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A B S T R A C T   

Background and purpose: Radiation therapy treatment planning is a manual, time-consuming task that might be 
accelerated using machine learning algorithms. In this study, we aimed to evaluate if a triplet-based deep 
learning model can predict volumetric modulated arc therapy (VMAT) dose distributions for prostate cancer 
patients. 
Materials and methods: A modified U-Net was trained on triplets, a combination of three consecutive image slices 
and corresponding segmentations, from 160 patients, and compared to a baseline U-Net. Dose predictions from 
17 test patients were transformed into deliverable treatment plans using a novel planning workflow. 
Results: The model achieved a mean absolute dose error of 1.3%, 1.9%, 1.0% and ≤ 2.6% for clinical target 
volume (CTV) CTV_D100%, planning target volume (PTV) PTV_D98%, PTV_D95% and organs at risk (OAR) 
respectively, when compared to the clinical ground truth (GT) dose distributions. All predicted distributions were 
successfully transformed into deliverable treatment plans and tested on a phantom, resulting in a passing rate of 
100% (global gamma, 3%, 2 mm, 15% cutoff). The dose difference between deliverable treatment plans and GT 
dose distributions was within 4.4%. The difference between the baseline model and our improved model was 
statistically significant (p < 0.05) for CVT_D100%, PTV_D98% and PTV_D95%. 
Conclusion: Triplet-based training improved VMAT dose distribution predictions when compared to 2D. Dose 
predictions were successfully transformed into deliverable treatment plans using our proposed treatment plan-
ning procedure. Our method may automate parts of the workflow for external beam prostate radiation therapy 
and improve the overall treatment speed and plan quality.   

1. Introduction 

Treatment planning for external beam radiation therapy (EBRT) in-
volves many manual steps, such as choosing the correct beam angles, 
energy, and shapes. For intensity-modulated radiation therapy (IMRT) 
and volumetric modulated arc therapy (VMAT), a trial-and-error process 
of choosing and altering dose-volume criteria is used to optimize a 
treatment plan. This manual iteration continues until most, or all pre- 
defined, clinical goals are satisfied, which can take several hours, 
depending on patient anatomy and planner experience. Furthermore, 

more advanced treatment techniques and an increasing number in 
cancer patients leads to a higher workload, limiting the time available 
for EBRT treatment planning. This can be a restrictive factor, which 
might lead to variations in plan quality. 

A possible way to improve and automate the optimization and 
treatment planning process is to use state-of-the-art, machine learning- 
based algorithms and models. Several research groups are making 
progress incorporating these new technologies into the EBRT process, to 
accelerate and improve the treatment planning workflow [1–12]. The 
field of radiation therapy is likely to face tremendous changes regarding 
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patient workflow, availability of artificial intelligence (AI)-based deci-
sion supportive tools and treatment planning efficiency and consistency 
[13–15]. 

Nguyen et al. [1] used a 2D U-Net architecture [16] to predict IMRT 
dose distributions for prostate cancer patients, based on segmentation 
masks containing the planning target volume (PTV) and organs at risk 
(OAR). They later refined the model by adding dense connections into a 
3D architecture, leading to a more accurate dose prediction [2]. Other 
studies tried to predict IMRT dose distributions by incorporating dose- 
volume histogram (DVH) features into the model, or evaluating 
different architectures, e.g., ResNet-anti-ResNet and generative adver-
sarial networks (GAN) [2–8]. 

McIntosh et al. [9] presented the first machine learning driven 
framework to predict VMAT dose distributions using a texture filter 
bank and a contextual Atlas Regression Forest (cARF) algorithm. In 
addition, they used dose mimicking to transform dose predictions into 
deliverable treatment plans [9,10]. Further studies presented on VMAT 
dose prediction adapted more modern, deep learning-based approaches 
for automatic feature extraction [2,11,12]. 

Most of the studies focused on IMRT dose prediction, while only a 
few studies predicted VMAT dose distributions [2,9,11,12]. More 
important, except for a few cases, the predicted dose was not trans-
formed into a clinical and deliverable treatment plan [5,10]. 

