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Abstract

The high-resolution refinement of docked protein-protein complexes can provide valuable
structural and mechanistic insight into protein complex formation complementing experi-
ment. Monte Carlo (MC) based approaches are frequently applied to sample putative inter-
action geometries of proteins including also possible conformational changes of the binding
partners. In order to explore efficiency improvements of the MC sampling, several enhanced
sampling techniques, including temperature or Hamiltonian replica exchange and well-tem-
pered ensemble approaches, have been combined with the MC method and were evaluat-
ed on 20 protein complexes using unbound partner structures. The well-tempered
ensemble method combined with a 2-dimensional temperature and Hamiltonian replica ex-
change scheme (WTE-H-REMC) was identified as the most efficient search strategy. Com-
parison with prolonged MC searches indicates that the WTE-H-REMC approach requires
approximately 5 times fewer MC steps to identify near native docking geometries compared
to conventional MC searches.

Introduction

Protein-protein interactions are integral to many mechanisms of cellular activities, ranging
from enzyme catalysis and inhibition to signal transduction and gene regulation. Atomic-level
structural knowledge is essential to understand the function of protein-protein complexes in
biological processes. However, experimental structure determination of protein-protein com-
plexes is often difficult and for many interactions the corresponding complex structures are
lacking [1,2]. Computational protein-protein docking methods can provide structural models
of protein-protein interactions where experimental data is absent, of low-resolution or too
sparse. Besides providing valuable structural biology information, high-resolution protein-pro-
tein docking can also help to explain binding affinities and specificities, the nature of the bind-
ing free energy funnel and effects of mutations. Furthermore, these techniques are essential for
computational protein-protein interface design of the design of non-natural complexes [3-7]
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Docking programs often employ a two-stage protocol [8,9]. First, the space of putative
docking geometries is sampled broadly, keeping the partner structures rigid, which corre-
sponds to six degrees of freedom. Second, structures are refined in one or multiple steps, typi-
cally employing partner structures at atomic resolution allowing for conformational changes of
side chains and possibly also of the protein main chain. For the rigid-body stage, the applica-
tion of grid-based fast Fourier transformation [10] or geometric hashing [11] can accelerate
the search [8,9]. Alternatively, the search can also be performed efficiently at reduced resolu-
tion using a coarse-grained model of the protein structures [12,13]. Both, at the rigid-body
search stage or during refinement, Monte Carlo (MC) methods can be very helpful [14-18].

For high-resolution refinement, most protocols require a starting configuration that is al-
ready fairly close to the native structure. The likely reason for this strong dependence on the
starting structure is the energy landscape’s ruggedness, which frustrates the sampling and ren-
ders the global energy minimum hard to reach [19]. Accordingly, the rationale behind typical
two stage docking refinement protocols is that the initial docking predictions is likely to gener-
ate at least one structure close to the native. A justification of this assumption is given by the
general hypothesis that the native conformation coincides with the global energy minimum at
the bottom of a broad basin in a rugged energy landscape [20,21]. However, since initial dock-
ing stages often use a simplified energy function, the initial docking stage is routinely misled
and does not actually produce sufficiently many near-native candidates for the subsequent re-
finement stage, especially when there is an alternative binding site with larger buried surface
[14].

Focus of this work is to improve the sampling for high-resolution docking based on the MC
approach. In the MC method, random translational and rotational moves or conformational
changes of the partner structures are applied on the configuration in a step-wise manner using
the Metropolis criterion for acceptance of a move. Advantages of the MC method are the gen-
eration of a physically relevant canonical ensemble of docking configurations, use of arbitrary
energy functions that can contain discontinuities and for the possibility to include various lev-
els of structural flexibility. However, an exhaustive high-resolution sampling of the conforma-
tional space with the MC method can be computationally demanding. In general, the docking
success of MC docking is limited by the sampling of putative complex geometries and by the
accuracy of the energy function used for scoring predicted complexes.

