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Experimental contextuality in 
classical light
Tao Li1,2, Qiang Zeng1, Xinbing Song1 & Xiangdong Zhang1

The Klyachko, Can, Binicioglu, and Shumovsky (KCBS) inequality is an important contextuality 
inequality in three-level system, which has been demonstrated experimentally by using quantum 
states. Using the path and polarization degrees of freedom of classical optics fields, we have 
constructed the classical trit (cetrit), tested the KCBS inequality and its geometrical form (Wright’s 
inequality) in this work. The projection measurement has been implemented, the clear violations of 
the KCBS inequality and its geometrical form have been observed. This means that the contextuality 
inequality, which is commonly used in test of the conflict between quantum theory and noncontextual 
realism, may be used as a quantitative tool in classical optical coherence to describe correlation 
characteristics of the classical fields.

Contextuality is a curious property in quantum world. In classical world, an observable is predefined and has a 
joint probability distribution when it is measured with the other observables. This observable is independent of 
other compatible observables that are measured simultaneously with it. This independency is called noncontextu-
ality. Kochen and Specker proposed the original contextual theory in 19671. The theory gives the conflict between 
quantum mechanics and noncontextuality reality. The original theory needs 117 tests in dimension d =​ 3, and it 
is complex and nearly impossible to demonstrate experimentally. Afterwards the theory is simplified by many 
researchers2–7. These simplified contextuality theories have been tested experimentally, for instance in photon8–13, 
neutron14,15, trapped ion16 and nuclear magnetic resonance17,18 systems. For the three-level system, Yu and Oh 
proposed a contextuality inequality, which needs only 13 variables and 24 pair correlations19. The scenario is 
state independent and only requires a single qutrit. Klyachko, Can, Binicioglu, and Shumovsky also found a state 
dependent contextuality inequality in the three-level system20. The three-level system is the simplest case to show 
quantum contextuality. The Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequality is fundamentally impor-
tant, because it is behind the violation of other noncontextualities21.

The state independent inequality (13 variables and 24 pair correlations as described in ref. 19) has been 
demonstrated by Zu et al. using the qutrit encoded in three paths of the single photons22. In a single trapped 
ion system, the inequality has also been tested by Zhang et al.23. Using the polarization and path of single pho-
tons, the demonstration of the inequality has been implemented by Huang et al.24. These three-level systems 
are indivisible. For the KCBS inequality as shown in ref. 20, several experiments have also been performed with 
the single photons, trapped ions and biphotons. Lapkiewicz et al. firstly proved the violation of the KCBS ine-
quality with the single photon qutrit25. Subsequently, the experimental demonstrations of the KCBS inequal-
ity and the Wright inconsistency have been reported by Ahrens et al.26. The demonstration of violation of the 
KCBS inequality and the random-number production have been implemented by a single trapped ion27. Using 
nitrogen-vacancy centers, Kong et al. have tested the violation of the geometrical form of the KCBS inequality28. 
An experiment for the KCBS contextuality and nonlocality has also been implemented by Shaham et al.29. In 
addition, the no-disturbance monogamy relation about the KCBS contextuality and the nonlocality has also been 
discussed30,31. The contextuality is important for applications32 and theoretical investigations, but it is difficult to 
implement experimentally. Thus, it is necessary to develop new simplified methods.

On the other hand, recent investigation has shown that the quantum bound is not exclusive to quantum the-
ory33. It has been demonstrated that the quantum bound exists similarly in classical microwaves. The local and 
nonlocal correlations in the classical optical beams, which violate the Bell inequality, have been demonstrated 
in a series of works34–41. However, the KCBS contextuality has not been studied in classical wave systems so far.

In this paper we study the KCBS contextuality in classical light systems. The polarization and path of the clas-
sical light beams are used to build the classical trit, which is called the “cetrit” like the cebit in ref. 42. Based on the 
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bases of the cetrit, the input state is constructed, and then the observables are tested by projective measurement. 
Here the typical KCBS inequality and its geometrical form are studied, and the results are compared with the 
noncontextuality cases.

