
ORIGINAL RESEARCH ARTICLE
published: 30 August 2013

doi: 10.3389/fnins.2013.00153

Synthesis of neural networks for spatio-temporal spike
pattern recognition and processing
Jonathan C. Tapson*, Greg K. Cohen , Saeed Afshar , Klaus M. Stiefel , Yossi Buskila ,
Runchun Mark Wang , Tara J. Hamilton and André van Schaik

The MARCS Institute, University of Western Sydney, Kingswood, NSW, Australia

Edited by:

Giacomo Indiveri, University of
Zurich and ETH Zurich, Switzerland

Reviewed by:

Emre O. Neftci, Institute of
Neuroinformatics, Switzerland
Fabio Stefanini, University of Zurich
and ETHZ, Switzerland
Michael Pfeiffer, University of Zurich
and ETH Zurich, Switzerland

*Correspondence:

Jonathan C. Tapson, School of
Computing, Engineering and
Mathematics, University of Western
Sydney, Locked Bag 1797, Penrith
2751 NSW, Australia
e-mail: j.tapson@uws.edu.au

The advent of large scale neural computational platforms has highlighted the lack of
algorithms for synthesis of neural structures to perform predefined cognitive tasks. The
Neural Engineering Framework (NEF) offers one such synthesis, but it is most effective
for a spike rate representation of neural information, and it requires a large number
of neurons to implement simple functions. We describe a neural network synthesis
method that generates synaptic connectivity for neurons which process time-encoded
neural signals, and which makes very sparse use of neurons. The method allows the user
to specify—arbitrarily—neuronal characteristics such as axonal and dendritic delays, and
synaptic transfer functions, and then solves for the optimal input-output relationship using
computed dendritic weights. The method may be used for batch or online learning and has
an extremely fast optimization process. We demonstrate its use in generating a network
to recognize speech which is sparsely encoded as spike times.

Keywords: pseudoinverse solution, spatio-temporal spike pattern recognition, spiking network synthesis, kernel

method, spike-time encoded information

INTRODUCTION
There has been significant research over the past two decades
to develop hardware platforms which are optimized for spiking
neural computation. These platforms range from analog VLSI
systems in which neurons are directly simulated by using CMOS
transistors as ion channels and synapses, to highly parallel custom
silicon microprocessor arrays (Boahen, 2006; Khan et al., 2008;
Schemmel et al., 2010). Some of these platforms are now capable
of modeling populations of over a million neurons, at rates which
are significantly faster than biological real time.

The advent of these systems has revealed a lack of concomi-
tant progress in algorithmic development, and particularly in the
synthesis of spiking neural networks. While there are a number of
canonical structures, such as Winner-Take-All (WTA) networks
(Indiveri, 2001), and some spiking visual processing structures
such as Gabor filter networks and convolutional neural networks
are routinely implemented (Zamarreño-Ramos et al., 2013), there
are few successful methods for direct synthesis of networks to per-
form any arbitrary task which may be defined in terms of spike
inputs and spike outputs, or in terms of a functional input-output
relationship.

One successful method is in the core algorithm for the Neural
Engineering Framework (NEF; Eliasmith and Anderson, 2003).
The NEF was first described in 2003, and generally builds large
systems from subnetworks with a standard three-layer neural
structure, in which the first layer are inputs; the second layer
is a very large hidden layer of non-linear interneurons, which
may have recurrent connections; and the third layer is the output
layer, which consists of neurons with linear input-output charac-
teristics. The connections between the input and hidden layers
are randomly weighted, and fixed (they are not altered during
training). The connections between the hidden and output layers

are trained in a single pass, by mathematical computation rather
than incremental learning. We will describe this structure in more
detail in the following section.

The NEF core algorithm was perhaps the first example of
a larger class of networks which have been named LSHDI
networks—Linear Solutions of Higher Dimensional Interlayers
(Tapson and van Schaik, 2013). These are now widely used in
the machine learning community in the form of the Extreme
Learning Machine (ELM; Huang et al., 2006a)—a conventional
numerical neural network, which performs with similar accuracy
to Support Vector Machines (SVMs) and which is significantly
quicker to train than SVMs. Both the ELM and NEF methods have
been applied to implement bio-inspired networks on neural com-
putation hardware (Choudhary et al., 2012; Conradt et al., 2012;
Galluppi et al., 2012; Basu et al., 2013). Most recently, Eliasmith
and colleagues have used the method to synthesize subnetworks
in a 2.5 million neuron simulation of the brain (Eliasmith et al.,
2012). This illustrates that the NEF is a meta-level framework for
building cognitive systems, in which the LSHDI networks that are
referred to in this report form only the building blocks.

The NEF is an effective synthesis method, with three impor-
tant caveats: it intrinsically uses a spike rate-encoded information
paradigm; it requires a very large number of neurons for fairly
simple functions (for example, it is not unusual for a function
with two inputs and one output, to use an interlayer of fifty to a
hundred spiking neurons); and the synthesis (training) of weights
is by mathematical computation using a singular value decompo-
sition (SVD), rather than by any biologically plausible learning
process.

We have recently addressed the third of these caveats by
introducing weight synthesis in LSHDI through an online, bio-
logically plausible learning method called OPIUM—the Online

www.frontiersin.org August 2013 | Volume 7 | Article 153 | 1

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuromorphic_Engineering/10.3389/fnins.2013.00153/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JonathanTapson&UID=784
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GregCohen&UID=70336
http://community.frontiersin.org/people/SaeedAfshar/95660
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=KlausStiefel_1&UID=3735
http://community.frontiersin.org/people/YossiBuskila/45477
http://community.frontiersin.org/people/RunchunWang/71414
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=TaraHamilton&UID=21622
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Andr�van_Schaik&UID=12768
mailto:j.tapson@uws.edu.au
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Tapson et al. Spatio-temporal spiking network synthesis

PseudoInverse Update Method (Tapson and van Schaik, 2013).
This method also allows for adaptive learning, so that if the
underlying function of the network changes, the weights can
adapt to the new function.

The relative merits of rate-encoding and time- or place-
encoding of neural information is a subject of frequent and
ongoing debate. There are strong arguments and evidence that
the mammalian neural system uses spatio-temporal coding in at
least some of its systems (Van Rullen and Thorpe, 2001; Masuda
and Aihara, 2003), and that this may have significant benefits in
reducing energy use (Levy and Baxter, 1996). A synthesis method
which can produce networks for temporally encoded spike infor-
mation will have significant benefits in terms of modeling these
biological systems, and in reducing the quantity of spikes used for
any given information transmission.

In this report we describe a new neural synthesis algorithm
which uses the LSHDI principle to produce neurons that can
implement spatio-temporal spike pattern recognition and pro-
cessing; that is to say, these neurons are synthesized to respond
to a particular spatio-temporal pattern of input spikes from
single or multiple sources, with a particular pattern of output
spikes. It is thus a method which intrinsically processes spike-
time-encoded information. The synthesis method makes use of
multiple synapses to create the required higher dimensionality,
allowing for extreme parsimony in neurons. In most cases, the
networks consist only of input neurons and output neurons, with
the conventional hidden layer being replaced by synaptic connec-
tions. These simple networks can be cascaded to perform more
complex functions. The starting point of the synthesis method
is to have an ensemble of input channels emitting neuron spike
trains; these are the input neurons. The desired output spike
trains are emitted by the output neurons, and our method is
used to generate the synaptic connectivity that produces the cor-
rect input-output relationship. We call this method the Synaptic
Kernel Inverse Method (SKIM). Training may be carried out by
pseudoinverse method or any similar convex optimization, so
may be online, adaptable, and biologically plausible.