This work aimed to evaluate a densely connected deep learning 
model, based on a modified U-Net architecture, able to predict VMAT 
dose distributions for prostate cancer patients. In addition, the impact of 
providing volumetric information by triplet-based training, i.e., 
combining three consecutive image slices and corresponding segmen-
tations [17], was investigated. Finally, to transform dose predictions 
into deliverable treatment plans, a novel treatment planning workflow 
was tested and evaluated using a commercially available treatment 
planning system (TPS). 

2. Material and method 

2.1. Dataset description 

The used dataset consisted of DICOM computed tomography (CT) 
images, radiotherapy (RT) structure sets and RT dose information 
derived from 160 prostate cancer patients, treated with ultra- 
hypofractionated VMAT plans (42.7 Gy in seven fractions, three days 
per week for 2.5 weeks, single arc, 360 degrees) between 2018 and 2019 
[18]. Eighteen patients with hip prosthesis were excluded from the study 
population, while 125 patients were used as the training dataset. 17 
randomly chosen patients defined the test dataset, which was never used 
for model training or optimization. A table of patient characteristics is 
given in Supplementary Table S1. The study was approved by the 
Regional Ethics Board of Lund, Sweden (EPN Lund, Dnr 2013/742). 

2.2. Preprocessing 

For each patient, the RT structure set, CT images, and dose distri-
bution were exported from the TPS (Eclipse, Varian Medical Systems, 
USA). Raw CT pixel values were transformed to Hounsfield Units (HU), 
truncated between − 1000 and +400 and per-sample-normalized be-
tween 0 and 1. Dose distributions were normalized using the prescrip-
tion dose of 42.7 Gy. RT structures were transformed to binary masks, 
where the PTV, rectum, bladder, left femoral head (LFH), right femoral 
head (RFH) and body were chosen as the relevant structures for VMAT 
dose prediction. CT volumes and binary structures were resampled to a 
voxel size of 2.5x2.5x3.0 mm using linear and nearest neighbor inter-
polation, respectively. Furthermore, matrix dimensions were changed to 
192x192 pixels. 

To allow our model to learn volumetric features, training was per-
formed using image triplets (Fig. 1), which can be considered 

Fig. 1. Triplets generated from three, spatially 
consecutive, computed tomography (CT) images and 
their corresponding target, body, and organs at risk 
(OAR) segmentation structures. To generate an image 
triplet, a base image was formed (a), by stacking a 2D 
CT slice as well as its corresponding body, target, and 
OAR binary segmentation masks (of the current slice) 
into 7 different image channels (channels 1–7: CT, 
body, PTV, rectum, bladder, left femoral head, right 
femoral head). This preprocessing step was repeated 
for the 2D CT image and the corresponding segmen-
tations inferior (base image − 1) (b) and superior 
(base image + 1) (c) to the actual slice location of the 
base image. All three, 7-channel images (base image −
1, base image, base image + 1), were then concate-
nated along the channel axis, to form a final image 
triplet with a dimension of 192x192 pixels and a total 
of 21 channels (d).   
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volumetric, but not per se fully 3D. We therefore refer to the method 
subsequently as “2.5D” training. A triplet combines three consecutive 
2D CT slices and their corresponding binary segmentations. Comparable 
to a three-channel color image (RGB), a CT image slice and its corre-
sponding PTV, body and OAR segmentation structures were combined 

into an image with 7 separate channels (base image, Fig. 1a, channel 
1–7: CT, body, PTV, rectum, bladder, LFH, RFH). Two additional 7 
channel images were created using the 2D CT slice and its corresponding 
segmentations inferior (base image - 1, Fig. 1b) and superior (base 
image + 1, Fig. 1c) to the base image. All three, 7-channel images, were 

Fig. 2. Architecture of the proposed densely connected U-Net used to predict volumetric modulated arc therapy (VMAT) dose distributions for prostate cancer 
patients. Triplets consisting of computed tomography (CT) images and their corresponding binary segmentation masks of the planning target volume (PTV), body and 
organs at risk (OAR) were used as the input data to the model (a). Densely connected layers in the encoder and decoder part (b) were used to improve feature 
propagation and to avoid vanishing gradients. After feature extraction using a series of convolutional operations and transition layers used for downsampling 
purposes (c), densely connected upsampling operations transformed the latent space representation to a final VMAT dose distribution prediction (d). 