Results and Discussion
KCBS inequality and its expression in classical optical systems.  According to ref. 20, if we consider 
the five observables ′A i (i =​ 1, 2, …​. 5), which have the values +​1 or −​1, the algebraic inequality for any choice of 
them can be expressed as

′ ′ + ′ ′ + ′ ′ + ′ ′ + ′ ′ ≥ − .A A A A A A A A A A 3 (1)1 2 2 3 3 4 4 5 5 1

For the contextuality inequality, the observables ′A i correspond to the five unit vectors, which are expressed 
with ′a i. The eigenvalues of the operators ′ ′a ai i  are 0 or 1, as well as ′A i =​  − ′ ′a a2 i i  (where  is a 3 ×​ 3 
identity matrix), thus the eigenvalues of ′A i are +​1 or −​1. The unit vectors ′a i are presented at the five vertexes of 
pentagram, where ′a i and ′ +a i 1 (i +​ 1 modulo 5) are orthogonal, and they are compatible. When ′a i and ′ +a i 1 pro-
ject to the pentagram plane, the angle between the projected vectors of ′a i and ′ +a i 1 is 4π​/5, and the angle between 
the direction vector and the symmetry axis is approximately 4π​/15. It is easy to obtain:
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where π= +N 1/ 1 cos( /5)  is a normalization constant. For the KCBS inequality, the input state is at the sym-
metry axis of the pentagram20. The input state |ϕ〉​ projects to the five couples of observables ′ ′ +A Ai i 1, and the 
inequality has the maximum violation,

′ ′ + ′ ′ + ′ ′ + ′ ′ + ′ ′ ≥ − ≈ − .A A A A A A A A A A 5 4 5 3 944, (3)1 2 2 3 3 4 4 5 5 1

where ′ ′ +A Ai i 1  is used to denote the average of the measurement outcome of ′ ′ +A Ai i 1. The KCBS inequality is 
state dependent, here the input state is taken as the specific input state |ϕ〉​ =​ |2〉​. The geometric form of the KCBS 
inequality or Wright’s inequality is expressed as20
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Under the Kochen-Specker rules, the value at every direction vector is predetermined to 1 or 0, but the maximum 
is only one for the two orthogonal directions. Thus, the maximum is two for the five directions of pentagram. In 
quantum mechanics we select the same input state like that in the KCBS inequality, and ϕ′ = =πa cosi
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(the angle between ′a i and |ϕ〉​ is approximately 4π​/15) can be obtained. Thus, we have
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The above inequalities (Equations (3) and (5)) have been demonstrated experimentally using quantum 
states25–29.

Now we use classical optical fields to express the input state and the direction unit vectors for the KCBS ine-
quality and its geometric form as showed in Fig. 1. The input state is written as χ = → + → + →E e E e E e) ) ) )0 0 1 1 2 2 , 
where E0, E1 and E2 represent amplitudes of the classical optical fields, and →e )0 , →e )1  and →e )2  are the cetrit’s bases 
corresponding to quantum bases |0〉​, |1〉​ and |2〉​ in three-dimensional space43. Here a slightly modified version of 
the familiar bra-ket notation of quantum mechanics is taken to express these vectors in the classical optical fields. 
Meanwhile the direction unit vector can be denoted as α β γ= → + → + →a e e e) ) ) )i i i i0 1 2 , where α = πN cosi

i4
5

, 
β = πN sini

i4
5

 and γ = πN cosi 5
 are the coefficients corresponding to those in Eq. (2).

In the following we calculate the correlations AiAi+1 of classical optical fields. In order to describe the KCBS 
inequality, χ = →E e) )2 2  is taken as the input state, which is at the symmetry axis of the pentagram as shown  
in Fig. 1. = −A a a2 )(i i i  is used to express the observable in the classical optical systems, where |ai) is  
the direction unit vector. For the input state |χ ​), from the correlation = −+A A a a[ 2 )( ]i i i i1  
[  − = − −+ + + +a a a a a a[ 2 )( ] 2 )( 2 )(i i i i i i1 1 1 1 , we can obtain the average value ( +A Ai i 1 ) of AiAi+1 as 
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tude E2 need to be normalized. When it is normalized, the value = −+A A 1i i 1
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, therefore
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Equation (6) corresponds to Eq. (3), which is the corresponding form of the KCBS inequality in the classical 
optical systems. For the geometric form of the KCBS inequality (or called Wright’s inequality), the input state is 
χ = →E e) )2 2 , similarly we can obtain the equation χ γ= = =πa E E E( ) cosi i
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The geometric form of the KCBS inequality is also violated in the classical optical systems. In the following, we 
test experimentally the KCBS inequality and its geometrical form in the classical light systems.

