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Nanoparticles based on single-component synthetic polymers, such as poly

(lactic acid-co-glycolic acid) (PLGA), have been extensively studied for

antitumor drug delivery and adjuvant therapy due to their ability to

encapsulate and release drugs, as well as passively target tumors.

Amphiphilic block co-polymers, such as polyethylene glycol (PEG)-PLGA,

have also been used to prepare multifunctional nanodrug delivery systems

with prolonged circulation time and greater bioavailability that can encapsulate

a wider variety of drugs, including small molecules, gene-targeting drugs,

traditional Chinese medicine (TCM) and multi-target enzyme inhibitors,

enhancing their antitumor effect and safety. In addition, the surface of PEG-

PLGA nanoparticles has been modified with various ligands to achieve active

targeting and selective accumulation of antitumor drugs in tumor cells.

Modification with two ligands has also been applied with good antitumor

effects, while the use of imaging agents and pH-responsive or magnetic

materials has paved the way for the application of such nanoparticles in

clinical diagnosis. In this work, we provide an overview of the synthesis and

application of PEG-PLGA nanoparticles in cancer treatment and we discuss the

recent advances in ligand modification for active tumor targeting.
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1 Introduction

Tumor malignancies are the second leading cause of death worldwide and their

treatment remains expensive and complex (Wiśniewski et al., 2020). Tumor drug

therapies mainly include treatment with cytotoxic small molecules, drugs targeting

genes or other molecules, as well as active substances of traditional Chinese medicine

(TCM). Although more than half of the 170 drugs used for cancer treatment target specific

molecules (Levêque and Becker, 2019), chemotherapy and adjuvant TCM treatment are also

widely used in clinical practice due to their relatively low price and good therapeutic effect.

However, current therapeutic agents suffer from low bioavailability, rapid elimination in

vivo, high toxicity to normal host cells, and low retention at the tumor site. Peptides used in
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anti-tumor therapy have the advantages of good membrane

permeability and high specificity, but their disadvantages such

as high cost, short circulating half-life and rapid clearance in vivo

limit their wide clinical application (Firer and Gellerman, 2012;

Ciobanasu, 2021). The new generation of nanocarrier materials

MOFs (metal organic frameworks) has certain potential in disease

diagnosis and drug targeted delivery (Karami et al., 2021).

However, problems such as the high cost of MOFs synthesis,

premature drug release caused by rapid metabolism in vivo or

clearance by the immune system, carrier stability, and lack of

biocompatibility studies still indicate that clinical application of

MOFs needs more exploration (Cai et al., 2020).

Nanoparticles (NPs) have been identified as ideal carriers for

various types of drugs due to their biodegradability,

biocompatibility, storage stability, and easy surface modification

(Mitchell et al., 2021). In addition, their particle size and unique

surface properties make them suitable for passive targeting of solid

tumors: due to the enhanced permeability and retention (EPR)

effect, NPs can be retained within the rich blood vessels and on the

extensive vascular surfaces in the tumor tissue, where there is no

lymphatic reflux to clear them away. For instance, NPs based on

the US Food and Drug Administration (FDA)-approved poly

(lactic acid-co-glycolic acid) (PLGA) have been widely used to

encapsulate almost all types of antitumor drugs, offering good

biodegradability, minimal systemic toxicity, and high

bioavailability (Khan et al., 2016a). However, their application

is limited because intravenously administered PLGANPs are easily

opsonized and rapidly cleared by the reticular endothelial system

(Noori Koopaei et al., 2014).

In order to improve the properties of PLGA NPs and achieve

long-term therapeutic effects, polyethylene glycol (PEG) has been

conjugated with PLGA to construct a new type of amphiphilic

block co-polymer nanoplatform, PEG-PLGANPs. Compared with

unPEGylated PLGA nanoparticles, PEGylated PLGA

nanoparticles showed a characteristic improvement in the

symptoms of multiple sclerosis in mice (Li P. Y. et al., 2021),

indicating their potential to improve immune tolerance. Pegylated

lipid-PLGA hybrid NPs can significantly reduce the fusion

phenomenon of nanoparticles during storage, and further

improve the internalization of cell uptake experiments while

improving stability (Hu et al., 2015). In studies of PLGA-based

magnetic nanoparticles, PEGylation reduces neurotoxicity and

improves the stability of the loaded therapeutic DNA in

primary hippocampal neurons (Cui et al., 2019). PEGylation

also improves the biocompatibility of PLGA-based contrast

agent composite nanomaterials to some extent (Xu et al., 2015).

The novel preparation showed improved drug encapsulation

efficiency and controlled release, especially of chemotherapeutic

drugs, active TCM substances, and gene-targeting drugs. In

addition, PEG-PLGA NPs exhibited high stability, good

bioavailability, and enhanced passive targeting ability by the

EPR effect, which promoted the targeted accumulation of the

drug at the tumor site and improved its safety.