The point of departure between this new method and our
prior work (Tapson and van Schaik, 2013) is that the prior work
(OPIUM) was suitable for solving conventional LSHDI problems
but made no particular contribution to the special case of spike-
timing dependent signals. The work described here is specifically
aimed to provide a synthesis method for systems in which perhaps
only a single spike, or none at all, is received in each channel dur-
ing an observation interval. Methods which work on rate-based
spike signals are generally dysfunctional in this regime, but it is
considered to be widely used in mammalian neural signaling.

This work also offers a synthesis method for networks to
perform cortical sensory integration as postulated by Hopfield
and Brody (2000, 2001). This required that short, sparse spatio-
temporal patterns be integrated to produce recognition of a
learned input. In section Results below, we show a detailed
methodology for solving Hopfield and Brody’s mus silicium chal-
lenge with the SKIM method.

There are a number of published network methodologies
which process spatio-temporal spike patterns. These include
reservoir computing techniques such as liquid state machines

(Maass et al., 2002; Maass and Markram, 2004) and echo state
networks (Jaeger, 2003). In particular, Maass and colleagues
have analyzed the requirements for universal computation in
terms of networks of these types, and have identified require-
ments such as network stability, input separability and fad-
ing memory as being necessary conditions (Maass and Sontag,
2000). We will refer to this work in more detail in section
Methods.

An interesting feedforward network for spatio-temporal pat-
tern recognition is the Tempotron of Gütig and Sompolinksy
(2006). The Tempotron consists of a leaky integrate-and-fire neu-
ron with a number of synaptic inputs. The synaptic weights are
trained by gradient descent so that the neuron exceeds its thresh-
old for particular input patterns of spikes. A similar system, the
DELTRON, has been implemented on an FPGA platform using
neuromorphic principles (Hussein et al., 2012). The Tempotron
and DELTRON are two special cases of the type of network
which can be synthesized using the methodology outlined in
this report. Gütig and Sompolinksy have subsequently extended
the Tempotron concept with adaptive shunting inhibition at
the synapses, which produces a very impressive robustness to
time-warping in the system’s performance in speech recognition
(Gütig and Sompolinksy, 2009). This principle may well be imple-
mentable in most spatio-temporal pattern recognition networks,
including that which is reported on here.

A feature of the Tempotron is that the weights are learned
incrementally, rather than synthesized. This report focuses on a
synthesis method for networks; that is to say, one in which the
network or synaptic weights are calculated analytically, rather
than learned. The advantage of synthetic methods are in speed
of development, and also in robustness of outcomes, as learning
methods tend to be intrinsically stochastic and solutions are not
necessarily repeatable. Nonetheless, it has been shown that learn-
ing methods such as spike-timing dependent plasticity (STDP)
can produce extremely sensitive spatio-temporal pattern recog-
nition (Masquelier et al., 2006, 2009). There are also hybrid
methods in which combinations of synthesis and evolution have
been used to find the parameters for network weights and neu-
rons (Russell et al., 2010; Torben-Nielsen and Stiefel, 2010). More
recently, learning methods such as ReSuMe (Remotely Supervised
Method, by Ponulak and Kasiñski, 2010) and SPAN (Mohemmed
et al., 2012) have been proposed as variations on the classic
Widrow–Hoff or Delta rule.

METHODS
THE LSHDI PRINCIPLE
LSHDI networks are generally represented as having three lay-
ers of neurons—the classic input, hidden and outer layer feed-
forward structure (see Figure 1). Should a memory function
be desired, the hidden layer may have recurrent connections.
However, LSHDI networks differ from regular feedforward net-
works in three important respects. The hidden layer is usually
much larger than the input layer (values of 10–50 times are used
by various practitioners; Huang and colleagues have tested net-
works in which the number is incrementally increased—Huang
et al., 2006a; Huang and Chen, 2008). The connections from the
input layer to the hidden layer are randomly generated, and are

Frontiers in Neuroscience | Neuromorphic Engineering August 2013 | Volume 7 | Article 153 | 2

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Tapson et al. Spatio-temporal spiking network synthesis

FIGURE 1 | A typical LSHDI network. The input variables are projected to
a higher dimension (in this case, from 3D to 6D) by means of random fixed
weights and a non-linear transformation (which in the case of NEF may be a
leaky integrate-and-fire neuron, as inferred here). The outputs from the
higher dimensional space are weighted and summed by linear output
neurons, allowing for solution of the output weights by linear regression or
classification.

not changed during training. Finally, the output layer neurons
have a linear response to their inputs.

The key to the success of LSHDI networks is that they make
use of the non-linear transformation that lies at the core of ker-
nel methods such as kernel ridge regression and SVMs. This
is a process by which data points or classes which are not lin-
early separable in their current space, are projected non-linearly
into a higher dimensional space (this assumes a classification
task). If the projection is successful, the data are linearly sepa-
rable in the higher dimensional space. In the case of regression
or function approximation tasks, the problem of finding a non-
linear relationship in the original space is transformed into the
much simpler problem of finding a linear relationship in the
higher dimensional space, i.e., it becomes a linear regression
problem; hence the name Linear Solutions of Higher Dimensional
Interlayers.

A number of researchers have shown that random non-linear
projections into the higher dimensional space work remarkably
well (Rahimi and Recht, 2009; Saxe et al., 2011). The NEF and
ELM methods create randomly initialized static weights to con-
nect the input layer to the hidden layer, and then use non-linear
neurons in the hidden layer (which in the case of NEF are
usually leaky integrate-and-fire neurons, with a high degree of
variability in their population). Many other projection options
have also been successful, perhaps summed up by the title of
Rahimi and Recht’s paper, “Weighted Sums of Random Kitchen
Sinks” (Rahimi and Recht, 2009). This paper is recommended

to the reader both for its admirable readability, and the clarity
with which it explains the use of random projection as a viable
alternative to learning in networks. As shown by Rahimi and
Recht, random non-linear kernels can achieve the same results as
random weighting of inputs to non-linear neurons.

The linear output layer allows for easy solution of the hidden-
to-output layer weights; in NEF this is computed in a single step
by pseudoinversion, using SVD. In principle, any least-squares
optimal regression method would work, including, for example,
linear regression. We note that for a single-layer linear regres-
sion solution such as this, the problem of getting trapped in a
local minimum when using gradient descent optimization should
not occur, as the mapping is affine and hence this is a convex
optimization problem.

The LSHDI method has the advantages of being simple, accu-
rate, fast to train, and almost parameter-free—the only real
decisions are the number of interlayer neurons and the selec-
tion of a non-linearity, and neither of these decisions is likely to
be particularly sensitive. A number of studies have shown that
ELM implementations remain stable and have increasing accu-
racy as the number of interlayer neurons is increased (Huang
et al., 2006b; Huang and Chen, 2008); however, this robustness
has not been proven in theory.