Experimental demonstration of the KCBS inequality in classical light systems.  The test of the 
KCBS inequality needs a three-level system. Using classical optical beams, we can construct the corresponding 
system. The scheme is shown in Fig. 2. It consists of two parts: state preparation and measurement. In the state 
preparation stage, the laser beam from He-Ne laser transmits through Glan prism and then the laser beam pos-
sessing the certain polarization appears. Here the center wavelength of the laser beam is 633 nm. The beam is split 
through polarizing beam splitters (PBSs) and is modulated by half-wave plates (HWPs) to perform the construc-
tion of classical trit (cetrit). The different polarizations in three paths of classical optical fields are used to carry out 
the process as showed in Fig. 2. The horizontal polarization for the first path, the vertical polarization for the 
second path, and the horizontal polarization for the third path are encoded to →E e )0 0 , →E e )1 1  and →E e )2 2 , respec-
tively, that is

Figure 1.  Representation of the measurement for the KCBS inequality in three-dimensional space. A1, A2, 
A3, A4, A5 are observables at five directions, and the direction vectors are pairwise orthogonal. |χ) is used to 
express the input state in the classical light systems.

Figure 2.  The experimental setup for the test of the KCBS inequality. The laser pulses from the He-Ne laser 
transmit through the GRIN lens (GL), and we obtain the horizontal polarization optical beam. Then the beam is 
modulated by HWPs and PBSs to achieve our construction. At last the light intensities are detected by the three 
photoelectric detectors (PD1, PD2 and PD3) at the three output ports. The HWP3, 4, and 6 are used for path-
length compensation. HWP, half-wave plate; PBS, polarizing beam splitter; PD, photoelectric detector.
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where →e )0 , →e )1  and →e )2  are the basis vectors, E0, E1 and E2 represent the amplitudes of classical optical fields for 
the different paths. With tuning the HWP1 and HWP2, the different amplitudes of classical optical fields in three 
paths can be obtained, thus the desired input state can be represented with these bases, namely, 
χ = → + → + →E e E e E e) ) ) )0 0 1 1 2 2 . In our experiment, the HWP1 and HWP2 all are set to 45°, and the specific 
input state χ = →E e) )2 2  for the KCBS inequality is obtained.

In the KCBS experiment, these observables correspond to their respective operators. After the input state 
is projected onto the eigenstates of each operator, the measurement for the observable can be implemented. In 
the three-level system, the operator owns three different eigenstates and the corresponding eigenvalues. Here 
the input state is projected onto the eigenstate and then the probability of the eigenvalue is obtained. When the 
eigenvalue is multiplied by its probability, we can obtain the observable by summing the product. Nevertheless, 
the probability can be obtained by detecting the light intensity in our classical optical experiments (see Methods 
section for details).

For the KCBS inequality, we need to test the correlation +A Ai i 1 , and the observables Ai and Ai+1 need  
to be tested simultaneously. Here the operator = −A a a2 )(i i i , and its eigenvalues are +​1, +​1 and −​1,  
which correspond to the values of ′A i in Eq.(1). The eigenvalues +​1 and −​1 for the operator  − a a2 )(i i   
correspond to the eigenvalues 0 and 1 for |ai)(ai|, and their eigenstates are also one-to-one correspondence.  
We adopt the scheme of joint measurement to test the contextuality inequality22. In order to measure the  
correlation AiAi+1, we need to know their respective eigenstates corresponding to eigenvalues +​1, +​1 and −​1.  
As Ai and Ai+1 are orthogonal, the eigenstate of Ai corresponding to the eigenvalue −​1 is just the eigenstate  
of Ai+1 corresponding to the eigenvalue +​1. In contrast, for the eigenstate corresponding to Ai+1 =​ −​1,  
it is just the eigenstate corresponding to Ai =​ +​1. When the input state is projected onto the respective  
eigenstates, we can obtain the joint probabilities P(Ai =​ −​1, Ai+1 =​ +​1) and P(Ai =​ +​1, Ai+1 =​ −​1.  
At the same time, there is the third eigenstate that the eigenvalues all are +​1 for Ai and Ai+1, and the probability  
is P(Ai =​ +​1, Ai+1 =​ +​1. However, the eigenstate is nonexistent when the corresponding eigenvalues for  
both Ai and Ai+1 are taken as −​1, there is no the joint probability in such a case. With these probabilities, we can 
obtain = − = − = + − = + = − + = + = ++ + + +A A P A A P A A P A A( 1, 1) ( 1, 1) ( 1, 1)i i i i i i i i1 1 1 1 . 
Then, the contextuality can be calculated from Eq. (6).