The surface of PEG-PLGA NPs has also been modified with

various ligands, such as glycyrrhetinic acid, chondroitin sulfate,

alendronate, polyethylenimine, iRGD (the arginine-glycine-

aspartate peptide), and estradiol, in order to allow the NPs to

target tumors not only passively but also actively. Extensive studies

on the mechanism of highly invasive and metastatic tumors have

revealed a large number of abnormally expressed proteins, such as

cell adhesion molecules, that can serve as new targets for PEG-

PLGA NPs. Cell adhesion molecules are a general class of cell

surface transmembrane proteins that mediate cell-cell and cell-

extracellular matrix adhesion, especially in tumors. The epithelial

cell adhesion molecule (EpCAM) is highly expressed in tumors

and it helps regulate the epithelial-mesenchymal transition, giving

it a key role in the invasion and metastasis of tumor cells; this

molecule can bind specifically to EpCAM aptamer on NPs

(Fagotto and Aslemarz, 2020). CD44 is also upregulated in

several tumor cell types, and it serves as a marker of cancer

stem cells; it can bind specifically to hyaluronic acid on NPs

(Chen et al., 2018). The arginine-glycine-aspartate (iRGD) peptide

on NPs binds with high affinity to the integrin receptor, which is

abundantly expressed on certain tumor types; the peptide can then

be internalized, taking the NP and its drug cargo inside the target

cells (Davoodi and Shafiee, 2022). The folate receptor is

overexpressed in certain tumor types such as ovarian cancer

and non-small cell lung cancer, and this has been exploited in

several appraoches to develop high-affinity folates for targeted

cancer treatment (Ledermann et al., 2015), as well as folate

conjugates for chemotherapy, photothermal therapy, and

diagnostic imaging (Li et al., 2015; Liu et al., 2018). Another

study showed that biotin, a safe water-soluble vitamin, can bind

strongly to biotin receptors and the surface of pharmaceutical

preparations, showing great potential as an active targeting

strategy for cancer treatment (Wang et al., 2020). Furthermore,

the great demand of tumor cells for iron leads them to overexpress

transferrin receptors on their surface, whichmight provide another

strategy for targeted therapy (Luck and Mason, 2013).

In this review, we discuss the formulation principles and

properties of PEG-PLGA NPs and summarize the recent

advances in their modification and application as drug

delivery systems for targeted cancer treatment (Figure 1). The

synthesis provided here may guide the development of new

antitumor formulations with improved in vivo

pharmacokinetics, enhanced passive and active targeting, as

well as high drug efficiency for effective precision medicine.

2 PEG-PLGA NPs

2.1 Origin of drug-loaded PEG-PLGA NPs

Due to its great biocompatibility and biodegradability, PLGA

has been widely used in the preparation of NPs (Lakkireddy and

Bazile, 2016). Although PLGA NPs are good carriers for
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hydrophilic and hydrophobic drugs, their application is limited

due to protein opsonization and rapid clearance by the

reticuloendothelial system. Adagen was the first PEGylated

protein drug approved by the FDA as a treatment for severe

combined immunodeficiency (Suk et al., 2016). When PEG

covalently binds to the drug surface, it will block antigen

determinants to affect antigen-antibody binding to inhibit the

immunoreaction. The immunogenicity of ricin against anti-ricin

serum can be reduced through PEG modification, which covers

epitopes and receptors involved in immune recognition (Hu

et al., 2002). PEGylating a genetically engineered form of

alginate lyase significantly reduced its ability to be recognized

by antibodies from New Zealand rabbits and humans (Lamppa

et al., 2011). Similarly, PEGylating porcine follicle-stimulating

hormone protected the hormone from immune recognition

(Uchiyama et al., 2010). The PEG surface barrier can also

protect the drug from enzymatic degradation and rapid

elimination by the kidney, prolonging the half-life of the drug

in vivo. PEGylating recombinant human interleukin-11 (IL-11)

not only enhanced its pharmacological activity, but also

prolonged its retention time in plasma by reducing the liver

and kidney clearance of IL-11 (Takagi et al., 2007) (Menkhorst

et al., 2009). Modifying PLGA NPs with PEG improves their

surface hydrophilicity and prolongs circulation time (Noori

FIGURE 1
Schematic of applications of PEG-PLGA nanoparticles. EPR, enhanced permeability and retention enhanced permeability and retention; PEG,
polyethylene glycol; PLGA, poly (lactic acid-co-glycolic acid); siRNA, short interfering RNA.
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Koopaei et al., 2014), giving them substantial promise as drug

carriers (Haggag et al., 2018; Dunn et al., 2019). These NPs

consist of a PEG shell and a PLGA core that can effectively

encapsulate hydrophilic and hydrophobic drugs (Figure 2).

2.2 Preparation of PEG-PLGA NPs

Nanoprecipitation and double emulsion-solvent

evaporation are the two main methods for the synthesis of

PEG-PLGA NPs; they take advantage of the self-assembly of

PEG and PLGA at a specific ratio and temperature. Below we

describe only the basic synthetic routes and characteristics of

the two methods, since we cannot cover the large variability in

excipients, component proportions and reaction conditions

that have been explored.