LSHDI FOR SPIKE TIME ENCODED NEURAL REPRESENTATIONS—THE
SKIM METHOD
Spike time encoding presents difficulties for conventional neu-
ral network structures. It is intrinsically event-based and discrete
rather than continuous, so networks based on smoothly contin-
uous variables do not adapt well into this domain. Outside of
simple coincidence detection, it requires the representation of
time and spike history in memory (the network must remember
the times and places of past spikes). The output of the network is
also an event (spike) or set of events, and therefore does not map
well to a linear solution space.

We have developed a biologically plausible network synthesis
method in which these problems are addressed. The basic net-
work consists of presynaptic spiking neurons which connect to a
spiking output neuron, via synaptic connections to its dendritic
branches, as illustrated in Figure 2. The synapses are initial-
ized with random weights which do not change thereafter; this,
together with a subsequent non-linearity, provides the projection
to a higher dimension required for the improved separability. The
dendritic branches sum the synaptic input currents. Some user-
selected feature of the network—recurrent connections, axonal
or dendritic delay, synaptic functions, or some combination of
these—implements memory (in the form of persistence of recent
spikes); and there must be a non-linear response, which provides
the non-linearity in projection necessary for improved separa-
bility. In the top schematic in Figure 2 we have renamed the
hidden layer as synapses, to emphasize that these (the hidden layer
elements) are not spiking neurons.

The outputs from the dendritic branches are summed in the
soma of the output neuron. At this stage we are able to use a lin-
ear solution to calculate the correct weights for the connection
between dendritic branches and soma; solution by pseudoinverse
or backpropagation will both work.

www.frontiersin.org August 2013 | Volume 7 | Article 153 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Tapson et al. Spatio-temporal spiking network synthesis

FIGURE 2 | The SKIM network structure for time-encoded spike

processing, shown in LSHDI and biological form. Presynaptic neurons are
connected to a postsynaptic neuron through randomly generated, fixed
weighted synapses. Synapses are implemented as filter elements which
produce a non-linear impulse response, in response to incoming spikes. The

postsynaptic dendritic branch acts as a hidden layer element, and integrates
the synaptic currents by means of a non-linear time-persistent filter. Memory
may be implemented specifically as axonal or dendritic delays, or in terms of
axonal functions. Dendritic signals are summed at the soma, and if they
exceed a threshold, the axon hillock emits a spike.

The linear solution solves the dendritic weights required to
produce soma values which are below threshold for non-spike
times and above threshold for spike times. The soma potential
value for which the linear weights are calculated can be set to be
one of two binary values, as in a classifier output; for example, it
can be set to unity at spike output times, and zero when no spike
is wanted. This may not be necessary in some applications where
an analog soma potential would be a useful output. The final out-
put stage of the neuron is a comparator with a threshold for the
soma value, set at some level between the spike and no-spike out-
put values. If the soma potential rises above the threshold, a spike
is generated; and if it does not, there is no spike. This represents
the generation of an action potential at the axon hillock.

The reason that this network works is that it converts discrete
input events into continuous-valued signals within the dendritic
tree, complete with memory (the synapses and dendritic branches
may be thought of as infinite-impulse response filters); and at
the same time this current and historic record of input signals
is projected non-linearly into a higher-dimensional space. The
spatio-temporal series of spikes are translated into instantaneous
membrane potentials. We can then solve the linear relationship
between the dendritic membrane potentials and the soma poten-
tial, as though it was a time-independent classification problem:
given the current membrane state, should the output neuron
spike or not? The linear solution is then fed to the comparator
to generate an event at the axon of the output neuron.

One issue is that when output spikes are sparse (which is
a common situation) there is little impetus for the network
to learn non-zero outputs. We have increased the quality of
learning by adding non-zero weight to the target sequences, by
increasing either the target output spike amplitude, or width,
or both. In most cases it is more appropriate to increase the
width (as in the example network of section 3.2, in which the
exact timing of outputs is not explicitly available anyway). It
is also often the case that the optimum output threshold is
not half of the spike amplitude, as might be expected; we have
found as a guideline that a threshold of 25% of spike ampli-
tude is more accurate, which reflects this problem to some
extent.

The inputs to this method do not necessarily need to be
spikes. The method will work to respond to any spatio-temporal
signals which fall within an appropriate range of magnitude.
However, given that the target for this work is synthesis of spatio-
temporal spike pattern processing systems, we analyze the system
for spiking inputs.

SYNAPTIC KERNELS
In the SKIM method, the hidden layer synaptic structure per-
forms three functions:

1. The axon signals are weighted and transmitted to the dendritic
branch, which sums inputs from several axons.

Frontiers in Neuroscience | Neuromorphic Engineering August 2013 | Volume 7 | Article 153 | 4

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Tapson et al. Spatio-temporal spiking network synthesis

2. The axon signals are non-linearly transformed. This is neces-
sary to ensure the non-linear projection to a higher dimension;
a linear projection would not improve the separability of the
signals.

3. The axon signals are integrated, or otherwise transformed
from Dirac impulses into continuous signals which persist
in time, in order to provide some memory of prior spike
events. For example, the use of an alpha function or damped
resonance to describe the synaptic transfer of current, as is
common in computational neuroscience, converts the spikes
into continuous time signals with an infinite impulse response.

The sum of these transformed signals represents the proximal
dendritic response to its synaptic input.

As mentioned in the previous section, steps 1, 2, and 3 may be
re-ordered, given that step 3 is most likely to be linear. Any two
of the steps may be combined into a single function (for example,
integrating the summed inputs using an integrator with a non-
linear leak).

We refer to the hidden layer neuron structure that performs
steps 1–3 above as the synaptic kernel. It is generally defined
by the synaptic or postsynaptic function used to provide per-
sistence of spikes, and this may be selected according to the
operational or biological requirements of the synthesis. We have
used leaky integration, non-linear leaky integration, alpha func-
tions, resonant dendrites, and alpha functions with fixed axonal
or dendritic delays; all of which work to a greater or lesser
extent, if their decay time is of a similar order of magnitude
to the length of time for which prior spikes must be remem-
bered. Linear leaky integration is equivalent to a neuron with
recurrent self-connection (with gain chosen to ensure stability).
We characterized this as an infinite-impulse response filter ear-
lier, but we note that it may be reasonable to truncate the spike
response in time (or use a finite-response function) to ensure
stability.

Maass and Sontag (2000) identified the requirements for
network stability, fading memory and pointwise separation as
necessary for universal computation in recurrently connected
networks. In avoiding recurrent connections we have ensured
stability, and the use of synaptic kernels with non-linear com-
pression provides fading memory in a way very similar to that
suggested by Maass and Sontag; they also note that “A biologically
quite interesting class of filters that satisfies the formal require-
ment of the pointwise separation is the class of filters defined by
standard models for dynamic synapses.” The non-linear compres-
sion following a linear synaptic filter has the effect of giving the
whole synapse depressive adaptation, as a second spike arriving at
the synapse soon after a first spike will be compressed to a higher
degree, given the filter output is not starting from zero for the
second spike.

Table 1 shows some typical synaptic functions in mathematical
and graphical form.

The synaptic kernels perform a similar synthetic function to
wavelets in wavelet synthesis. By randomly distributing the time
constants or time delays of the functions, a number of different
(albeit not necessarily orthogonal) basis functions are created,
from which the output spike train can be synthesized by linear

solution to a threshold. An analogous process is spectral analysis
by linear regression, in which the frequency components of a sig-
nal, which may not necessarily be orthogonal Fourier series basis
functions, are determined by least-squares error minimization
(Kay and Marple, 1981).