The above measurement process can be completed by the experimental setup of measurement part in Fig. 2. 
For the measurement of the observable AiAi+1, because Ai and Ai+1 possess a joint probability, they are required 
to measure simultaneously in the experiment. Due to the complexity of expressions for ai, it is difficult to estab-
lish the eigenstates of Ai and Ai+1 simultaneously. The experiment setting needs to be designed skillfully and the 
observable AiAi+1 needs to be measured carefully. In order to obtain the eigenstates of Ai and Ai+1 simultaneously, 
some designs are done and several interferometers are cascaded to achieve the above purpose. Then the cetrit 
bases can map to these eigenstates at the three output ports as showed in Fig. 2. Using the HWPs (5, 7 and 8) and 
PBSs (4, 5 and 6), the polarization and path are combined to accomplish the construction. The expressions of the 
state vectors at the three output ports are showed in Eq. (11) (see Methods section).

With suitably setting up the angles of HWP5, HWP7 and HWP8, the eigenstates of these observables  
can be obtained at three output ports. They meet the requirements of joint measurement. Taking A1  
and A2 for examples, the setting angles of HWP5, HWP7 and HWP8 are 117°, 24°, and 32°, respectively.  
Hence the state vectors at output ports 1, 2 and 3 are − . → + . → + . →e e e0 6012 ) 0 43682 ) 0 66912 )0 1 2 , . →e0 2288 )0
− . → + . →e e0 70822 ) 0 66792 )1 2 , − . → − . → − . →e e e0 7656 ) 0 5547 ) 0 3258 )0 1 2 , respectively. The output states at the 
port 1 describe the eigenstates with eigenvalues A1 =​ −​1and A2 =​ +​1. The output states at the port 2 correspond 
to the eigenstates with A1 =​ +​1 and A2 =​ −​1. But the output states at the port 3 are the eigenstates with A1 =​ +​1 
and A2 =​ +​1. The state vectors of output ports 1 and 2 correspond to the expressions in Eq. (9) (see Methods 
section), and they are the interrelated eigenstates of A1 and A2. Because of the imperfect setting angles of HWPs, 
the expressions have a little deviation. With the input state being projected onto these eigenstates, the joint prob-
abilities are obtained when we measure the light intensities at the three output ports. The light intensities are 
detected by three photodetectors (PD1, PD2 and PD3). The light intensity of each output port is normalized 
(divided by the total light intensities), and the probability of eigenvalue is obtained. The measurement probabili-
ties for the output ports 1, 2 and 3 correspond to P(A1 =​ −​1, A2 =​ +​1), P(A1 =​ +​1, A2 =​ −​1) and P(A1 =​ +​1, 
A2 =​ +​1), respectively, thus the observable A1A2 can be obtained.

The measurement methods for all five pairs of observables are the same. We tune the angles of the HWPs and 
obtain the desired eigenstates of the pairs of observables. The setting angles of the HWPs for the measurements of 
the different correlation pairs are given in Methods section. Then the input state is projected onto these  
eigenstates and the light intensities of the output ports are measured for every setting. The light intensity of  
each output port is normalized, therefore the joint probabilities of Ai and Ai+1 are acquired, PPD1 =​ I1/(I1 +​ I2 +​ I3), 
P P D 2  = ​ I 2/ ( I 1  + ​ I 2  + ​ I 3)  a n d  P P D 3  = ​ I 3/ ( I 1  + ​ I 2  + ​ I 3) .  A n d  t h e n  u s i n g  t h e  r e l a t i o n : 

= − = − = + − = + = − + = + = ++ + + +A A P A A P A A P A A( 1, 1) ( 1, 1) ( 1, 1)i i i i i i i i1 1 1 1 ,  the f ive 
pairs of observables can be calculated. The probabilities and measurement values of +A Ai i 1 are given in the fol-
lowing Table 1.