Fig. 3. Proposed treatment planning workflow used to transform predicted volumetric modulated arc therapy (VMAT) dose distributions into deliverable treatment 
plans. Triplets containing computed tomography (CT) images and binary segmentation masks were used as the input to the densely connected U-Net model, to predict 
a dose distribution. A nearest neighbor (NN) search was then performed to establish suitable beams and dose-volume criteria (a). Derived optimization criteria were 
adjusted, based on the dose distribution prediction and the NN dose distribution (b). To generate a deliverable treatment plan, a short dose optimization, starting at 
the last multi-resolution (MR) level 4 (step 1/1) of the Eclipse TPS, was performed, using the dose prediction as the underlying distribution (c). 
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then concatenated along the channel axis, forming a final triplet with a 
total of 21 channels (Fig. 1d). The code used in this work can be 
downloaded from our GitHub repository (https://github.com/ML 
Radfys/Deep-Learning-Dose-Prediction). 

2.3. Model architecture 

Our proposed modified U-Net architecture consisted of a densely 
connected encoder and decoder part with batch normalization layers, 
Rectified Linear Unit (ReLU) activation and transition blocks for 
upsampling purposes [19–21]. Triplets with a size of 
192x192x21 (w x h x c) were used as the input to the encoder, where w 
is the image width, h the height of the image, and c the number of image 
channels (Fig. 2a). Dense layers [21] were embedded in dense blocks 
(Fig. 2b), where feature maps of previous layers become the input to the 
next layer. This addresses the problem of vanishing gradients and im-
proves feature propagation throughout the network [22]. Dense and 
transition blocks (Fig. 2c) used in this study were designed as suggested 
by the DenseNet paper published by Huang et al. [21]. For each triplet 
input, providing volumetric information, a 2D dose distribution pre-
diction with a size of 192x192 pixels was generated using a final 1x1 
convolutional kernel operation (Fig. 2d). A detailed description of the 
model architecture is provided in the Supplementary Section. 

2.4. Model training 

For this study, a baseline model was trained in 2D, using an encoder- 
decoder U-Net architecture introduced by Ronneberger et al. [16]. In 
addition, the original U-Net model as well as our suggested densely 
connected U-Net were trained in 2.5D. Training was performed for 500 
epochs using 5-fold-cross validation and a batch size of 16. The Adam 
optimizer [23] with a learning rate of lr=0.0001 was used to minimize 
the mean squared error (MSE) loss between predictions and clinical dose 
distributions. Data augmentation in form of random image translation 
( ± 10%), horizontal flipping and rotations ( ± 5 ◦) was used to reduce 
overfitting [24,25]. 

2.5. Treatment planning workflow 

To transform predicted dose distributions into deliverable treatment 
plans, a nearest neighbor (NN) search was performed, by computing the 
mean squared error (MSE) between a dose prediction matrix and the 
clinical dose distribution matrices in the training dataset (Fig. 3a). The 
MSE, used as a similarity measure is given by: 

MSE =
1
n
∑n− 1

0

(

di − d̂ i

)2

(1)  

where di represents the observed dose values, d̂i the predicted dose 

Fig. 4. Optimization parameter adjustment shown for an arbitrary organ at risk (OAR) structure. To find optimization parameters for a predicted dose distribution, 
the nearest neighbor (NN) dose-volume histogram (DVH) was compared to the dose prediction DVH. Adjustments were made for all OARs, in case the dose prediction 
was better than the NN dose. No adjustments were made, when the NN dose was better than the predicted dose. 
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values and n the number of data points. PTV center coordinates were 
matched prior to any computation. Calculation of the MSE was per-
formed using the scikit image library [26]. Beams, optimization objec-
tives and multileaf collimator (MLC) segments were derived from the 
NN, and the predicted dose was compared to the NN dose, to adjust dose 
optimization criteria to fit the best of the two (Fig. 3b, Fig. 4). For OARs, 
new dose optimization objectives were calculated by: 

Odosepred =

⎧
⎪⎨

⎪⎩

OdoseNN ×
Dpred

DNN
for Dpred < DNN

OdoseNN for DNN < Dpred

(2)  

where Odosepred is the new dose objective, OdoseNN the objective from the 
NN, DNN the dose value at the NN DVH volume point defined by OdoseNN , 
and Dpred the predicted dose value at the same DVH volume point as DNN. 
For target volumes, adjustments could be performed in the same 
manner, but for Dpred > DNN. Volume optimization criteria were not 
adjusted. 