Parallel tempering or replica exchange techniques promise to overcome these challenges
and have received wide-spread interest in recent years [22-25]. The general idea of parallel
tempering is to simulate the system with M replicas at different temperatures and to frequently
exchange configurations between neighboring replicas. The high temperature replicas sample
broadly, whereas the low-temperature replicas allow precise exploration of deep energy mini-
ma. Due to the frequent exchanges between the (hot) broad sampling regime and the (cold) an-
nealing regime, configurations are less likely to get trapped in local minima. A generalization
of temperature replica exchange is to vary the Hamiltonian (H-REMC) among replicas [26],
which allows, for instance, to blend between a smoothed van der Waals potential and a realisti-
cally hard formulation to allow overcoming of sampling barriers in molecular dynamics simu-
lation [27,28]. For Rosetta, previous studies also showed that softening the Lennard-Jones
repulsive term is beneficial and better suited for side-chain modeling and prediction [29,30].
Of course, it is possible to combine variation of temperature and Hamiltonian in multi-dimen-
sional replica exchange approaches [31-35]. A bottleneck in using replica exchange is that to
cover the same parameter range (temperature, or smoothness) the number of replicas required
increases quickly with the number of degrees of freedom sampled. This is due to the fact, that
to achieve efficient exchange between replicas, a substantial overlap between sampled energy
levels of neighboring replicas is required [33,36].
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Metadynamics is another popular enhanced sampling method, in which sampling is facili-
tated by a history-dependent biasing potential. It is constructed as the sum of Gaussian func-
tions deposited along the trajectory in the collective variable space [37,38]. Choosing energy as
collective variable gives rise to the so-called well-tempered ensemble (WTE) with much larger
fluctuations in the sampled energies than the canonical ensemble [39]. This property of the
WTE can be exploited to overcome the major bottleneck of temperature replica exchange dis-
cussed above. Since, the overlap of the energy distribution between neighboring replicas con-
trols the exchange efficiency, using WTE drastically reduces the number of replicas required
[39,40].

In the present study we have compared the efficiency of a standard MC protocol for high
resolution protein-protein docking using RosettaDock and various extensions based on ad-
vanced sampling techniques. In particular, we tested four different protocols, standard Monte
Carlo (MC), Temperature Replica Exchange Monte Carlo (REMC), well-tempered ensemble
temperature Replica Exchange Monte Carlo (WTE-REMC), and well-tempered ensemble two
dimensional Hamiltonian Replica Exchange Monte Carlo (WTE-H-REMC). The approaches
were systematically evaluated on protein-protein complexes using unbound partner structures
and starting in each case from the same starting placements. Overall best performance was
achieved with the WTE-H-REMC method at the same computational cost compared to the
alternative protocols.

Methods
Energy scoring function and starting structure generation

The standard all-atom energy function for RosettaDock as given by the weight-set docking [41]
was used in all docking protocols. The docking energy function consists of van der Waals at-
tractive and repulsive interactions, an implicit solvation term, hydrogen-bonding energies, a
statistical residue-residue pairwise interaction term, a rotamer probability term and a pairwise
electrostatic energy term [18,42]. For each target, the different docking simulation protocols
were started from the same initial protein partner arrangements. The start geometries were
based on unbound partner structures and one partner was initially separated relative to the po-
sition in the complex in a random direction by 15 A and a random rotation by 60° relative to
the bound geometry. Only geometries without steric overlap between partners were accepted.
The ligand RMSD (L_rmsd, root mean square deviation of the mobile protein after best super-
position of the receptor protein onto native complex structure) from the respective bound
complex for all the targets was on average ~18 A with slight variation depending on the shape
and size of the binding partners (Fig 1). The initial placement corresponds to a scenario where
the binding region is approximately known.

Restricting the sampling space in rigid body degrees of freedom

For rigid body moves, random translations drawn from Gaussian distribution are performed
along all three axes, and the axis-angle notation is used to represent rotations [14]. In order to
perform a local search in the vicinity of the starting geometry, the sampling space in the rigid
body degrees of freedom was restricted with respect to the initial input conformation by a max-
imum translation of 20A and maximum rotation of 90° (this exceeds the maximum displace-
ment of the starting structure from the bound configuration, see previous paragraph and
illustration in Fig 1). To avoid dissociation of the two binding partners, we also applied an en-
counter constraint, which acts on the distance between the center of mass of the two binding
partners and only penalizes the sampled geometries if the two binding partners are too far
apart [14].
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Fig 1. Docking refinement conditions. Each docking starting geometry was generated by an initial random translation of one unbound partner from the
geometry in the complex by 15A and random rotation of 60° (compare green displaced and grey cartoon representations). During the docking search
translation and rotation of one partner with respect to the other was restricted relative to the starting geometry by 20A and 90° (indicated by red