2.2.1 Nanoprecipitation
Nanoprecipitation is a simple preparation method for NPs

with narrow particle size distribution that requires low amounts

of surfactant, generates few toxic products, and can be

performed on a large scale. For the preparation of PEG-

PLGA NPs, PEG and PLGA are dissolved in a suitable

solvent, mainly acetone, and then added to an aqueous

phase to complete their self-assembly. The solvent is finally

removed by dialysis or volatilization, and PEG-PLGA NPs are

collected. Using this method, PEG-PLGA NPs loaded with a

manganese (II) complex were prepared and they showed

excellent encapsulation and drug-loading efficiency, leading

to good therapeutic effect against breast cancer stem cells

(Eskandari and Suntharalingam, 2019). In another study,

honokiol-loaded NPs prepared by nanoprecipitation were

modified to obtain nanocarriers with high-loading capacity,

which enhanced anti-breast cancer activity in vitro and in vivo

(Haggag et al., 2020). Nevertheless, further research is still

needed to clarify how the choice of organic or aqueous

phase, encapsulated drug, temperature, pH, and sequence of

reagent addition influence drug loading and encapsulation into

NPs (Almoustafa et al., 2017).

2.2.2 Double emulsion-solvent evaporation
method

In the double emulsion-solvent evaporation method, PEG,

PLGA and drug are added into an organic solvent (oil phase) to

prepare a water-in-oil (W/O) emulsion. The resulting emulsion

is then added into a water phase, and the mixture is

homogenized by sonication to obtain a W/O/W emulsion

(Chen et al., 2019; Shen and TanTai, 2020). Evaporation of

the organic solvent followed by filtration yields drug-loaded

PEG-PLGA NPs.

Similar to the O/W single emulsion-solvent evaporation

method, this approach is used to encapsulate proteins and

hydrophilic drugs and limit their diffusion out of the NPs,

thereby improving entrapment efficiency and sustained release

(Zhang et al., 2014). For instance, this method was used to

prepare salidroside-loaded PEG-PLGA NPs with high

entrapment efficiency by adjusting the glycolic acid/lactic acid

molar ratio and the molecular weight of PLGA. The resulting

preparation showed low polydispersity index, high zeta potential,

and good release and cytotoxicity properties in vitro, indicating

that the behavior of PEG-PLGA NPs strongly depends on

composition and choice of raw materials (Fang et al., 2014).

Endostar-loaded PEG-PLGA NPs were also prepared by double

emulsion-solvent evaporation, and they showed sustained and

controlled drug release properties as well as specific tumor

targeting ability in vivo (Hu and Zhang, 2010).

3 Application of drug-loaded PEG-
PLGA NPs in cancer treatment

3.1 Chemotherapeutic applications

Although chemotherapy remains the main treatment

approach for cancer, chemotherapeutic drugs suffer from

low targeting ability, low cytotoxicity, fast elimination,

serious side effects, and high drug resistance. PEG-PLGA

NPs have emerged as a novel formulation with great

biocompatibility and non-immunogenicity that can improve

the solubility, stability, and safety of chemotherapeutic drugs

for the treatment of various cancer types (Table 1). For

example, paclitaxel (PTX)-loaded PEG-PLGA NPs rapidly

prepared by microwave synthesis showed similar cytotoxicity

to Taxol (Dunn et al., 2019). Satisfactory pharmacokinetic and

pharmacodynamic results have also been reported for docetaxel

FIGURE 2
Structure of a PEG-PLGA nanoparticle. PEG, polyethylene
glycol; PLGA, poly (lactic acid-co-glycolic acid).
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TABLE 1 Recent applications of PEG-PLGA nanoparticles as drug carriers.

Treatment
type

Preparation of
drug loaded
PEG-PLGA
nanoparticle

Payload Treatment model Administration
mode

Advantages Referrence

Chemotherapy Microwave synthesis PTX HeLa cell Culture medium Unique release and dose-
dependent cytotoxicity

Dunn et al. (2019)

Chemotherapy 3-factor, 3-level Box-
Behnken design

DTX SKOV-3 cell;tumor
bearing female balb/c
mice

Culture medium;
intravenous

Higher cytotoxic efficacy
and less weight loss

Noori Koopaei
et al. (2014)

Chemotherapy Nanogel mixed system PEGylated
Taxol

4T1-luciferase cells
trasplanted female balb/c
mice

Intravenous more efficient inhibition the
growth

Wei et al. (2013)

Chemotherapy Modified double
emulsion method

5-FU Solid Ehrlich carcinoma
murine

Intraperitoneal
injection

Reduction in tumor volume
and weight, improvement
on sustained release in vitro
and anticancer efficacy in
vivo

Haggag et al.
(2018)

Chemotherapy Ring opening melt
polymerization method;
double emulsion
method

5-FU;Chrysin HT29 human colon
cancer cell

Culture medium Higher growth inhibitory
effects;improvement on the
therapeutic and functional
delivery efficacy

Khaledi et al.
(2020)

Chemotherapy Modified double-
emulsion solvent
evaporation

Sorafenib;
PDEF

C-26 cell;HEK-293;C-
26 cell trasplanted balb/c
mice

Culture medium;
intravenous

Higher entrapment
efficiency;better sustained
manner;no obvious toxicty

Chen et al. (2019)

Chemotherapy Modified emulsification
solvent evaporation

Gefitinib;
quercetin

PC-9 cell;PC-9 cell
trasplanted mice

Culture medium;
intravenous

Higher cellular uptake and
cell inhibition rates

Shen and TanTai,
(2020)

Chemotherapy Self-assembly of PLGA-
PEG-PLGA copolymer
micelles, CNDs,
and DOX.