We may address the issue of resetting (hyperpolarizing) the
soma potential after firing an output spike. This is simple to
implement algorithmically (one can simply force all the den-
dritic potentials to zero after a firing event) and may improve the
accuracy; our experiments with this have not shown a significant
effect, but it may be present in other applications.

ANALYSIS OF THE SKIM METHOD
The SKIM method may be implemented using a number of differ-
ent synaptic kernels, but we can outline the method for a typical
implementation. The inputs may be expressed as an ensemble
of signals xt ∈ R

L×1 where t is a time or series index, and each
element of x represents the output of a presynaptic neuron. For
convenience, the signal magnitudes may take values xi ∈ {0, 1}
depending on whether there is a spike from neuron i at time
t or not. The signals propagate from the presynaptic axons to
synaptic junctions with the dendritic branches of the postsynap-
tic neuron (for the sake of clarity, we will restrict the output
to a single postsynaptic neuron at this stage; note that each
dendritic branch has different characteristics, and hence has a
unique index j). The synaptic weights w(1)

ji are fixed to random
values (we can postulate a uniform distribution in some sensi-
ble range, although Rahimi and Recht (2009) have shown that
this is not necessary). The superscript indicates the weights’ layer.
The dendrites and output neuron process the incoming signals as
follows:

yn,t =
∑M

j = 1
w(2)

nj Fj

(∑L

i = 1
w(1)

ji xi,t

)
, (1)

zn,t = Boolean
(
yn,t > θ

)

where Fj(·) is a non-linear filter function operating on the
weighted and summed input spikes; we may use different func-
tions for different dendrites, hence the subscript. Note that
most filters will consist of a linear function and a non-linearity;
the non-linear function and the integral may be swapped in
order, if that better represents the required neural function-
ality, but there is a significant loss of computational power
if the non-linearity precedes the filter function, as the non-
linearity is then acting on scaled delta functions rather than
continuous-time signals, so each event is independently scaled—
with continuous signals, it is the sum of synaptic responses
that is non-linearly scaled, giving effects of adaption accord-
ing to spike history. The LSHDI method obtains a result in
either case, but much of the computational power identified
by Maass and Sontag (2000) is lost. Here yt ∈ R

N×1 is the
output from the linear soma element, prior to thresholding;
the output after comparison with threshold θ is zt ∈ {0, 1}N×1

(spikes or no spikes). Each soma element yn,t is a linear sum

of the M hidden layer dendritic outputs weighted by w(2)
nj . n is

the output (soma) vector index, j the hidden layer (dendritic)

www.frontiersin.org August 2013 | Volume 7 | Article 153 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Tapson et al. Spatio-temporal spiking network synthesis

Table 1 | Typical synaptic kernels in mathematical and graphical form.

Kernel type Mathematical expression for filter response Typical function (Spike at t = 0)

Stable recurrent connection (leaky integration)
with non-linear leak

Fj (·) = 1

1 + (F(t − τ)
)2

∫ t

t0

L∑
i = 1

w (1)

ji xi,t dt

0.0

0.2

0.4

0 100 200 300 400

Alpha function followed by compressive
non-linearity

Fj (·) = tanh

⎛
⎝

⎡
⎣ L∑

i = 1

w (1)

ji xi,t

⎤
⎦ t

τ
e− t

τ

⎞
⎠

0.0

0.2

0.4

0 100 200 300 400

Damped resonant synapse followed by
compressive non-linearity

Fj (·) = tanh

⎛
⎝

⎡
⎣ L∑

i = 1

w (1)

ji xi,t

⎤
⎦ e− t

τ sin(ωt)

⎞
⎠

-0.2

0.3

0 100 200 300 400

Synaptic or dendritic delay with alpha function,
followed by compressive non-linearity

for t ≥ �T :

Fj (·) = tanh

⎛
⎝

⎡
⎣ L∑

i = 1

w (1)

ji xi,t

⎤
⎦ t − �T

τ
e− t−�T

τ

⎞
⎠

for t < �T : Fj (·) = 0

0.0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400

Synaptic or dendritic delay with Gaussian
function, followed by compressive non-linearity

for t ≥ �T :

Fj (·) = tanh

⎛
⎝

⎡
⎣ L∑

i = 1

w (1)

ji xi,t

⎤
⎦ 1

σ
√

2π
e− (t−�T)2

2σ2

⎞
⎠

for t < �T : Fj (·) = 0

0.0

0.2

0.4

0 100 200 300 400

The order from top to bottom provides increasingly precise delay timing; with the exception of the leaky integrator, time constants were chosen for maximum

synaptic transmission at 100 timesteps after spiking. Variables are as for Equation 1. τ is the time constant for the various functions, �T is an explicit synaptic or

dendritic delay, and ω the natural resonant frequency for a damped resonant synaptic function. The horizontal axes indicate timesteps.

index, and i the input (neuron) vector index. The dendritic
outputs depend on the dendrite’s filter function Fj(·) and the

randomly determined synaptic weights w(1)
ji between input and

hidden layer.

As mentioned previously, the synaptic weights w(1)
ji are ran-

domly set (usually with a uniform distribution in some appropri-
ate range) and remain fixed. The training of the network consists

of calculating the weights w(2)
nj connecting the dendrites to the

soma. This is performed in a single step (for a batch learning pro-
cess) using a linear regression solution. If we define the dendrite

potentials at the synapses to be

aj,t = Fj

(∑L

i = 1
w(1)

ji xi,t

)
, (2)

we can represent the outputs a of the hidden layer in the form
of a matrix A in which each column contains the hidden layer
output for one sample in the time series, with the last column con-
taining the most recent sample; A = [a1 · · · ak] where A ∈ R

M×k.
Similarly we can construct a matrix Z of the corresponding out-
put values; Z = [z1 · · · zk] where Z ∈ {0, 1}N×k. Note that Z is

Frontiers in Neuroscience | Neuromorphic Engineering August 2013 | Volume 7 | Article 153 | 6

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Tapson et al. Spatio-temporal spiking network synthesis

expected to consist of binary or Boolean values; spike or non-
spike. Synthesizing the network requires that we find the set of
weights W ∈ R

N×Mthat will minimize the error in:

WA = Z. (3)

This may be solved analytically by taking the Moore-Penrose
pseudoinverse A+ ∈ R

k×M of A:

W = ZA+. (4)

In a batch process, A and Z will be static data sets and the solution
can be obtained by means of SVD. In a recent report (Tapson and
van Schaik, 2013), we have described an incremental method for
solving the pseudoinverse, which we called OPIUM—the Online
PseudoInverse Update Method. OPIUM may be used for online
learning, or where batch data sets are so large that the matrix sizes
required for the SVD are too unwieldy in terms of computational
power and memory.

The synaptic kernel may be selected according to the
operational or biological requirements of the synthesis; for
example, if exact timing is critical, an explicit delay with
narrow Gaussian function may produce the best results, but
if biological realism is most important, an alpha function
might be used. We have used a number of mathematically
definable non-linearities, but there is no reason why oth-
ers, including arbitrary functions that may be specified by
means of e.g., a lookup table, could not be used. There is no
requirement of monotonicity, and we have successfully used
wavelet kernels such as the Daubechies function, which are not
monotonic.