Once the criteria for all structures were established, a short optimi-
zation using the predicted dose distribution was performed, starting at 
the last multi-resolution (MR) level 4 (step 1/1) using the Eclipse TPS 
(Fig. 3c). The predicted dose distribution, combined with the NN beams 
and the adjusted optimization parameters, served as the optimization 
starting point. This process is similar to fine-tuning the segments of the 
accelerators MLC, to match the predicted dose distribution. All deliv-
erable treatment plans were generated for a TrueBeam accelerator 
(Varian Medical System, Palo Alto, USA) and an energy of 6 MV, Flat-
tening Filter Free (FFF). Dose calculations were performed using the 
Anisotropic Analytical Algorithm (AAA). In continuation, we will refer 
to treatment plans generated by our suggested treatment planning 
workflow as deliverable treatment plans, and to clinical plans used for 
training as the ground truth (GT). 

2.6. Plan delivery and evaluation 

All deep learning-based treatment plans were delivered to a Delta4 

phantom and evaluated using multiple DVH parameters: clinical target 
volume (CTV_D100%), planning target volume (PTV_D98%, PTV_D95%), 
rectum (Rec_D30%, Rec_D15%, Rec_D10%), left femoral head (FH_Sin_D2%), 
right femoral head (FH_DX_D2%), bladder (Bladder_Dmean) and body 
(Body_D0.1%). Dose prediction and treatment plan quality were evalu-
ated by calculating the mean percentage dose error between the dose 
distributions predicted by the baseline 2D U-Net and the GT, the 2.5D 
densely connected U-Net and the GT, and between the deliverable 
treatment plans and the GT. The mean percentage dose error is given by: 

Dpred − DGT

Dpresc
× 100[%] (3)  

where Dpred is the dose distribution predicted by a deep learning model, 
DGT the GT dose distribution derived from a clinical treatment plan, and 
Dpresc is a scalar value of the prescribed dose. 

2.7. Statistical hypothesis testing 

A two-sided Wilcoxon signed-rank test with a significance level of 
0.05 was performed on the Bladder_Dmean, Body_D0.1%, FH_Sin_D2% and 
FH_DX_D2% predictions of the 2D baseline model and the 2.5D densely 
connected U-Net. For target (PTV_D95%, PTV_D98% CTV_D100%) and 
rectum (Rec_D30%, Rec_D15%, Rec_D10%) structures, a Bonferroni 
correction for multiple testing was applied, and a significance level of 
0.017 was used. 

3. Results 

3.1. DVH parameter evaluation 

The baseline model trained in 2D predicted dose to the PTV and CTV 
volumes within a mean percentage dose error of 4.4%, while the dose 
difference error in OAR and body structures remained within a mean 
percentage dose error of 2.8% and 2.7%, respectively (Fig. 5a). The 
densely connected U-Net trained in 2.5D maintained a mean percentage 
dose error within 1.9% for both, the CTV and the PTV volume (Fig. 5b). 
For OAR and body structures, the mean percentage dose error remained 
within 2.6% and 1.1%, respectively. The dose difference error for PTV 
and CTV between the dose distributions of the deliverable treatment 
plans and the GT stayed within 1.4%, while most OAR structures stayed 
within 3%, except for the Rec_D30% structure, which resulted in a mean 