DOX HeLa cell; (PC3, human
prostate cancer cell line)
cell trasplanted Female
nude mice (BALB/cSlc-
nu/nu)

Culture medium;
Intratumor injection

long-term sustained
antitumor activity

Nagahama et al.
(2015)

Chemotherapy Two-step surface
functionalization
method

Bendamustine A549 cell;MCF-7 cell;
T47D;PC-3;

Culture medium Less hemolytic;
improvement on stability
and anticancer efficiency

Khan et al. (2016)

Chemotherapy Double emulsion
method

Endostar HT-29 cell trasplanted
BALB/c nude mice

Intravenous Sustained release;
improvement on anticancer
activity

Hu and Zhang,
(2010)

Chemotherapy Ring-opening
polymerization method

Metformin SKOV-3 cell Culture medium More cytotoxicity in a time-
and dose-
dependentmanner;
improvement on anticancer
activity

Faramarzi et al.
(2019)

Chemotherapy Self-assemble in water;
nanoprecipitation
method

Manganese (II)
complex

HMLER-shEcad cells Culture medium Improvement on breast
cancer stem cells;reduction
in toxicity

Eskandari and
Suntharalingam,
(2019)

Traditional
Chinese
medicine

Double emulsion
method

Chrysin AGS cell Culture medium Up regulation of expression
of miR-34a;higher solubility;
significant inhibitory effect
in cell growth

Mohammadian
et al. (2015)

Traditional
Chinese
medicine

Modified emulsion of oil
in water

Chrysin;
curcumin

SW480 cell Culture medium Higher bioavailability and
solubility;down regulation
of expression of telomerase
(hTERT) gene

Bagheri et al.
(2018)

Traditional
Chinese
medicine

Double emulsion/
solvent evaporation
methods

DIM;EA Human pancreatic cancer
cell line;Chick
Chorioallantoic
Membrane (CAM)
Cancer Implant Model

Culture medium;
intramodel injection

More effective suppression
of pancreatic cancer cell
viability, pancreatic tumor
weight, implanted cancer
cell viability, and tumor
angiogenesis

Mousa et al. (2020)

Organic solvent
volatilization method

Ginsenoside,
25-OCH3-PPD

Human prostate cancer
cell lines LNCaP

Culture medium;oral MDM2 oncogene inhibition;
steady and sustained release

Voruganti et al.
(2015)

(Continued on following page)
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(DTX)- and PTX-loaded PEG-PLGA NPs (Wei et al., 2013;

Noori Koopaei et al., 2014). In another study, 5-fluorouracil (5-

FU)-loaded PEG-PLGA NPs improved the encapsulation,

controlled release, and efficacy of the drug against solid

Ehrlich carcinoma, while reducing the drug’s adverse effects

(Haggag et al., 2018). PEG-PLGA NPs encapsulating

doxorubicin (DOX) (Nagahama et al., 2015), bendamustine

(Khan et al., 2016b), Endostar (Hu and Zhang, 2010),

metformin (Faramarzi et al., 2019), and manganese (II)

complex (Eskandari and Suntharalingam, 2019) have shown

good sustained release and anticancer properties in vitro and in

vivo. In addition, PEG-PLGA NPs have been used for the co-

delivery of chemotherapeutic drugs, such as 5-FU and chrysin

or sorafenib and pigment epithelium-derived factor for

colorectal cancer therapy, as well as gefitinib and quercetin

for lung cancer treatment (Chen et al., 2019; Khaledi et al., 2020;

Shen and TanTai, 2020). The co-loaded NPs demonstrated

better sustained release performance, targetability, and tumor

growth inhibition than single drug-loaded NPs. These results

suggest that PEG-PLGA NPs can be used for the synergistic

treatment of tumors, while reducing the frequency of drug

administration.

3.2 TCM therapy

Active TCM substances have attracted increasing attention as

antitumor drugs or adjuvant therapy for chemotherapy due to

their multi-target ability. However, their short half-life, rapid

metabolism, low bioavailability, and poor targeting ability

significantly limit their application. Therefore, the

encapsulation of such active substances into shells

(nanoparticles, liposomes, gels, vesicles, etc.), such as PEG-

PLGA NPs, can improve their properties and anticancer

efficacy (Table 1). For example, chrysin-loaded PEG-PLGA

NPs upregulated miR-34a and showed higher solubility and

inhibitory activity than free chrysin against AGS cell growth

(Mohammadian et al., 2015). PEG-PLGA NPs co-loaded with

chrysin and 5-FU or curcumin also exhibited significant

synergistic anticancer effects in colorectal cancer treatment

(Bagheri et al., 2018; Khaledi et al., 2020). Similarly, PEG-

PLGA NPs carrying both di-indolylmethane and ellagic acid

effectively reduced the viability of pancreatic cancer cells and

suppressed tumor growth and angiogenesis (Mousa et al., 2020).