circle), respectively.
doi:10.1371/journal.pone.0125941.g001

General settings

We have combined enhanced sampling techniques with Monte Carlo (MC) method to sample
protein-protein docking with atomistic representation, and tested four protocols within Ro-
setta including standard MC, Temperature Replica Exchange Monte Carlo (REMC), well-tem-
pered ensemble temperature Replica Exchange Monte Carlo (WTE-REMC), and well-
tempered ensemble 2-dimensional Hamiltonian Replica Exchange Monte Carlo (WTE-H--
REMC). In those docking approaches, rigid body displacements and side-chain optimization
are accomplished by the rigid body mover UnbiasedRigidBodyPerturbNoCenterMover, and
sidechain movers including JumpRotamerSidechainMover, PerturbRotamerSidechainMover
and PerturbChiSidechainMover. Those movers are applied under the control of the Metropo-
lis-Hastings framework. For each move, the MetropolisHastingsMover randomly applies one
out of the four movers based on their sampling weights. Mover step size for UnbiasedRigid-
BodyPerturbNoCenterMover and PerturbChiSidechainMover are drawn from random Gauss-
ian distributions. In the protocols with replica exchange, the magnitude for mover step size
and sampling weight were modulated according to the replica level during initialization such
that in the lower levels more frequent side-chain moves and fewer small rigid body moves were
applied and in the higher levels less frequent side-chain moves and larger rigid-body moves.
The magnitude of the step size and sampling weight were, however, kept fixed along the simu-
lation in each replica. All the settings for the reference replica were made exactly the same as
used in the standard MC protocol, and we denote these settings as reference settings. If not in-
dicated otherwise, for all the protocols and on each target 2x10° MC steps were employed.
Snapshots are taken and stored every 1,000 steps. In the REMC protocols exchanges were at-
tempted every 1,000 MC steps.

Monte Carlo and Asynchronous Parallel Tempering protocol

For the standard MC docking protocol, 25 trajectories are run with temperature set to 0.15. At
the end, about 25 x 2,000 sampled structures were collected for each target. The step size of
translation and rotation for rigid-body moves are drawn from normal distributions with small
mean value of 0.1A and 1°. The sampling weights for UnbiasedRigidBodyPerturbNocenter,
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JumpRotamerSidechain, PerturbRotamerSidechain and PerturbChiSidechain are set to 0.5, 4, 6
and 10, respectively.

For the parallel tempering replica exchange (REMC) protocol, 13 temperature levels were
drawn from geometric progressions ranging from 0.15 (reference) to 0.31. Two trajectories
with the 13 replicas are run for each target. Exchanges were attempted between neighbor repli-
cas every 1,000 steps. For all targets, good exchange rates (between 25% and 69% with median
value 49%) are achieved and no further target dependent optimization was required. In replica
exchange, it is common that the speed of each replica is not exactly the same. To avoid that the
faster replica wait for the slower partner, we used an asynchronous exchange scheme. That is
the faster replicas can perform more steps instead of waiting for its partner to reach the pre-de-
fined exchange stride. Finally, the simulation will finish as soon as the slowest replica has
reached the required step number.

Well-Tempered Parallel Tempering and Hamiltonian replica exchange
protocol

We applied the well-tempered ensemble (WTE) technique with parallel tempering replica ex-
change Monte Carlo using a value of 5 for the tunable factor y and reduced the temperature
levels from 13 to 5 with the same range. The bin size for well-tempered ensemble technique to
collect the history-dependent bias energy is set to two units of Rosetta docking energy. The re-
sulting exchange rates are between 20% and 55% with median value 37%. For the WTE-H--
REMC protocol we took advantage of the splitting of the van der Waals interactions into
attractive and repulsive components in RosettaDock. It is represented with a modified Len-
nard-Jones 6-12 potential which includes a linear extrapolation in the repulsive part below the
threshold of 0.60;;, where 0;; is the sum of the atomic radii of atoms i and j. The atomic radii
and energy well depth are taken from the CHARMM19 parameter set [13,18,43], and we de-
note this as "hard-rep". For the standard "soft-rep" in Rosetta, the atomic radii were either held
fixed or scaled by a factor of 1.07 (typically for non-polar atoms) from the hard-rep radii, and
the "switch point" for the linear extrapolation was selected empirically [29]. In the WTE-H--
REMC protocol, we applied a 2-dimensional replica exchange, with the temperature as variable
in the first dimension, and used the scaling factor for the soft Lennard-Jones repulsive term as
the second dimension. The scaling factor allows linear interpolation of atomic radii and switch
point between the hard-rep and soft-rep potentials (see above). In the Hamiltonian scaling di-
mension, we used five levels: hard_rep, soft 50%, soft 55%, soft 60% and soft 65%. In the tem-
perature dimension five temperatures between 0.15 and 0.3 were used (in arbitrary units
depending on the scaling of the Rosetta score), yielding a total of 25 replicas. Exchange between
neighboring replicas is attempted every 1,000 steps along the two dimensions. Well tempered
ensemble technique was applied again to improve the exchange rate with tunable factor y = 5.
The bin size for well-tempered ensemble technique to collect the history-dependent bias energy
is set to two units of the Rosetta docking energy. Note, that each replica accumulated separate
history-dependent biasing potentials depending on the individual sampling history. Replica ex-
change rate ranged between 14% and 56% in the temperature dimension with median value
32%. In the scaling dimension, it increased along the shifting from soft to hard repulsive inter-
action, and ranged between 12% and 99% with median value 39%.