With summing the five sets of results, we can calculate the contextuality for Eq.  (6). The result is  
−​3.4196 ±​ 0.0057 and less than the minimum value −​3. Due to inaccuracy of the experiment measurements, the 
experiment results have some deviations from the theoretical values. However, they still show strong violation of 
the noncontextuality inequality. This means that the KCBS contextuality can be realized in the classical optical 
systems similar to the cases in the single photon systems.
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Experimental demonstration for the geometric form of the KCBS inequality in classical light 
systems.  For the geometric form of the KCBS inequality, the input state needs to be projected onto the eigen-
states of the operator |ai)(ai|. The operator owns eigenvalues 0, 0, +​1 and the corresponding eigenstates. When the 
input state is projected onto the relevant eigenstates, the probability of the eigenvalue is obtained. Each eigenvalue 
is multiplied by its respective probability. Then with summing the three computation results, we got these observ-
ables. In such a case, the experimental setting shown in Fig. 2 can be simplified to Fig. 3 to measure the geometric 
form of the KCBS inequality.

In the state preparation stage as showed in Fig. 3, the different polarizations of the classical light fields in three 
paths indicate three-dimensional basis vectors. Just like the case in the Fig. 2, these bases construct the input state 
χ = → + → + →E e E e E e) ) ) )0 0 1 1 2 2 . Likewise, the angles of the HWP1 and HWP2 all are set to 45° to obtain the 
particular input state χ = →E e) )2 2  for the geometric form of the KCBS inequality.

Similarly we need to construct these eigenstates of the operator |ai)(ai| and implement the projective measure-
ments in the measurement stage. As showed in Fig. 3, with utilizing the appropriate settings for HWP5, HWP6 
and the PBSs, the three eigenstates of |ai)(ai| can be constructed using the classical optical fields at the three out-
put ports. The state vectors at the three output ports are expressed in Methods section. The output ports 1, 2 and 
3 correspond to the eigenstates with eigenvalues 0, 0 and +​1, respectively. Take |a1)(a1| as an example, the setting 
angles of HWP5 and HWP6 are 117° and 24°, respectively. We assume that the amplitudes of the three input bases 
a l l  a r e  u n i t  a m p l i t u d e ,  t h e  l i g h t  f i e l d s  c a n  e x p r e s s e d  a s  − . → − . →e e0 5878 ) 0 8090 )0 1 , 
. → − . → + . →e e e0 5413 ) 0 3933 ) 0 7431 )0 1 2 , and − . → + . → + . →e e e0 6012 ) 0 4368 ) 0 6691 )0 1 2  at the three output 

ports 1, 2 and 3, respectively. They correspond to the three eigenstates with eigenvalues 0, 0 and +​ 1 of the opera-
tor |a1)(a1|. In order to obtain the probabilities corresponding to eigenvalues 0, 0 and +​1, we measure the light 
intensities at the respective output ports. After the normalization, we obtain the probabilities of eigenvalues, 
namely PPD1 =​ I1/(I1 +​ I2 +​ I3), PPD2 =​ I2/(I1 +​ I2 +​ I3) and PPD3 =​ I3/(I1 +​ I2 +​ I3). With the probabilities we can cal-
culate the value χ =a P( )1

2
PD3 and further obtain χ∑ = a( )i i1

5 2. Of course, the light intensity may also be 
regarded as the modular square of the input state |χ​) being projected directly onto the direction vector ai, which 
corresponds to the expression in Eq. (7). For the other terms, the methods are the same. The Eq. (7) can be calcu-
lated using these measurement results and then we can detect the violation of the geometric form of the KCBS 
inequality. The experimental results are shown in Table 2.