In addition, PEG-PLGA NPs loaded with ginsenosides showed

better oncogene regulation, anticancer synergism, drug uptake,

half-life, and safety than the corresponding free drugs (Voruganti

et al., 2015). PEG-PLGA NPs co-loaded with drugs and active

TCM monomers such as icariin (Alhakamy, 2021), salidroside

(Fang et al., 2014), and honokiol (Haggag et al., 2020) have also

shown anticancer synergistic effects and sustained release. For

instance, lupeol-loaded PEG-PLGA NPs enhanced the sensitivity

of hepatocellular cancer to radiotherapy (Xie et al., 2021), which

may provide a new research direction for antitumor drug

resistance. These results suggest that the encapsulation of

existing and newly discovered active TCM substances into

PEG-PLGA NPs can promote their application in cancer

treatment.

TABLE 1 (Continued) Recent applications of PEG-PLGA nanoparticles as drug carriers.

Treatment
type

Preparation of
drug loaded
PEG-PLGA
nanoparticle

Payload Treatment model Administration
mode

Advantages Referrence

Traditional
Chinese
medicine

(p53 wild-type); DU145
(p53 mutant);PC3
(p53 null) ;human
intestinal epithelial cell
line Caco-2;male CD-1
mice;PC3 xenograft
model

;improvement on cancer cell
uptake in vitro, tumor
uptake in vivo, oral
bioavailability, absorption,
half-life and anticancer
efficacy;little toxicity in mice
at high doses

Traditional
Chinese
medicine

Response surface (three-
level) design

Icariin ASPC-1 cell Culture medium Higher cytotoxicity and
apoptotic potent;arrest of
G2-M phase of aspc-1 cells;
upregulation of caspase-3

Alhakamy, (2021)

Traditional
Chinese
medicine

Ring open
copolymerization of
lactide and glycoside;
double emulsification
method

Salidroside 4T1 cell ;PANC-1;SKOV-
3 cell ;PC-3 cell; CT26 cell;
one human normal cell
line (AD293)

Culture medium Gradually release;significant
improvement in vitro
antitumor activity of Sal in
PANC-1 and 4T1 cancer cell
lines;no toxicity on
AD293 cells at a
concentration (100 μg/ml);
higher antitumor efficacy

Fang et al. (2014)

Abbreviations: DIM-3, 3′-diindolylmethane; DOX-doxorubicin;DTX-Docetaxel; EA-ellagic acid; 5-FU-5-fluorouracil; PEDF-pigment epithelium-derived factor; PEG-polyethylene glycol;

PLGA-poly (lactic acid-co-glycolic acid); PTX-Paclitaxel.
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TABLE 2 Recent applications of ligand-modified PEG-PLGA nanoparticles as drug carriers for actively targeted cancer therapy.

Modifying
molecule

Modification
methods

Target Payload Treatment model Progressiveness
compared
with non-target
preparation

Referrence

Folate A three - step
chemical synthesis

Folate receptors Saquinavir PC-3 (human prostate)
cells; MCF-7 (human
breast) cancer cell lines

Cell experiment:cytotoxicity;
cellular uptake

Singh et al.
(2015)

Folate Carbodiimide
chemistry

Folate receptors Sorafenib BEL7402 cells Cell experiment:cellular
uptake; suppression on cell
proliferation; anticancer
efficacy;inhibition on the
colony forming ability

Li et al. (2015)

Folate Covalent linkage Folate receptors Paclitaxel;
indocyanine green;
perfluorohexane

MDA-MB231 cells;
tumor-bearing mice

Cell experiment :cellular
uptake;anticancer
effect·Transplant model
experiment:accumulation in
tumor tissue;targeting ability;
microbubble activation;low
toxicity

Liu et al.
(2018)

EpCAM aptamer Covalent linkage Epithelial cell-
adhesion
molecules

Doxorubicin A549 cell; SK-MES-1 cell;
nude mice bearing SK-
MES-1 non-small cell
lung cancer xenografts

Cell experiment
:cytotoxicity·Transplant
model experiment:weight loss;
toxicity; tumor inhibition

Alibolandi
et al. (2015a)

EpCAM aptamer Covalent linkage Epithelial cell-
adhesion
molecules

Doxorubicin EpCAM-positive tumor
cells (MCF-7)

·Cell experiment: celluptake;
internalization;cytotoxicity

Alibolandi
et al. (2015b)

Transferrin Simple amide
coupling

TFR Thymoquinone A549 cells (TFR over-
expression);chick CAM
xenograft models;
xenograft model in
immunosuppressed Balb/
c mice

·Cell experiment :nanoparticle
internalization;p53 up-
regulation for
apoptosis·Transplant model
experiment:anti-cancer
activity via controlling the
p53/miR-34a/miR-16 axis

Upadhyay
et al. (2019)

Transferrin Maleimide-thiol
coupling reaction

TFR Doxorubicin;
tetrahydrocurcumin

Rat C6 glioma cell line ;
human breast cancer cell
line (MCF-7) ;nude mice
bearing glioma xenografts

·Cell experiment :uptake;
synergistic effect of
radiotherapy·Transplant
model experiment:drug
accumulation in the brain

Zhang et al.
(2019)

Biotin Dlick reaction Biotin receptors Doxorubicin 4T1 cells;female Balb/C
mice bearing 4T1 cell
xenografts

·Transplant model
experiment:improvement in
vivo antitumor efficacy;
potential of mitigating toxic

Singh et al.
(2017)