We note that synaptic input weights may be both positive and
negative for the same neuron, which would not be biologically
realistic. In practice, we could limit them to one polarity sim-
ply by limiting the range of the random distribution of weights.
This would produce networks which would in most cases be less
versatile, but the opportunity exists to combine excitatory and
inhibitory networks in cases where biological verisimilitude is a
high priority.

RESULTS
AN EXAMPLE OF THE SKIM METHOD
Consider a situation in which we wish to synthesize a spiking
neural network that has inputs from five presynaptic neurons,
and emits a spike when, and only when, a particular spatio-
temporal pattern of spikes is produced by the presynaptic neu-
rons. We create an output neuron with 100 dendritic branches,
and make a single synapse between each presynaptic neuron and
each dendritic branch, for a total of 500 synapses. (This gives a
“fan-out” factor of 20 dendrites per input neuron, which is an
arbitrary starting point; we will discuss some strategies for reduc-
ing synapse and dendrite numbers, should synaptic parsimony be
a goal). The structure is therefore five input neurons, each making
one synapse to each of 100 dendritic branches of a single output
neuron.

The pattern to be detected consists of nine spikes, one to three
from each neuron, separated by specific delays. This pattern will

be hidden within random “noise” spikes (implemented with a
Poisson distribution)—see Figure 3.

In this example, we use the following functions for summing,
non-linearity, and persistence. A summed signal uj,t is obtained
conventionally:

uj,t =
L∑

i = 1

w(1)
ji xi,t (5)

Note that L = 5 in this example, and the weights w(1)
ji are ran-

domly (uniformly) distributed in the range (−0.5, 0.5). After
summing, the synaptic function is used to provide persistence of
the signal in time, as follows: at any timestep t0, if uj, t0 �= 0 (i.e.,
there is a spike), a function vj,t (uj, t0), t > t0, is added to the den-
dritic branch signal aj,t . In this example vj,t is an alpha function
scaled by the amplitude of uj,t0 and with its origin at t0:

vj,t = uj,t0

(
t − t0

ts
e− t−t0

ts

)
(6)

The time constant ts of the alpha function will define the per-
sistence of the spike input in time. In practice we have found
ts ≈ tmax/2 to be a useful heuristic, where tmax is the longest time
interval for which spikes will need to be “remembered.” In this
case, the maximum length of the pattern was 200 timesteps, and
the values of ts were uniformly distributed in the range (0, 100)
timesteps, thereby straddling the heuristic value. This heuristic
applies only to the alpha function; other kernels will require some
random distribution of time constants or delays in some similarly
sensible range.

Note that the length of time for which sustained non-zero
power is maintained in the impulse response of the synaptic ker-
nels defines the length of memory in the network, and the point of
maximum amplitude in the impulse (spike) response of a kernel
filter gives a preferred delay for that particular neural pathway.

The logistical function is used to non-linearly transform the
summed values:

aj,t = 1

1 + e−kvj,t
−0.5 (7)

Here k = 5 is a scaling constant.
Figure 3 shows the development of the signals through the

system.
The network was presented with a mixture of Poisson-

distributed random spikes and Poisson-distributed spike
patterns, such that the number of random noise spikes was
approximately equal to the number of pattern spikes. Pattern
spikes were exact copies of the original pattern; however the
broad peaks of the synaptic kernels have the effect of producing
broad somatic responses, as are visible in the synaptic responses
and soma signals shown in Figure 3, which create some tolerance
for spike jitter. An output spike train was used to provide the
solution data during the training calculation (note that while
input events were effectively instantaneous, taking just one time
step, the output train consisted of slightly wider windows of ten
time steps, on the basis that a spike within some short window
would constitute a functional output; the output spike is also
displaced moderately later in time than the last input spike, in

www.frontiersin.org August 2013 | Volume 7 | Article 153 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Tapson et al. Spatio-temporal spiking network synthesis

FIGURE 3 | This shows the development of the SKIM method for a

spatio-temporal spike pattern recognition system. The structure of
one dendritic branch and the soma is shown at the top. The signals
are, from top: the input pattern on five channels and the target output;
a test sequence with added noise spikes, and target output; the
summed spike output from one dendritic branch; the resulting
non-linearly transformed alpha function output from that branch; the

soma potential for the output neuron; and the resulting output spike
train. It can be seen that the spike pattern is successfully recognized in
the presence of some spike noise. The target output sequence has
spikes which have been widened to 10 timesteps in order to increase
the non-zero target energy, as described in the text. Note that where
input patterns overlap closely, the output spikes may merge together
and appear as one event, as seen at 630 and 850 ms.

order to allow for the dendritic response to peak. In summary,
the target spike consisted of a square pulse of unitary amplitude
and ten timesteps in length, displaced ten timesteps after the end
of the input sequence). The broader target “spike” causes the
network to train for a broad output spike, the effect of which
may be seen more clearly in Figure 5. The results for the present
synthesis can be seen in Figure 3. This shows the performance
of a network which has been trained with ∼580 presentations of
the target in a sequence 105 timesteps in length (the target occurs
in a nominal 200-timestep window and there was frequently an
overlap of patterns, as can be seen in the figure). Target patterns
may contain zero, single or multiple spikes per input channel.

In examining the issue of resetting the somatic potential, we
note that it is generally accepted that the Markov property applies
to integrate-and-fire or threshold-firing neurons (Tapson et al.,
2009); so that the dependence of the firing moment of a neu-
ron is not dependent on the history of the neuron prior to the

most recent spike. It might seem intuitively necessary that this
only holds if the neuron is reset to a potential of zero (hyperpo-
larized) after the most recent spike, but in fact from the point of
view of the trajectory of the membrane potential, and the inverse
solution of the dendritic weights needed to produce that trajec-
tory, it is immaterial what the potential starting level is, as long as
it is defined and consistent. Those who are concerned by this issue
may cause their simulation code to reset the membrane potential
after spiking.

USE OF THE SKIM METHOD ON A PREDEFINED PROBLEM
In this section we will illustrate the use of the SKIM method
to solve a problem in spatio-temporal pattern recognition. In
2001, John Hopfield and Carlos Brody proposed a competition
around the concept of short-term sensory integration (Hopfield
and Brody, 2000, 2001). Their purpose was to illustrate the use-
fulness of small networks of laterally- and recurrently-connected

Frontiers in Neuroscience | Neuromorphic Engineering August 2013 | Volume 7 | Article 153 | 8

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Tapson et al. Spatio-temporal spiking network synthesis

neurons, and part of the competition was to develop a network
to identify words based on a very sparse representation of audio
data. The words were spoken digits drawn from the TI46 corpus
(TI46, 2013), and were processed in a quasi-biological way; they
were passed through a cochlea-like filterbank to produce 20 par-
allel narrowband signals, and then the times of onset, offset, and
peak power were encoded as single spikes at that time, in sepa-
rate channels; so, each word was encoded as an ensemble of single
spikes on multiple channels.