Implementation in Rosetta

Previously, we implemented replica exchange within the general Metropolis-Hastings frame-
work of the Rosetta3 software package [14]. The replica exchange module is accessible through
the RosettaScripts interface and can be combined with any conformational moves that are
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implemented as children of the ThermodynamicMover class. For rigid-body docking refine-
ment, we have applied a rigid-body mover UnbiasedRigidBodyPerturbNoCenterMover, and
sidechain movers including JumpRotamerSidechainMover, PerturbRotamerSidechainMover
and PerturbChiSidechainMover. For detailed balance, UnbiasedRigidBodyPerturbNoCenter-
Mover performs unbiased rotational and translational perturbations in the restricted space as
described in the previous section, and sidechain movers provide the proposal density of the
perturbation through implementation of the abstract virtual function compute_proposal_den-
sity() in the ThermodynamicMover interface. The acceptance of a move is decided by the Me-
tropolis criterion [44].

Side-chain motion is applied on one randomly selected residue (among all the residues and
all the residue types but Proline) each time. Continuous sampling of side chain chi angles are
used instead of fixed rotamers in all the three sidechain movers. The angles are chosen accord-
ing to the Dunbrack rotamer library 2010 probabilities [45]. PerturbChiSidechainMover does a
perturbation on the side chain chi angles, either uniformly distributed or Gaussian distributed
with a given magnitude. For JumpRotamerSidechainMover and PerturbRotamerSidechain-
Mover, a rotamer is first selected randomly or selected such that it has the highest probability
of proposing the old chi angles according to the Dunbrack rotamer library probabilities, respec-
tively, then individual chi angles are chosen using Gaussian distributed random angles with the
means and standard deviations from the Dunbrack rotamer library.

The well-tempered ensemble technique is implemented into the framework of Metropo-
lisHastings as ThermodynamicObserver. It is applied with a certain time interval (here in the
test stride = 1) and deposits the Gaussians to the bias energy with height of

W = we—[V(s‘t)/AT]TG

where 74 is the time interval or stride number, V(s, t) is the old bias energy in the energy bin
where the current decoy's energy has dropped into, w represents the initial bias deposition rate
and AT = (1 — y)T, in which y represents the tunable factor and T is the temperature in the sim-
ulation [37,39,40,46]. When well-tempered ensemble technique is applied, acceptance of a
move or an exchange attempt is decided based on the total energy, which is the sum of the
force field energy and the bias energy. For final analysis, only the force field scoring energy

was used.

Construction of a benchmark

The four protocols were first tested on 10 unbound targets (Table 1) from the benchmak4.0 set
[47,48] with reasonable energy funnels using the RosettaDock scoring force field. This was
checked by generating 1000 decoys with standard RosettaDock full protocol starting from the
bound docking geometry (using unbound structures). These 10 targets belong to the group of
“rigid body” docking cases with small changes of side chains associated with complex forma-
tion (according to the classification of the protein docking benchmark4.0 collection [47,48]).
In addition, the standard MC protocol and the WTE_H_REMC protocols were also tested on
another 10 unbound targets including one "difficult” (1JK9) and two "medium difficulty”
(IMQ8 and 2CFH) targets (Table 1). The number of residues of the 20 targets range between
122 and 409.

Analysis of docking results and computational efficiency

The sampled docked complex were analyzed according to ligand RMSD (L_rmsd) and fraction
of native contacts (f,,ar), as defined in CAPRI [49] using the bound complexes as references. To
evaluate the capacity of the methods to sample near-native decoys, we calculated the fraction of
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Table 1. Test complex structures and partner structures.