Biotin DDC/NHS chemistry
method

Biotin receptors DI Human cervical cancer
Hela cells

·Cell experiment
:antiproliferative activity for
preferential internalization;
decreasing the intracellular
reactive oxygen species (ROS)
level

Luo et al.
(2018)

A10 aptamer Conjugated the RNA
aptamer to the
terminus of PEG-
PLGA

PMSA TFO LNCaP cell (PMSA+);
BALB/c nude mice
bearing a LNCaP cell
xenograft

·Cell experiment :silenced the
AR gene;
cytotoxicity·Transplant model
experiment: cellular uptake

Jiao et al.
(2016)

Hyaluronic acid Activated carboxyl
covalently linked

CD44 molecular Cisplatin CD44-over expressing
ovarian cancer cell line
(SKOV-3);Ehrlich tumor
(solid) bearing mice

·Cell experiment : cytotoxicity;
celluar uptake·Transplant
model experiment:antitumor
activity

Alam et al.
(2017)

Glycyrrhetinic acid Chemical synthesis by
a two-step process

Glycyrrhetinic
acid receptors

Artesunate HepG2 cell; Hep3B cell;
SMCC-7721 cell

·Cell experiment : cytotoxicity;
binding affinity
;andaccumulation in
hepatoma cells

Pan et al.
(2020)

Chondroitin sulfate PEG-Bis-Amine Link Chondroitin
sulfate receptors

5-fluorouracil MCF-7/MDA-MD
231 breast cancer cells

·Cell experiment : cytotoxic
effect ;hemolytic potential

Yadav et al.
(2010)

(Continued on following page)
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3.3 Active targeted cancer therapy

NPs have special structure, chemical properties, and passive

targeting, which allow them to encapsulate nonspecific or

targeted drugs and TCM. Although NPs can enhance the

targeting ability of antitumor drugs due to the ERP effect and

passive enhanced permeability, they still lack the ability to target

malignant cells (Tuwahatu et al., 2018; Barkat et al., 2021). To

promote active targeting, the surface of PEG-PLGANPs has been

modified with various ligands, such as folate, aptamer,

transferrin, and hyaluronic acid (Table 2).

For example, the 5′-NH2-modified EpCAM aptamer was

covalently bound on the surface of DOX-loaded PEG-PLGA

NPs, and the modified NPs showed stronger inhibitory activity

on tumor growth in nude mice bearing non-small cell lung

cancer xenografts and higher cytotoxicity against A549 cells

than unmodified NPs (Alibolandi et al., 2015a). In addition,

EpCAM aptamer-conjugated PEG-PLGA NPs enhanced the

cellular uptake and cytotoxicity of DOX against human breast

adenocarcinoma cells (Alibolandi et al., 2015a; Alibolandi et al.,

2015b). Conjugation of A10 aptamer to PEG-PLGA NPs loaded

with triplex-forming oligonucleotides led to specific targeting of

prostate cancer cells and inhibition of tumor growth, and the

modified NPs silenced the androgen receptor gene more

effectively than unmodified NPs (Jiao et al., 2016).

Transferrin has also been added to drug-loaded NPs due to

its non-toxicity, biodegradability, and low expression in most

normal tissues. For example, thymoquinone-loaded PEG-PLGA

NPs modified with transferrin significantly induced cancer cell

apoptosis by regulating the p53/miR-34a/miR-16 axis

(Upadhyay et al., 2019). Multidrug-loaded PEG-PLGA NPs

decorated with transferrin increased the intracerebral

TABLE 2 (Continued) Recent applications of ligand-modified PEG-PLGA nanoparticles as drug carriers for actively targeted cancer therapy.

Modifying
molecule

Modification
methods

Target Payload Treatment model Progressiveness
compared
with non-target
preparation

Referrence

Alendronate Multistep synthesis Mineral
hydroxyapatite

Bortezomib Female Nod/SCID beige
mice injected with Luc+/
GFP + MM1S cells

·Transplant model
experiment:retention;
accumulation; bone homing
of targeted

Swami et al.
(2014)

LFC131 Covalent bonding of
NHS-activated PEG-
PLGA nanoparticles

CXCR4 Sorafenib;
metapristone
(RU42633)

HCC cell lines (HepG2,
Huh7, and SMMC-7721
cells);female BALB/c
nude mice injected
subcutaneously with
human SMMC-7721 cells

·Cell experiment : ntracellular
levels of drugs; anti-
proliferative efficacy; tumor
cell apoptosis; accumulation
in tumors·Transplant model
experiment:inhibitory efficacy
on tumor growth

Zheng et al.
(2019)

PEI Postsynthesis of
PLGA-PEG
nanoparticles

SP94 TK-p53-NTR Female nude mice (nu/
nu) injected with HepG2-
FLuc cell

·Transplant model
experiment:gene-loaded
transfer capacity ;biosafety

Li et al. (2021)

iRGD Interaction between
Mal groups of Mal-
PEG-PLGA and the
thiol group of iRGD
for 24 h

iRGD receptors Croconaine815 MDA-MB-231 cells;
MDA-MB-
231 cellbearing nude
mice·Transplant model
experiment:inhibition on
tumor proliferation

·Cell experiment : targeting
ability

Sukumar et al.
(2020)