Hopfield and Brody’s neural solution—referred to as mus sili-
cium, a mythical silicon-based mouse-like lifeform—was based
on neurons which exhibited bursting spiking, with a linearly
decaying time response, to input spikes. The key to its opera-
tion was that this linear decay offered a linear conversion of time
to membrane potential amplitude, and thereby the encoding of
time, which then enabled the recognition of spatio-temporal pat-
terns; and that coincidence of signal levels could be detected by
synchronized output spiking. In the SKIM method, we achieve a
similar result (without bursting spikes), using synapses with arbi-
trary time responses, which allows a significantly greater degree
of biological realism together with sparser use of neurons and
sparser use of spikes. It remains to be shown that the SKIM
method is actually capable of solving the problem, and we outline
its use for this purpose here.

Hopfield and Brody preprocessed the TI46 spoken digits to
produce 40 channels with maximally sparse time encoding—a
single spike, or no spike, per channel per utterance (a full set
of onset, offset and peak for all 20 narrowband filters would
require 60 channels, but Hopfield and Brody chose to extract a
subset of events—onsets in 13 bands, peaks in 10 bands, and off-
sets in 17 bands). The spikes encode onset time, or peak energy
time, or offset time for each utterance. Examples are shown in
Figure 5.

Hopfield and Brody’s original mus silicium network contained
three or four layers of neurons, with an input layer (arguably two
layers, as it spreads the input from 40 to 800 channels); a hid-
den layer with excitatory and inhibitory neurons, and significant
numbers of lateral connections (75–200 synaptic connections
each); and an output layer with one neuron per target pattern.
The input layer was not encoded as one input per channel, but
each channel was encoded with 20 different delays, to produce
800 input neurons. There were apparently 650 hidden layer neu-
rons (a number of 800 is also referred to (Hopfield and Brody,
2001); elsewhere, mus silicium is described as having 1000 neu-
rons in total (Wills, 2004, p. 4). The discrepancies may be due to
whether input and output neurons were counted as well as hid-
den layer neurons, and whether non-functional neurons had been
pruned). Input layer neurons were designed to output a burst of
spikes for each input spike, so the original input pattern of 40
spikes would be scaled up to 800 series of 20–50 spikes each, as
the inputs to the hidden layer.

By contrast, we will demonstrate the use of the SKIM method
to produce a feedforward-only network with just two layers of
neurons—40 input neurons (one per input channel) and 10 out-
put neurons (one per target pattern). The presynaptic neurons
will be connected by ten synapses each to each postsynaptic neu-
ron, for a total of 400 synapses per postsynaptic (output) neuron.

This gives the network a total of 50 spiking neurons connected by
4000 synapses.

The exact choice of synaptic kernel is not critical for success
in this system. A simple α-function performs extremely well, as
do synapses with a damped resonant response. In the data which
follow, we show results for a number of different functions.

The prescribed training method for mus silicium was extremely
stringent; it could be trained on only one single utterance of
the target digit (“one”), interspersed with nine randomly selected
utterances of other digits. The task was a real test of the ability of
a network to generalize from a single case. In order to achieve the
robustness to time-warping of the utterances for different speak-
ers and different speech cadences, we produced a training set in
which the exemplar pattern and its nine random companions
were reproduced with a range of time warping from 76 to 124%
of the originals.

Having been trained on this very small data set, the network
is then tested on the full set of 500 utterances (which includes
the examplar and nine random utterances, and therefore has 490
unseen utterances), almost all by previously unheard speakers.

RESULTS FOR THE Mus silicium PROBLEM
There are no published data for the accuracy of Hopfield and
Brody’s network, but the winning entry in their competition,
from Sebastian Wills, is extensively described (Wills, 2001, 2004)
and Hopfield and Brody’s results are available online in archived
copies of their website (Hopfield and Brody, 2013). The network
was tested with 500 utterances of the digits 0–9, giving 50 target
utterances of the digit “one” (only one of which was the exemplar)
and 450 non-targets; and the error was defined as:

error = # false negatives

true positives
+ # false positives

true negatives
(8)

Wills’ minimum error was 0.253; Hopfield and Brody cite an
error of 0.15. Errors smaller than this are easy to achieve with
SKIM—see Table 2 below. Figure 4 shows performance on the
test data set for the neuron trained on the single training utter-
ance of “one,” and is the equivalent for a SKIM network to Wills’
Figure 2.18 (Wills, 2004: p. 26). The test as defined only requires
results for “one,” but as for Wills and Hopfield and Brody, we have
constructed a network which can recognize all 10 digits.

Table 2 | Errors for SKIM networks applied to the mus silicium

problem, with various different types of synaptic kernels.

Network Error

Wills, 2001 0.253

SKIM, Alpha synapse 0.224

SKIM, Damped resonance 0.183

SKIM, Delay plus alpha 0.173

SKIM, Delay plus Gaussian 0.169

Hopfield and Brody, 2013 0.15

All networks had the minimum 40 input neurons and 10 output neurons, and

were connected with 40 × 10 × 10 = 4000 synapses in total.

www.frontiersin.org August 2013 | Volume 7 | Article 153 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Tapson et al. Spatio-temporal spiking network synthesis

FIGURE 4 | Output neuron responses for a neuron synthesized to spike

in response to the utterance of digit “one,”trained on a single

exemplar. The data show responses for the full set of 500 previously
unseen time-encoded digit utterances, as in Hopfield and Brody (2000,
2001, 2013), Wills (2001, 2004).

FIGURE 5 | Spike rasters for 10 spoken digits, showing input, target,

and output spikes. The spike pairs circled with blue dotted lines indicate
correct classifications (target and output spikes have been placed together
in the raster plot to make visual assessment easier); the other output
spikes, circled in red, are errors. The breadth of the target and output
spikes—approximately 20 standard spike intervals—is explained in the text
below.

The authors would like to make it clear that the results in
Table 2 do not imply that this network would have won the mus
silicium competition, as that competition had explicit restrictions
on synaptic time constants that would have excluded a SKIM net-
work; there was also a requirement for a test of robustness to
weight change that is not practically applicable in a network with
two layers of neurons (the competition assumed a three-layer net-
work; or strictly speaking, four layers of neurons if the initial
input spreading is taken into account). Nonetheless, we believe
the SKIM performance on this problem illustrates its usefulness
as a synthesis method for spatio-temporal pattern recognition.

Maass et al. (2002) also made use of the mus silicium data set in
evaluating the liquid state machine, but unfortunately they mod-
ified the preprocessing of the data in order to get a higher number
of spikes per channel, so the results are not usefully comparable;
they also did not, as far as can be established, publish an error
figure for the standard task.

Figure 5 illustrates some spike raster patterns for this
application.

TARGET SPIKE IMPLEMENTATION
The mus silicium competition data set illustrates an interesting
question for synthesis of networks with spiking output: what and
when should the output be? If we adhere to the spiking paradigm,
then the output should be a spike, but at what time, relative to
the input spike set? The TI46 digits are nominally situated in
1-s-long windows, but the variations in spike onset and offset
times show that this is by no means a consistent or reliable cen-
tering. Nonetheless, for each training exemplar we established at
what time the last input spike in that exemplar occurred. We then
used that time as the time when the output spike should occur.
A glance at Figure 5 shows that when this is applied to the test-
ing patterns, the “target” spike has often commenced before all
the input spikes have occurred, which is obviously sub-optimal
from a detection perspective (this is because in many of the
test cases, the utterances are longer than in the exemplar; one
might reasonably expect 50% of them to be so). We made a poor
compromise in this case, by spreading the energy of the out-
put spike over 200 ms (hence the visible length in Figure 5), so
that there was in effect a lengthy output or target window dur-
ing which the spike would occur. A moment’s thought by the
reader will suggest several different and possibly better ways in
which this might be done; for example, the output spike could
be delayed by some interval that would guarantee that it did not
occur before the last input spike, or the target spike could have
a trapezoidal spreading of its amplitude to indicate a probabilis-
tic nature. Nonetheless, the network shows useful results with
this method, and further research will no doubt improve the
performance.