Complex Cat.

1EAW_AB
1GCQ_B:C
1KTZ_A:B
1PPE_EI
1S1Q_A:B
2AYO_AB
2SNI_E:l
3D5S_A:C
3SGQ_E:I
7CEI_A:B
1AY7_AB
1H9D_A:B
1HE1_C:A
1JK9_A:B
1MQ8_A:B
1RV6_VW:X
1YVB_A!
2CFH_A:C
20UL_AB
2SIC_E:I

mmOoOmOOOoOoOoOommMMmMOMmMOOMmMOOm

Difficulty
rigid
rigid
rigid
rigid
rigid
rigid
rigid
rigid
rigid
rigid
rigid
rigid
rigid
difficult
medium
rigid
rigid
medium
rigid
rigid

Partner | Nres 1 Partner I Nres 2 RMSD (A) DASA (A)
1EAX_A 241 9IPTI_ 56 0.54 1866
1GRI_B 66 1GCP_B 56 0.92 1208
1TGK_ 105 1M9Z_A 82 0.39 989
1BTP_ 223 1LUO_A 29 0.44 1688
2FOR_A 141 1YJ1_A 69 0.98 1288
2AYN_A 337 2FCN_A 72 1.39 3027
1UBN_A 274 2CI12_| 64 0.35 1628
1C3D_A 294 2GOM_A 61 0.56 1620
2QA9_E 185 20VO_A 51 0.39 1211
1UNK_D 127 1M08_B 87 0.7 1384
1RGH_B 96 1A19_B 89 0.54 1237
1EAN_A 125 1ILF_A(1) 114 1.32 2121
1MH1_ 176 1HE9_A 128 0.93 2113
1QUP_A 219 2JCW_A 153 2.51 2130
11IAM_A 184 1MQ9_A 171 1.76 1253
1FZV_AB 189 1QSZ_A 92 1.09 1626
2CHU_A 241 1CEW_I 108 0.51 1743
1Sz27_A 156 2BJN_A 137 1.55 2384
3BPF_A 236 2NNR_A 107 0.53 1933
1SUP_ 275 3SSI_ 107 0.36 1617

cat: Complex category labels: E = Enzyme/Inhibitor or Enzyme/Substrate O = Others.
RMSD: RMSD of Ca atoms of interface residues calculated after finding the best superposition of bound and unbound interfaces.
DASA: Change in Accessible Surface Area upon complex formation.

doi:10.1371/journal.pone.0125941.t1001

CAPRI medium (**, f,0r > 0.5 & L_rmsd > 14 or 0.3 < f,.; < 0.5 & L_rmsd < 5) or high (***,
fnar > 0.5 &L_rmsd < 14) quality decoys in the collected results [50]. To evaluate the agree-
ment between generated complexes with closest L_rmsd and best f,,, compared to the bound
complex. To evaluate the scoring energies the interaction score (I_sc) was used which is com-
puted by subtracting the all-atom energy of non-interacting partners from the all-atom energy
of the interacting partners in the complex. To compute the energy of non-interacting partners
the two binding partners are moved far away from each other while keeping all internal degrees
of freedom fixed. To investigate the efficiency of optimizing the scoring energies, we calculated
for a given MC step number the average difference of the sampled best score (up to the selected
MC step number) and the final most favorable score.

Results and Discussion

Monte Carlo docking simulations are frequently used to perform protein-protein docking
searches or for the refinement of predicted complexes at atomic resolution including limited
conformational changes of the partner structures [14-17]. In recent years, enhanced sampling
methods to improve the MC search efficiency have been developed. In order to test the perfor-
mance of such improvements we compare the application of standard MD, parallel tempering
REMC, well tempered replica exchange (WTE-REMC), and well tempered ensemble combined
with 2-dimensional temperature and Hamiltonian replica exchange (WTE-H-REMC) to a set
of protein-protein complexes in unbound partner conformation. In each case the MC moves
included rigid body translation and rotation as well as side-chain moves (illustrated in Fig 2).
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MetropolisHastingsMover

WTE Bias Energy
MC accept?