E2 Covalent conjugation ER Docetaxel ER positive MCF-7 cells
;HeLa cells (ER negative);
breast cancer model in
female Sprague Dawley
(SD) rats

·Cell experiment : cellular
uptake in ER positive MCF-7
cells;cytotoxicity;·Transplant
model experiment:tumor
regression

Jain et al.
(2015)

Pep-
1(CGEMGWVRC);
CGKRK(Cys-Gly-
Lys-ArgLys) peptide

Emulsion/solvent
evaporation method

Interleukin
13 receptor α2;
heparan sulfate

Paclitaxel Human umbilical vein
endothelial cells ;rat
C6 glioma cell lines;nude
mice injected with
C6 cells

·Cell experiment : cellular
uptake;improvement of
in vitro antiglioma activity in
the respect of proliferation,
tumor spheroid growth, tube
formation, and
migration·Transplant model
experiment:targeted and
accumulated at glioma site

Lv et al. (2016)

Abbreviations:DDC-dicyclohexylcarbodiimide;DI-15, 16-Dihydrotanshinone I;ER-estradiol receptors;EpCAM-epithelial cell adhesion molecular;E2-estradiol;NTR-nitroreductase;PEG-

polyethylene glycol;PEI-polyethylenimine;PLGA-poly(lactic acid-co-glycolic acid);PMSA-prostate specific membrane antigen;TFO-triplex forming oligonucleotides;TFR-transferrin

receptor;TK-thymidine kinase.
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accumulation of the drugs and showed good anti-glioma efficacy

in vivo (Zhang et al., 2019).

Since biotin receptors are overexpressed in cancer cells, NPs

modified with biotin have been developed. Among them, 15,16-

dihydrotanshinone I-loaded PEG-PLGA NPs modified with

biotin prevented HeLa cell proliferation by downregulating

reactive oxygen species and triggering G2/M phase cycle arrest

(Luo et al., 2018). DOX-loaded PEG-PLGA NPs modified with

biotin have shown good potential in vitro and in vivo for active,

targeted therapy of breast cancer (Singh et al., 2017).

Hyaluronic acid can specifically bind to CD44 molecular

receptors, which are involved in regulating specific cell-cell and

cell-matrix interactions. Cisplatin-loaded PEG-PLGA NPs

modified with hyaluronic acid were internalized to a greater

extent than unmodified NPs by human ovarian cancer (SKOV-3)

cells overexpressing CD44, and the modified NPs were more

toxic against those cells (Alam et al., 2017).

Folate, which is highly expressed in a wide range of tumor

cells, was also conjugated to PEG-PLGA NPs, affording

nanomaterials with superior cytotoxicity and improved

cellular uptake due to the specific binding of folate to the

corresponding receptors (Singh et al., 2015). Similarly, folate-

decorated PEG-PLGA NPs loaded with sorafenib showed high

cellular uptake, antiproliferation activity and antitumor effects

against BEL7402 cancer cells (Li et al., 2015).

PEG-PLGA NPs decorated with glycyrrhetinic acid were

able to concentrate the drug artesunate in liver cancer cells (Pan

et al., 2020). 5-FU-loaded PEG-PLGA NPs modified with

chondroitin bound to the chondroitin sulfate receptors

overexpressed on various tumor cell types, leading to higher

cytotoxicity and less hemolytic effects than unmodified NPs

(Yadav et al., 2010).

Targeting the tumor microenvironment has also emerged as

an effective strategy for cancer treatment. For example,

alendronate-loaded PEG-PLGA NPs were modified with

hydroxyapatite, an abundant mineral in bone tissues with

high affinity for bisphosphonates, and the formulation

accumulated in bone tumors in vivo (Swami et al., 2014).

PEG-PLGA NPs that were co-loaded with sorafenib and

metapristone and were conjugated with LFC131, a peptide

inhibitor of CXCR4 (Zheng et al., 2019), showed promise in

bypassing CXCR4-mediated resistance of hepatocellular

carcinoma tumor cells to the widely used drug sorafenib.

Recent studies have investigated the role of modified PEG-

PLGA NPs in photoacoustic imaging and photothermal tumor

therapy. For example, folate-conjugated PEG-PLGA NPs were

co-loaded with indocyanine green, perfluorohexane, and PTX

to prepare NPs that could be simultaneously used for

photoacoustic and enhanced ultrasound echo imaging as

well as for active targeting of tumors overexpressing folate

receptors (Liu et al., 2018). PEG-PLGA NPs that were loaded

with pH-sensitive croconaine815 and decorated with iRGD

showed strong photoacoustic signal enhancement and

effectively inhibited tumor growth, serving as a novel

strategy for in vivo multiplexed photoacoustic imaging and

pH-responsive photothermal therapy (Li S. et al., 2021). In

addition, PTX-loaded PEG-PLGA NPs that were decorated

with the peptides Pep-1 (CGEMGWVRC) and CGKRK

(Cys-Gly-Lys-Arg-Lys) enhanced the antiglioma efficacy of

PTX by inhibiting angiogenesis and killing cancer cells (Lv

et al., 2016).