As discussed previously, increasing the amplitude or length of
the target signals improves the quality of the training, so using an
extended length target pulse as has been done here, is helpful in
this regard.

ERRORS AND CAPACITY
Whilst the SKIM method manages to avoid the large number of
spiking neurons used in NEF synthesis, it might be argued that
the number of synapses is still unrealistically large in comparison
with the complexity of the problem, and that we have replaced the
profligate use of spiking neurons with a profligate use of synapses.
Current estimates suggest there are on average 7000 synapses per
cortical neuron in the adult human brain (Drachman, 2004),
so it is not immediately obvious what a correct proportion of
synapses might be. We note that biological and computational
evidence supports ongoing synaptic pruning as critical in brain
function (Paolicelli et al., 2011) and dynamic network optimiza-
tion (Chechik et al., 1999), so we present here some strategies for
reducing synaptic numbers by strategic pruning.

Frontiers in Neuroscience | Neuromorphic Engineering August 2013 | Volume 7 | Article 153 | 10

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Tapson et al. Spatio-temporal spiking network synthesis

In Figure 6 we show the weights for 80 dendrites in the prob-
lem of the type shown in Figure 3 (for 10 different iterations,
i.e., 10 different non-linear random projections). It can be seen
that ∼25% of the dendrites are contributing 50% of the weight of
the solution; 50% of the dendrites contribute 80% of the weight of
the solution. We can follow the physiological practice and prune
the dendrites or synapses that are not contributing significantly to
the solution. Note that the linear weights must be re-solved after
synapses are pruned, or the solution will be non-optimal.

There are numerous strategies by which the weights can be
pruned. Two strategies which we have used with success are to
over-specify the number of synapses and then prune, in a two-
pass process; or to iteratively discard and re-specify synapses. For
example, if we desire only 100 synapses, we can synthesize a net-
work with 1000 synapses; train it; discard the 900 synapses which
have the lowest dendritic weights associated with them; and then
re-solve the network for the 100 synapses which are left. This is
the two-pass process. Alternatively, we can specify a network with
100 synapses; train it; discard the 50 synapses with the lowest
weights, and generate 50 new random synapses; re-train it; and so
on—this is the iterative process. If one prunes synapses which are
making a small contribution to the regression solution, then the
remaining synapses give a solution which is no longer optimal,
so it should be recomputed. The choice of pruning process will
depend on the computational power and memory available, but
both of these processes produce networks which are more optimal
than the first-order network produced by the SKIM method.

DISCUSSION
The SKIM method offers a simple process for synthesis of spiking
neural networks which are sensitive to single and multiple spikes
in spatio-temporal patterns. It produces output neurons which
may produce a single spike or event, in response to recognized

FIGURE 6 | The magnitude of the solved dendritic weights for 80

dendrites, in 10 different solutions of an example problem like

(Figure 3), are shown (left axis). It can be seen that in all cases, the 20
largest weighted dendrites are contributing over 50% of the solution
magnitude; and that the 40 largest weights are contributing over 80% of
the solution (right axis). This suggests that pruning the lowest weighted
dendrites will not significantly alter the accuracy of the solution.

patterns on a multiplicity of input channels. The number of neu-
rons is as sparse as may be required; in the examples presented
here, a single input neuron per channel, representing the source of
input spikes, and a single output neuron per channel, represent-
ing the source of output spikes, has been used. The method makes
use of synaptic characteristics to provide both persistence in time,
for memory, and the necessary non-linearities to ensure increased
dimensionality prior to linear solution. The learning method is
by analytical pseudoinverse solution, so has no training param-
eters, and achieves optimal solution with a single pass of each
sample set. We believe that this method offers significant benefits
as a basis for the synthesis of all spiking neural networks which
perform spatio-temporal pattern recognition and processing.

COMPARISON WITH PRIOR METHODS
How does SKIM compare to existing models, and in particular
those such as LSM and the Tempotron, which are structurally
quite similar? There are significant intrinsic differences, upon
which we will elaborate below; but the main point of departure
is that SKIM is not intended as an explanation or elucidation of
a particular neural dynamical system or paradigm, but rather as a
method which allows a modeling practitioner to synthesize a neu-
ral network, using customized structures and synaptic dynamics,
and then to solve the dendritic weights that will give the optimal
input-output transfer function. While we consider that its utility
may say something about dendritic computation in biology, we
consider that it may be useful for modelers who place no value on
biological relevance.

In direct comparison with prior methods, we may highlight
the following: the most significant difference between SKIM and
Liquid State Machines is that SKIM networks are significantly
simpler, containing no reservoir of spiking neurons (and in fact
having no hidden layer neurons at all). This is not a trivial point,
as in the new world of massive neural simulations, the number of
spiking neurons required to perform a particular cognitive func-
tion is often used as a measure of the success or accuracy of the
simulation. While LSM may display complex and rich dynamics
as a result of recurrent connections, these come at a price in terms
of complexity of implementation and analysis, and in many cases
the simpler SKIM network will produce input-output pattern
matching of similar utility. We would suggest that a practitioner
interested in population dynamics would find more utility in
LSM, whereas one interested in spatio-temporal pattern matching
with a sparse network, with quick and simple implementation,
would find SKIM more useful.

The principle qualitative difference between SKIM and net-
works with recurrent connections, such as reservoir computing
and NEF schemas, is the loss of the possibility of reverberating
positive feedback, for use as working or sustained memory. There
is no reason that SKIM networks could not be cascaded and con-
nected in feedback; NEF uses the pseudoinverse solution with
success in these circumstances. However, we have not yet explored
this possibility.

When compared with the Tempotron, the chief attributes
of SKIM are the versatility in terms of synaptic structure (the
Tempotron is usually described as having exponentially decaying
synapses, whereas SKIM can accommodate an extremely wide

www.frontiersin.org August 2013 | Volume 7 | Article 153 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Tapson et al. Spatio-temporal spiking network synthesis

range of custom synaptic filters); and in having a single-step,
analytically calculated optimal solution rather than an iterative
learning rule. In the case where SKIM networks are using synaptic
functions such as alpha functions or resonances, the peak postsy-
naptic power from a spike occurs considerably later in time than
the spike itself. This has the effect of delaying the spike’s contribu-
tion in time, and hence acts as a kind of delay line. This has a very
useful effect, which is that the soma is no longer performing coin-
cidence detection on the original spikes (which is effectively what
the Tempotron does) but on delayed and spread copies, giving it
significant versatility.