Hamiltonian Exchange

Trial Counter Observer

Silent Trajectory Recorder

Fig 2. Workflow represented by combination of Rosetta modules and setup of the four docking protocols. The modules in orange, representing the
enhanced sampling techniques of replica exchange and well-tempered ensemble, are only applied in the combined protocols.

doi:10.1371/journal.pone.0125941.9002

For each protocol the same start configuration was used corresponding to a random arrange-
ment of one mobile partner placed approximately 15 A away from the bound complex geome-
try (see Methods for details). In case of the replica exchange methods only configurations in
the reference replica were retained, resulting in approximately 25x2,000 decoys for standard
MC protocol (with 2x10° MC steps), 2x2,000 for REMC protocol, 5x2,000 for WTE-REMC
protocol and 1x2,000 for WTE-H-REMC protocol, respectively. On a 2.6 GHz AMD Opteron
Processor (12 cores), 2x10° MC steps take between 4.5-20 hours. The sampled docking solu-
tions were analyzed in terms of deviation from the known complex geometry (using the root
mean square backbone deviation of the mobile ligand partner protein from the bound complex
after best superposition of the receptor protein onto the bound complex: L_rmsd) and interac-
tion score (I_sc).

The protocols were first tested on 10 benchmark targets of the “rigid body” category (with
only limited side chain changes upon complex formation, see Methods for details). We
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consider the sampling of medium or high-quality solutions (CAPRI **/*** solutions, defined in
Methods section) according to the CAPRI criteria as successful docking refinement. The evolu-
tion of the sampling in terms of L_rmsd and I_sc scoring is showcased for two representative
targets (pdblEAW and pdb3SGQ) in Fig 3. For the pdb1EAW-target all methods sample pro-
gressively lower (more favorable) force field scores with increasing number of MC steps. How-
ever, for the first example only the WTE-H-REMC protocol samples docking solutions with
L_rmsd < 5 A after 2x10° MC steps. Only after 10" MC steps all techniques except the standard
MC technique sample near-native solutions (Fig 3A). For the second example (pdb3SGQ) the
MC technique successfully samples solutions with Lrmsd < 5 A only after 10" MC steps where-
as all three advanced sampling techniques reach near-native solutions already after 3x10° MC
steps (Fig 3B). Qualitatively similar trends were observed for all other test cases (see Figures
A-Cin S1 File).

A quantitative comparison of the docking refinement solutions in terms of the fraction of
native contacts (f,,,) indicates that the WTE-H-REMC method succeeded in all 10 cases in
sampling near-native docking solutions with very high quality (Fig 4A). In contrast, the other
protocols succeeded only in 3 (MC) or 7 (REMC and WTE-REMC) of the first 10 cases (Fig
4A). Note, that near-native docking solutions are also the best scoring solutions in several but
not all docking test cases (e.g. for targets 1KTZ, 3D5S and 7CEI docking solutions with
Lrmsd > 10 A give I_sc scores lower than the solutions closest to the bound docking geometry,
Figures B,C in S1 File). The results on the first 10 test cases indicate that the WTE-H-REMC
enhanced sampling protocol showed the best performance. For a second test set of 10 targets
(including also targets of the “medium” and “difficult” category, see Table 1), only the standard
MC and the WTE-H-REMC protocols were compared. Again, the WTE-H-REMC protocol
gave better docking results in 5 cases (IJK9, 1MQ8, 2CFH, 20UL, 2SIC) with lower final I_sc
scores and Lrmsd (Fig 4A, Figures D-F in S1 File) compared to the standard MC-method.
However, in two cases (1H9D and 1HE1) the standard MC-method reached configurations
closer to the bound form compared to the WTE-H-REMC technique. Note, that especially in
these cases the score of near-native docking solutions was higher (less favorable) than for alter-
native docking geometries (Figures E, F in S1 File). Since the search techniques optimize the
score (and not deviation from bound structure) it may explain the failure of the WTE-H-
REMC technique in these cases.