3.4 Gene-targeting cancer therapy

Cancer gene therapy uses nucleic acids, oligopeptides and

proteins to treat tumors by regulating the expression of related

genes. However, these drugs cannot be extensively used in

clinical practice due to their fast degradation and easy

elimination in the blood (Kim et al., 2016). To address these

problems, polymer NPs such as PEG-PLGA NPs have been

extensively studied as drug carriers due to their unique size,

simple modification, good biocompatibility, stability, and low

toxicity (Xin et al., 2017). For example, verapamil-modified

PEG-PLGA NPs loaded with SN38 enhanced the expression of

apoptosis-related genes (BAX/BCL2) and delayed drug

resistance in colorectal cancer cells (Nagheh et al., 2017).

PEG-PLGA NPs containing a novel peptide inhibiting the

protein “Ras protein-regulator of chromosome condensation

1”may be able to inhibit breast cancer metastasis (Haggag et al.,

2019). PEG-PLGA NPs co-loaded with DTX and short

interfering RNA targeting the oncogene TUBB3 or co-loaded

with sorafenib and metapristone targeting the SDF-1/

CXCR4 axis have also shown promise against oncogenes in

hepatocellular carcinoma (Zheng et al., 2019; Conte et al.,

2021). PEG-PLGA NPs that were loaded with a “thymidine

kinase–p53–nitroreductase” triple therapeutic gene and

decorated with polyethylenimine were able to inhibit growth

of hepatocellular carcinoma tumors (Sukumar et al., 2020).

4 Biocompatibility, toxicity, and safety
of drug-loaded PEG-PLGA NPs

All formulations developed for biomedical or clinical use

must be non-toxic and comply with the relevant biosafety

regulations, while showing good biocompatibility, especially

for intravenous or intraperitoneal injection. Although PLGA

and PEG have been approved by the FDA as safe and

biodegradable, few studies have explored the safety of PEG-

PLGA NPs in vivo for further clinical application. For

example, blank PEG-PLGA NPs showed negligible inhibitory

effects on the growth of human colon adenocarcinoma SW-480

cells, confirming their good biocompatibility (Dimchevska et al.,

2017). PEG-PLGA NPs loaded with bendamustine led to nearly

4-fold lower hemolysis than NPs without the PEG-PLGAmatrix,
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also indicating good biocompatibility (Khan et al., 2016b). In

addition, no significant cytotoxicity was observed for blank PEG-

PLGA NPs toward HeLa cells (Luo et al., 2018), while the

intraperitoneal injection of blank or honokiol-loaded PEG-

PLGA NPs did not cause substantial damage to the liver or

kidney of mice with breast cancer tumors (Haggag et al., 2020),

further indicating the safety of these nanocarriers in vivo.

Similarly, PEG-PLGA NPs loaded with the anticancer

ginsenoside 25-OCH3-PPD did not cause histopathology in

the liver, kidneys, lungs, spleen, heart, or brain of mice

bearing PC3 xenograft tumors (Voruganti et al., 2015), while

estradiol-decorated DTX-loaded PEG-PLGA NPs showed

negligible cytotoxicity in MCF-7 cells and minimal

hepatotoxicity in mice (Jain et al., 2015). A recent study

analyzed the plasma activation levels of complement

C3 induced by the intravenous injection of PEG-PLGA NPs

conjugated with anti-cathepsin K antibodies. The results revealed

no significant upregulation of complement C3 after treatment

with the modified NPs, suggesting that they not induce an

immune response (Camardo et al., 2020). DOX-loaded PEG-

PLGA NPs decorated with biotin showed low hemolytic activity

and cytotoxicity and proved to be safe relative to free DOX (Singh

et al., 2017). Odorranalectin-modified PEG-PLGA NPs were

found to be non-toxic to human lung adenocarcinoma Calu-3

cells and showed negligible toxicity and immunogenicity in the

nasal cavity in toads and rats (Wen et al., 2011). PEG-PLGA NPs

modified with both Pep-1 and CGKRK peptides were also shown

to be non-toxic to major organs in mice (Lv et al., 2016).

Nevertheless, the influence of different formulation ratios,

molecular weights, and synthesis methods on the safety of PEG-

PLGA NPs has not been adequately explored. It is important to

analyze the relationship between the toxicity of NP carriers and

their physical characteristics, including polydispersity index, zeta

potential, entrapment efficiency, and morphology. In fact, the

entire process from raw materials to synthesis and modification

of drug-loaded PEG-PLGA NPs should be rigorously optimized

to maximize safety before clinical trials. Ultimately, uniform

guidelines for synthesizing and formulating PEG-PLGA NPs

are needed in order to ensure their efficacy as drug carriers

for targeted cancer treatment.

5 Conclusion and prospects

The rapid growth of nanotechnology has led to the

emergence of many novel therapeutic methods such as

nanodrug delivery systems. The present review shows that

amphiphilic block copolymer PEG-PLGA NPs can be safely

used as drug nanocarriers that show sustained release

properties as well as improved drug bioavailability and

stability in vivo. PEG-PLGA NPs modified with ligands

can target specific receptors on the tumor surface,

enhancing tumor targeting. However, the biocompatibility,

toxicity, and safety of these nanocarriers require further

research to guarantee their clinical application. New

cancer-specific target molecules are constantly being

discovered, and studies should continue to explore how to

modify NPs in order to recognize tumors. This approach

may create new possibilities for precision anti-cancer

treatment and diagnostic imaging.
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