The upper bound of the inequality for Eq. (4) is 2 and the maximum theoretical prediction is 2.236. Our exper-
iment result is 2.1880 ±​ 0.0064, which show obvious violation of the inequality. This means that the violation of 
the geometric form of the KCBS inequality can also be observed in classical light systems. The above experi-
mental results of the KCBS inequality and its geometrical form have always some deviations with the theoretical 

Terms PD1 PD2 PD3 Calculated result

A A1 2
P( = −A 1,1

A2 =​ +​1)
0.4308 ±​ 0.0046 P(A1 =​ +​1, 

A2 =​ −​1) 0.4204 ±​ 0.0049 P(A1 =​ +​1, 
A2 =​ +​1) 0.1488 ±​ 0.0012 −​0.7024 ±​ 0.0024

A A3 2
P(A3 =​ −1, 
A2 =​ +​1) 0.4313 ±​ 0.0039 P(A3 =​ +​1, 

A2 =​ −​1) 0.3974 ±​ 0.0053 P(A3 =​ +​1, 
A2 =​ +​1) 0.1713 ±​ 0.0023 −​0.6574 ±​ 0.0046

A A3 4
P(A3 =​ −​1, 
A4 =​ +​1) 0.4313 ±​ 0.0026 P(A3 =​ +​1, 

A4 =​ −​1) 0.4154 ±​ 0.0027 P(A3 =​ +​1, 
A4 =​ +​1) 0.1533 ±​ 0.0036 −​0.6935 ±​ 0.0071

A A5 4
P(A5 =​ −​1, 
A4 =​ +​1) 0.4297 ±​ 0.0029 P(A5 =​ +​1, 

A4 =​ −​1) 0.4011 ±​ 0.0068 P(A5 =​ +​1, 
A4 =​ +​1) 0.1691 ±​ 0.0042 −​0.6618 ±​ 0.0084

A A5 1
P(A5 =​ −​1, 
A1 =​ +​1) 0.4313 ±​ 0.0045 P(A5 =​ +​1, 

A1 =​ −​1) 0.4210 ±​ 0.0035 P(A5 =​ +​1, 
A1 =​ +​1) 0.1477 ±​ 0.0012 −​0.7045 ±​ 0.0024

−​3.4196 ±​ 0.0057

Table 1.   The experimental probabilities and calculated results for the KCBS inequality.

Figure 3.  Experimental setup for the test of the geometric form of the KCBS inequality. The establishment 
of the input state and the eigenstates, and the detection method are similar to the test of the KCBS inequality. 
The HWP3 and HWP4 are used for the path-length compensation similarly.
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maximum violation. This is because there are some imprecise measurements and imperfect operations on optical 
elements in the experiments. For example, the PBS cannot transmit the horizontal polarization light and reflect 
the vertical polarization light absolutely. The mixed polarization lights always enter into the light path because 
of the inaccurate PBS. Although there are some imprecise measurements, the presented experiments still yield 
strong violation of the KCBS inequality and its geometrical form.

Conclusions
We have performed the experimental test for the KCBS inequality and its geometry form (or Wright’s inequality) 
in the classical light systems. Using the polarization and path, the cetrit has been constructed, the projection 
measurement has been implemented, the clear violations of the KCBS inequality and its geometrical form have 
been observed. This indicates that the contextuality inequality, which is commonly used in test of the conflict 
between quantum theory and noncontextual realism, can be used in the classical optical coherence to describe 
correlation characteristics of the classical fields. In addition, recent investigations have shown that there is a 
remarkable equivalence between the onset of contextuality and the possibility of universal quantum computa-
tion32. Thus, our results also imply that the strong quantum computing power is likely to be simulated in the 
classical light systems.

Methods
The probability of eigenvalue is tested by measuring light intensity in classical optics sys-
tems.  In the classical  opt ical  systems,  the direct ion unit  vector can be expressed as 

α β γ= → + → + →a e e e) ) ) )i i i i0 1 2 , and in the general case the input state is χ = → + → + →E e E e E e) ) ) )0 0 1 1 2 2 . In 
Eq. (2) the expression of the state vector is clear for the geometric comprehension of pentagram direction unit 
vector, but it is not direct for the algebra calculation. Thus, we transform it into the decimal forms:

= − . → + . → + . →

= . → − . → + . →

= . → + . → + . →

= − . → − . → + . →

= . → + . →

a e e e
a e e e
a e e e
a e e e
a e e

) 0 6014 ) 0 4370 ) 0 6687 )
) 0 2297 ) 0 7071 ) 0 6687 )
) 0 2297 ) 0 7071 ) 0 6687 )
) 0 6014 ) 0 4370 ) 0 6687 )

) 0 7435 ) 0 6687 ) (9)