To check if slower convergence to reach low energy docking solutions was the main reason
for the failure of some protocols to reach near-native docking solutions, we increased the tra-
jectory length to 10’ MC steps. Indeed, the success of MC, REMC, and WTE-REMC protocols
to reach near-native docking solutions increased to 8, 10 and 10 out of the first 10 targets, re-
spectively (Fig 4B, see also Figures C, F in S1 File). The results were further analyzed with re-
spect to fraction of native contacts (f,,,) of near —native docking solutions and the maximum
quality of predicted docking geometries (Fig 4). Also for these measures and in case of the pro-
tocol with 2x10° MC steps the WTE-H-REMC protocol achieves overall the best performance
(Fig 4A). For the extended protocol with 10”7 MC steps the quality of solutions in terms of f,,. is
more similar for all 4 protocols (Fig 4B), indicating that indeed the standard MC technique re-
quires longer searches to achieve convergence compared to the WTE-H-REMC method. The
best f,,. for protocols MC, REMC and WTE-REMC all increased on average around 17%, get-
ting close to that of the WTE-H-REMC protocol. The best f,,, for protocol WTE-H-REMC
also increased slightly (~7%, Fig 4B). Fig 3 presents two representative examples on targets
1EAW and 3SGQ of ligand RMSD (L_rmsd) versus interaction score (I_sc). Comparing these
data with that from the trajectory of 2x10° MC steps, it shows that the details of the energy
landscape sampled by WTE-H-REMC remains similar indicating reasonable convergence
within 2x10° MC steps for most cases. Meanwhile, the rigid-body space reached for target
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Fig 3. Scatter plot of interaction score |_sc (Rosetta units) vs. L_rmsd (A) for the four docking refinement protocols and two representative
targets, 1TEAW (A) and 3SGQ (B). The protocol is indicated on the left for each row of plots. The snapshots number is color-coded, that means blue and red
dots corresponding to decoys sampled at the beginning and the end of the docking searches in each panel, respectively. The three columns of plots indicate
the result after different simulation lengths (indicated on top of each column).

doi:10.1371/journal.pone.0125941.g003

1EAW by protocols MC, REMC and WTE-REMC, and on target 3SGQ by protocol MC, dras-
tically improved (Fig 3).

Since the force field score is the quantity which is optimized during the docking searches
(and not the agreement with the bound structure) it is of interest to compare the protocols in
terms of the efficiency to optimize the force field score. For each target, the average of the low-
est 10 interaction scores (lowest I_sc) sampled up to a given MC step number was considered
(using the extended trajectories) and the difference relative to the lowest score found during
the search was recorded. The average of this quantity for all 20 cases was calculated and plotted
in Fig 5. The enhanced sampling techniques REMC, WTE-REMC and WTE-H-REMC, consis-
tently, reached lower interaction scores than the standard MC method for a given number of
MC step (Fig 5A). The WTE-H-REMC technique reached on average lower I_sc than the other
three protocols already after ~3x10°> MC steps. Interestingly, the same analysis using the
L_rmsd instead of the I_sc yields the same trend, indicating that on average the I_sc score cor-
relates with the L_rmsd (Fig 5B). Low L_rmsd of sampled geometries gives on average (but not
for all targets) also a favorable score.

Protocol testing

A subset of three complexes (pdb-entries: 1PPE, 20UL and 2SIC) was chosen as an indepen-
dent protocol test set. For two of these three complexes, only the MC and the WTE_H_REMC
protocol had been tested in the main work. The four protocols were run using the Rosetta-
Scripts interface with parameters as described above, trajectory length of 2x10° MC steps and a
newly created starting conformation. In contrast to the previous docking runs, only a single
starting conformation was generated for each complex. All the protocols could be successfully
executed. A summary of the test results can be found in Table 2. For all three test cases, the en-
hanced sampling methods yielded structures of lower L_rmsd and higher f,,., than standard
MC sampling. Enhanced sampling methods generated near-native docking models, whereas
standard MC sampling did not yield any structures of CAPRI one star quality or better. The
WTE_H_REMC technique was the only method to generate CAPRI three star quality struc-
tures for all three cases and thus yielded the best performance on the test set. The results match
the previously presented data for these three complexes and thus confirm that the sampling
does not depend on the choice of the starting conformation. The randomly generated starting
conformations sometimes contained clashes, but the enhanced sampling methods were able to
refine them to high-quality solutions. Hence, it might be possible to use enhanced sampling
methods also for refinement of docked complexes using other methods than RosettaDock.

Conclusions

In this work, four different Monte Carlo advanced sampling protocols implemented in Rosetta-
Dock to predict the geometry of protein-protein complexes have been compared. For all the
protocols (on each target) the same initial protein-protein docking start configurations were
used with 15 A translational displacements and 60° rotation of one partner from the native
complex structure. This situation corresponds to the frequent scenario that the interaction re-
gion between proteins is approximately known and start configurations are placed close to the
approximately known binding region. It is also very useful for directly comparing the docking
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Fig 4. Agreement between sampled docking geometries and the corresponding bound complex. (A, upper panel) Highest fraction of native contacts
(frar) found in the top 10 decoys (according to L_rmsd) sampled in each protocol (2x108 MC steps). (A, lower panel) Fraction of CAPRI medium and high
quality complexes found for each target and each protocol (the protocols MC, REMC, WTE-REMC and WTE-H-REMC are indicated by different colors). (B)
same as in (A) but for the docking refinement runs with 10” MC steps.