Fig. 5. Dose difference comparison shown as the mean percentage dose error 
evaluated for multiple dose-volume histogram (DVH) parameters for n = 17 test 
patients. In general, 2D dose distribution predicted by the baseline U-Net model 
led to a poor dose coverage of the target volume (a). The densely connected 
model trained in 2.5D resulted in an overall lower dose difference for the target, 
body, and most of the organs at risk (OAR) structures, when compared to the 2D 
model (b). The mean percentage dose error stayed within 2.6%, 1.1% and 1.9% 
for OAR, body, and target structures respectively, whereas dose distributions 
predicted by the 2D baseline U-Net stayed within 3.4%, 2.7% and 4.4% for 
OAR, body, and target. Using our proposed treatment panning workflow, dose 
predictions derived from the densely connected U-Net could successfully be 
transformed into deliverable treatment plans, staying within a mean percentage 
dose error of 4.4%. Dose coverage of the target volume, body dose and the dose 
in most of the OARs were close to the ground truth (GT) dose distributions (c). 
The mean percentage dose error between the predicted dose distributions of the 
2.5D densely connected U-Net and the deliverable treatment plans was found to 
be 2.5%, 3.1% and 2.7% for OAR, body, and target volumes, respectively (d). 
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percentage error of 4.4% (Fig. 5c). The body structure stayed within a 
mean percentage error of 1.9%. A more detailed summary of the mean 
percentage dose errors for all evaluated DVH parameters is reported in 
Supplementary Table S2. 

An example dose distribution predicted by the densely connected U- 
Net for one of the test patients is shown in Fig. 6. The predicted dose 
distribution is shown in the axial plane together with the corresponding 
DVH curve, the dose distribution of the deliverable treatment plan 
generated by our proposed treatment planning workflow and the GT 
dose distribution. Both, the prediction, and the deliverable dose distri-
bution resulted in DVH curves similar to the GT. 

3.2. Model evaluation 

The improved performance of the densely connected U-Net trained in 

2.5D, was also reflected in model training. Using 5-fold cross validation, 
the baseline U-Net trained in 2D reached a mean (± SD) MSE loss of 
(7.1 ± 0.3) x10-4, which could be improved to a mean (± SD) MSE loss 
of (5.9 ± 0.2) x10-4, by training the same model architecture in 2.5D. 
The densely connected U-Net trained in 2.5D, achieved the lowest mean 
(± SD) MSE value of (4.8 ± 0.1) x10-4. Model training took about 15 h 
per fold, while the mean prediction time for a test patient was about 6.6 s 
once a model was loaded. 

3.3. Dose delivery analysis 

The dose verification measurements using the Delta4 phantom, 
resulted in a passing rate of 100%, global gamma (3%, 2 mm, cutoff of 
15%), for all test patients. 

Fig. 6. Example dose distribution predicted by the 2.5D densely connected U-Net shown for one of the patients from the test dataset, as well as the deliverable dose 
distribution, optimized based on the model’s dose prediction, and the ground truth (GT). All dose distributions are shown in the axial plan together with their 
corresponding dose-volume histogram (DVH) curves. Both, model prediction and the deliverable dose distribution resulted in a DVH similar to the clinical GT 
distribution. 
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3.4. Statistics 

The Wilcoxon signed-rank test performed on the predictions of the 
2D U-Net and the 2.5D densely connected U-Net resulted in a statisti-
cally significant difference for target structures (PTV_D95%, PTV_D98% 
CTV_D100%), Rec_D15%, Rec_D10%, FH_Sin_D2% and Body_D0.1%. There 
was no statistically difference for Bladder_Dmean, FH_DX_D2% and 
Rec_D30%. 

4. Discussion 

In this study, we presented a densely connected U-Net, able to pre-
dict 3D VMAT dose distributions for prostate cancer patients. In contrast 
to previous studies, where model training was performed in 2D 
[1,4,7,11,12], we suggested a 2.5D training approach using image 
triplets. In addition, we presented a, to the best of our knowledge, novel 
treatment planning workflow using a commercially available TPS, to 
transform model predictions into deliverable treatment plans. 

Model and dose distribution evaluation was performed using the 
mean percentage dose error for multiple DVH parameters. Compared to 
the 2D baseline model, the mean percentage dose error for our densely 
connected U-Net trained in 2.5D was lower for almost all presented DVH 
parameters, showing that dose prediction accuracy could be improved 
by adding nearby, volumetric information through triplets. The pre-
dictions of the 2D baseline U-Net resulted in a dose difference between 
the CTV and the PTV, which might not be achievable, due to physical 
limitations of clinical linear accelerators. The dose difference between 
CTV and PTV was reduced using the 2.5D densely connected U-Net, and 
completely removed by transforming predictions into deliverable 
treatment plans. The overall better performance of the densely con-
nected U-Net was also observed from the cross-validation result, where 
the 2.5D densely connected U-Net led to the smallest MSE. The baseline 
U-Net trained in 2.5D was not further investigated regarding dose pre-
diction performance and treatment plan generation, as our 2.5D densely 
connected U-Net resulted in a lower MSE value. 