1 0 1 2

2 0 1 2

3 0 1 2

4 0 1 2

5 0 2

In the measurement stage, the input state needs to be projected onto the different eigenstates of the operator Ai, 
and then we can calculate the observables. Here the eigenstates are also expressed with the classical optical fields, 
where |ai) is exactly the eigenstate corresponding to the eigenvalue −​1 for the operator Ai ( =Ai  − a a2 )(i i ). The 
probability for the eigenvalue −​1 is χa( )i

2 when the input state |χ) is projected onto the eigenstate |ai). The 
probability |(ai|χ​)|2 is the modular square of the amplitude of the optical field in the experiment, and the modular 
square of the amplitude is the light intensity I

χ α β γ= + + = .⁎ ⁎ ⁎a E E E I( ) (10)i i i i
2

0 1 2
2

Thus the probability of the eigenvalue can be expressed with the light intensity and we can detect the light 
intensity to obtain the probability of the eigenvalue in our experiment. The probabilities of two other eigenvalues 
can be measured similarly.

The expressions of state vectors at the three output ports and the setting angles of HWPs for 
the two experiments.  For the KCBS inequality, we need to construct the interrelated eigenstates that satisfy 
the joint measurement scheme at the three output ports. The transformation matrix of the HWP is 

θ θ
θ θ−( )cos 2 sin 2

sin 2 cos 2
, where θ is the rotation angle of the HWP. We assume that all amplitudes for the three input 

bases are unit amplitudes, and at the three output ports the output expressions may be written as

Terms PD1 P(ai = 0) PD2 P(ai = 0) PD3 P(ai = 1) Theoretical value

a1 0.0381 ±​ 0.0004 0.5214 ±​ 0.0019 0.4405 ±​ 0.0021 0.4472

a2 0.0402 ±​ 0.0003 0.5232 ±​ 0.0020 0.4366 ±​ 0.0019 0.4472

a3 0.0388 ±​ 0.0003 0.5239 ±​ 0.0014 0.4373 ±​ 0.0014 0.4472

a4 0.0401 ±​ 0.0007 0.5214 ±​ 0.0031 0.4386 ±​ 0.0034 0.4472

a5 0.0395 ±​ 0.0003 0.5255 ±​ 0.0030 0.4350 ±​ 0.0029 0.4472

2.1880 ±​ 0.0064 2.236

Table 2.   The experimental results and the theoretical predictions of the observables for the geometric form 
of the KCBS inequality. Because the eigenvalues for the output port 1 and 2 all are 0, the result of the output 
port 3 is the value of the observable.
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θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ θ θ

→ − → + →

− → +

+ → + →

+ → +

− → − →

e e e
e

e e
e

e e

sin 2 sin 2 ) cos 2 sin 2 ) cos 2 )
(cos 2 cos 2 sin 2 cos 2 sin 2 ) )

(sin 2 cos 2 cos 2 cos 2 sin 2 ) ) sin 2 sin 2 )
(cos 2 sin 2 sin 2 cos 2 cos 2 ) )

(sin 2 sin 2 cos 2 cos 2 cos 2 ) ) sin 2 cos 2 ) (11)

5 7 0 5 7 1 7 2

5 8 5 7 8 0

5 8 5 7 8 1 7 8 2

5 8 5 7 8 0

5 8 5 7 8 1 7 8 2

In the Table 3, we display the rotation angles of HWPs for the measurements of five pairs of observables  
for the KCBS inequality. For the geometric form of the KCBS inequality, we need to construct the  
eigenstates of the operator |ai)(ai| with the combination of HWPs and PBSs. As showed in Fig.  3, at  
the three output ports 1, 2 and 3, the state vectors can be expressed as θ θ→ + →e ecos 2 ) sin 2 )5 0 5 1 , 

θ θ θ θ θ− → + → + →e e esin 2 cos 2 ) cos 2 cos 2 ) sin 2 )5 6 0 5 6 1 6 2  a n d  θ θ →esin 2 sin 2 )5 6 0
θ θ θ− → + →e ecos 2 sin 2 ) cos 2 )5 6 1 6 2 , respectively. With suitably choosing the angles of HWP5 and HWP6, 

the desired eigenstates are obtained at the three output ports. In the following Table 4, it is the setting angles of 
HWP5 and HWP6 for the five measurements.
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