doi:10.1371/journal.pone.0125941.g004
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Fig 5. Evolution of |_sc docking interaction score (A) and best sampled Lrmsd (B) vs. MC step number. The MC step number is scaled by x1000. For
the interaction score I_sc the smallest difference (sampled up to the selected step number) relative to the lowest scoring complex sampled in the entire
docking search is plotted. The variance in sampled scores (up to the considered number of MC steps) is indicated by error bars for the MC protocol. It is of
similar magnitude for the other protocols (not shown). For (B) the smallest sampled L_rmsd up to the step number indicated in the x-axis is shown.

doi:10.1371/journal.pone.0125941.9005
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Table 2. Results for protocol testing on a subset of three complexes.

PDB ID MC
1PPE 5.6 A
14.5h
20UL 42 A
21.8h
28IC 49 A
25.5h

REMC WTE-REMC WTE-H-REMC
15A 22A 1.0A

14 h 12.3h 17.8 h

19A 22A 0.7A

18.3 h 18 h 22h

0.4 A 28A 05A

22 h 19h 20 h

For all complexes, the best sampled L_rmsd and the execution time on 27 threads are listed.

doi:10.1371/journal.pone.0125941.1002

performance of different approaches at the computational demanding atomistic high resolution
level. Note, that the protocol is computationally too demanding for routine applications that re-
quire to search over the entire surface of two protein partners. If complete protein surfaces are
considered it is also very likely that the scoring function is not accurate enough to pick out near-
native solutions as lowest energy complexes. Our results on docking refinement show indeed
that the application of advanced sampling schemes improves the docking refinement perfor-
mance yielding final configurations in better agreement with the bound structure and yield also
a much larger fraction of near-native structures compared to regular MC searches. The
WTE-H-REMC consistently gave the best performance since it explores the phase space more ef-
ficiently due to larger energy fluctuation and due to the added biasing potential that effectively
smoothes the landscape and increases the replica exchange rates. An increase of the number of
MC steps to 107 in the standard MC protocol resulted in improved performance achieving a sim-
ilar fraction of native contacts of best sampled solutions and similar final docking scores com-
pared to WTE-H-REMC with 2x10° steps. Hence, in most cases a standard MC protocol
requires roughly 5 times larger computational demand to achieve the same final docking predic-
tion performance. It should be emphasized that this reflects only a general trend. For some test
cases even 10" MC steps still gave inferior docking results compared to WTE-H-REMC and still
the fraction of the best solutions relative to the total number of sampled geometries is much
smaller than for the advanced sampling method. Further improvement might be possible by an
adjustment of the bin size in the WTE to collect the history dependent bias energy. However, an
even larger gain could be achieved by an improvement of the docking scoring function to in-
crease the gap between ranking near-native and non-native solutions.

Supporting Information

S1 File. Supporting Figures. Figure A. Scatter plot of interaction score (I_sc) vs. ligand
RMSD (L_rmsd) for the first 10 targets after 3x10° MC steps. All the panels have the same
L_rmsd range of [0.30], and the same I_sc range of [-15.0 Rosetta score units]. For each target,
the tested protocols are grouped together and the corresponding protocol is indicated in the
score-axis label on the left side. The snapshot number is color-coded, with dark blue and dark
red dots corresponding to decoys sampled at the beginning and towards the end of the sam-
pling interval, respectively. Figure B. Same as Figure A in S1 File but for the docking
searches up to 2x10° MC steps. Figure C. Same as Figure A in S1 File but for the docking re-
finement simulation with 10’ MC steps. Figure D. Scatter plot of interaction score (I_sc)
vs. ligand RMSD (L_rmsd) for the additional 10 targets with 3x10°> MC steps. All the panels
have the same L_rmsd range of [0.30], and the same I_sc range of [-15.0]. For each target, the
tested protocols are grouped together and the corresponding protocol is indicated in the score-
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axis label on the left side. The snapshots number is color-coded, with dark blue and dark red
dots corresponding to decoys sampled at the beginning and the end, respectively. Figure E.
Same as Figure D in S1 File but for docking searches up to 2x10° MC steps. Figure F. Same
as Figure D in S1 File but for docking searches with 10’ MC steps.
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