Widely varying dose planning practices and the use of different 
treatment planning guidelines often result in different training datasets 
with diverging quality, making a direct comparison to previous studies 
challenging. Nevertheless, to some extent, the dose prediction results of 
our densely connected U-Net trained on triplets are comparable with the 
results of Ma et al. [11], who trained a 2D deep learning model on 
segmentation structures, as well as a modified model, where dosimetric 
features in form of PTV only plans where incorporated into the con-
volutional neural network. Ma et al. [11] found that the average dose 
difference between the GT treatment plans and the 2D model’s pre-
dictions were within 3.7% and 4.3% for PTV_D95% and Bladder_Dmean, 
respectively. For the improved model trained on segmentations and 
dosimetric PTV features, average dose differences of 2.1% and 3.5% for 
PTV_D95% and Bladder_Dmean were reported. Our 2.5D densely con-
nected U-Net performed somewhat better, resulting in dose differences 
within an average error of 1% and 2.1% for PTV_D95% and Bladder_D-
mean, respectively. 

To transform dose predictions into clinical and deliverable treatment 
plans, we tested a novel nearest neighbor treatment planning workflow. 
All deliverable treatment plans were generated based on the model’s 
predictions and successfully delivered to a Delta4 phantom. A somewhat 
larger standard deviation for Rec_D30% and the FH structures could be 
observed in the deliverable treatment plans, which might be based on 
the overall low priority of these structures according to the used clinical 
protocol (see Supplementary Table S3), leading to more variations. 

McIntosh et al. [10] suggested a dose mimicking algorithm based on 
voxel objectives, to transform dose predictions into deliverable treat-
ment plans. In our work, DVH-based optimization parameters were 
used, which might result in a plan with a somewhat different dose, 
particularly in the low-dose volume. Nevertheless, after a short opti-
mization, where MLC segments are finely tuned to deliver the predicted 

dose distribution, our method allows for further plan optimization, 
which might improve the overall treatment plan quality and decrease 
variances of the treatment planning process. The ability to continue 
optimizing could be advantageous compared to the dose mimicking 
approach used by McIntosh et al. [10]. This hypothesis remains to be 
tested though, as an in-depth analysis of differences and merits of either 
of the methods is beyond the scope of this work. Even though our pre-
sented treatment planning workflow can be used to transform dose 
predictions into deliverable VMAT prostate treatment plans, our study 
comprises some limitations. The workflow between the dose prediction 
model and the TPS is not fully automated yet, and some manual in-
terventions, e.g., DICOM import and setting new optimization objec-
tives, are needed. We also believe that high quality plans should 
continuously be added to the space of the nearest neighbor search, to 
potentially find more suitable dose-volume criteria for a specific patient 
and improve the overall treatment plan quality. 

Before clinical implementation, a quality assurance (QA) method to 
discover suboptimal dose predictions should be developed. For the 
deliverable treatment plans, generated based on the predicted dose, a 
routine plan QA should be sufficient, as these plans are finalized using a 
clinical TPS. 

In future projects we would like to explore other areas, e.g., fully 3D 
training, the direct prediction of MLC sequences, Monitor Units (MU) 
and dose volume criteria, as well as the predictions of multiple plan 
suggestions, to improve our methods. 

In conclusion, a densely connected U-Net trained in 2.5D, able to 
predict VMAT dose distributions was presented. Predictions were 
transformed into deliverable treatment plans using a novel planning 
workflow. By evaluating the quality of our dose distribution predictions, 
the treatment plan optimization workflow as well as the final QA de-
livery, our work indicates that our method can be used in a clinical 
setting. Our suggested deep learning-based method shows great poten-
tial and might refine the overall treatment planning workflow for 
prostate cancer patients, by accelerating the treatment planning process. 
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