. Thus, we have established human niche
models in which the myeloid and lymphoid features of BCR-
ABL+ leukemias can be studied in detail [72]. Future studies
will be aimed at determining whether chronic phase CML
patient samples can also engraft in this model and whether
the progression from chronic phase to blast crisis CML can
be modeled as well.
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6. Conclusion

CML is one of the most studied and best understood
hematological malignancies until now and has captivated the
interest of several cancer stem cell enthusiasts to push the
limit of drug discovery by further understanding the molec-
ular mechanisms underlining this disease. Over the past 35
years, CML models have been developed and continuously
improved, which have greatly aided in our understanding of
the disease. With the establishment of a humanized niche
model, it will be possible to further study and understand
the crosstalk between leukemic cells and their environment
in relation to the pathogenesis of CML.This should bring us a
step closer to a complete understanding of themechanisms by
which BCR-ABL exerts its transformation potential, intrin-
sically within hematopoietic cells as well as extrinsically by
modifying its niche.

7. Future Prospects

Apart from regenerative medicine, iPSC technology is also
providing an excellent platform to model and study the
pathophysiology of diseases such as myeloproliferative neo-
plasms including CML and PV. Carette et al. successfully
reprogrammed the KBM7 BC-CML cell line into CML iPSCs
[52]. Hu et al. reprogrammed MNCs from BM of CP-
CML patient using nonintegrating episomal vectors [53].
Although the DNA methylation pattern of CML-iPSCs was
different from that of original CML samples, it was iPSC-
like; it was also very similar to normal iPSCs and human
ES cells in terms of gene expression profile. However, the
disease never progressed to BC phase probably due to lack
of additional mutations. Later on, the group of Kurokawa
generated CML iPSCs from imatinib sensitive CML patient
samples [54]. Intriguingly, the CML-iPSCs were insensitive
to imatinib, while CML-iPSC-derived hematopoietic cells
recovered the sensitivity to imatinib with the exception of
CD34+38−90+45+ immature cells which remained resistant,
possibly in line with what is observed in patients. A challenge
that remains is that reprogramming of CML iPSCs results in
epigenetic alterations different fromwhat was observed in the
original patient samples and thereby also the characteristics
of the iPSCCML cells. Despite this, iPSC provides an exciting
novel technology with which various aspects of CML can
be studied and novel specific targeted therapies can be
developed.
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