BIOLOGICAL PLAUSIBILITY OF THE SKIM METHOD
Notwithstanding the synaptic pruning possibilities mentioned
above, which address possible concerns about synaptic profu-
sion, there are two other areas in which the SKIM method may
be considered to be questionably biologically realistic: the use
of a pseudoinverse solution, and the use of supervised learning.
We have addressed the biological plausibility of linear solutions
based on pseudoinverses in a previous report (Tapson and van
Schaik, 2013). To summarize, there are incremental pseudoin-
verse solutions which can be recast in terms of known bio-
logical processes such as divisive normalization; and given that
this is a convex optimization problem, simpler and nominally
more biologically plausible methods such as gradient descent
would arrive at the same solution, albeit more slowly. We note
also that in contrast to most learning methods, SKIM does not
require an error or modification signal to be propagated to
the presynaptic neuron, or even the synapse; it is the neuron’s
own dendritic structure that is modified. The reverse propaga-
tion of spikes in dendrites is well-known (Häusser et al., 2000)
and could be hypothesized to communicate the modification
signal.

Supervised learning is used in SKIM in the standard manner,
in the sense of having known target signals to provide an explicit
error measure for the weight finding algorithm. The biological
plausibility of this feature is arguable, but in the absence of an
unsupervised learning methodology, is not likely to be improved
upon.

TIME INVARIANCE AND JITTER IN THE SKIM METHOD
Gütig and Sompolinksy (2009) extended the Tempotron princi-
ple by including synaptic shunting conductances, which have the
effect of reducing the postsynaptic currents from rapidly incom-
ing spikes (high spike rates), and enhancing the postsynaptic cur-
rents from spikes arriving at a low rate, at any particular synapse.

This has the effect of producing a high degree of time invari-
ance in Tempotron systems, in terms of robustness of detection
of incoming sequences which are subject to time warps.

The SKIM method has three intrinsic features that improve
time invariance. The first is that the use of a compressive non-
linearity has the effect of reducing the contribution of subsequent
spikes arriving within the non-zero envelope of an initial spike’s
synaptic response. This is similar in effect to synaptic shunting
conductance. A second feature is that most realistic synaptic func-
tions have intrinsic spreading as their time constants get longer;
for example, the full width at half-height of an alpha function
with a time constant of τ = 10 ms is 24 ms; a function with dou-
ble the time constant (τ = 20 ms) will have double the half-height
width (49 ms). If we think of a SKIM network as a multichan-
nel matched filter, then the pass windows (in time domain) for
each channel expand linearly in time as the pattern duration gets
longer. This gives the network intrinsic robustness to linear time-
warped signals. Of course, this does not apply to synaptic kernels
where the half-height width does not scale linearly in time. For
example, if we wanted a network with high time precision and no
robustness to time-warping, we could use synaptic kernels with
random explicit time delays and a narrow, fixed width Gaussian
function. As the function width narrows toward zero, these net-
works become very similar to feedforward polychronous neural
networks (Izhikevich, 2006); solutions based on dendritic weights
lose effectiveness and it becomes necessary to solve for dendritic
delays instead. We note that the output or outputs of a feedfor-
ward polychronous network, being a spation-temporal pattern
of spikes, may be fed back into itself to create a recurrent poly-
chronous network; we have experimented with small networks of
this type using the SKIM method to solve the feedforward struc-
ture. Finally, the use of synaptic kernels with wide peaks (such
as the alpha function) gives the SKIM network some intrinsic
robustness to time warping; the alpha function has a full width
at half-height that is 244% of the time constant, and this will
become even wider after compression by a non-linear function
such as tanh. Once again, the SKIM method allows the user to
choose synaptic features that match particular intuitions, inten-
tions, or known features of the modeled system or the machine
learning problem.

ACKNOWLEDGMENTS
The authors thank James Wright for help with data preparation,
and the organizers of the CapoCaccia and Telluride Cognitive
Neuromorphic Engineering Workshops, where these ideas were
formulated.

REFERENCES
Basu, A., Shuo, S., Zhou, H., Hiot

Lim, M., Huang, G.-B. (2013).
Silicon spiking neurons for
hardware implementation of
extreme learning machines.
Neurocomputing 102, 125–132.
doi: 10.1016/j.neucom.2012.01.042

Boahen, K. (2006). “Neurogrid: emu-
lating a million neurons in the cor-
tex,” in Proceedings of the 28th IEEE

Engineering in Medicine and Biology
Society Conference (EMBS 2006),
(New York, NY), 6702.

Chechik, G., Meilijson, I., and Ruppin,
E. (1999). Neuronal Regulation: a
mechanism for synaptic pruning
during brain maturation. Neural
Comput. 11, 2061–2080. doi:
10.1162/089976699300016089

Choudhary, S., Sloan, S., Fok, S.,
Neckar, A., Trautmann, E.,

Gao, P., et al. (2012). “Silicon
neurons that compute,” in
International Conference Artificial
Neural Networks, ICANN 2012,
(Lausanne).

Conradt, J., Stewart, T., Eliasmith, C.,
Horiuchi, T., Tapson, J., Tripp, B.,
et al. (2012). “Spiking ratSLAM:
Rat hippocampus cells in spiking
neural hardware,” in Proceedings of
the IEEE Biomedical Circuits and

Systems (BioCAS 2012), (Hsinchu),
91.

Drachman, D. A. (2004). Do we
have brain to spare? Neurology 64,
2004–2005. doi: 10.1212/01.WNL.
0000166914.38327.BB

Eliasmith, C., and Anderson, C.
H. (2003). Neural Engineering:
Computation, Representation
and Dynamics in Neurobiological
Systems. Boston, MA: MIT Press.

Frontiers in Neuroscience | Neuromorphic Engineering August 2013 | Volume 7 | Article 153 | 12

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Tapson et al. Spatio-temporal spiking network synthesis

Eliasmith, C., Stewart, T. C., Choo, X.,
Bekolay, T., DeWolf, T., Tang, Y.,
et al. (2012). A large-scale model
of the functioning brain. Science
338, 1202–1205. doi: 10.1126/sci-
ence.1225266

Galluppi, F., Davies, S., Furber,
S., Stewart, T., and Eliasmith,
C. (2012). “Real Time on-chip
implementation of dynamical
systems with spiking neurons,”
in Proceedings of the International
Joint Conference on Neural Networks
(IJCNN) 2012, (Brisbane, QLD).

Gütig, R., and Sompolinksy, H. (2006).
The tempotron: a neuron that
learns spike timing-based decisions.
Nat. Neurosci. 9, 420–428. doi:
10.1038/nn1643

Gütig, R., and Sompolinksy, H. (2009).
Time-warp–invariant neuronal pro-
cessing. PLoS Biol. 7:e1000141. doi:
10.1371/journal.pbio.1000141

Häusser, M., Spruston, N., and
Stuart, G. J. (2000). Diversity
and dynamics of dendritic sig-
naling. Science 290, 739–744. doi:
10.1126/science.290.5492.739

Hopfield, J. J., and Brody, C. D. (2000).
What is a moment? “Cortical”
sensory integration over a brief
interval. Proc. Natl. Acad. Sci.
U.S.A. 97, 13919–13924. doi:
10.1073/pnas.250483697

Hopfield, J. J., and Brody, C. D. (2001).
What is a moment? Transient syn-
chrony as a collective mechanism
for spatiotemporal integration.
Proc. Natl. Acad. Sci. 98, 1282–1287.
doi: 10.1073/pnas.98.3.1282

Hopfield, J. J., and Brody, C. D. (2013).
Mus silicium Competition – Results
and Discussion. Available online
at: http://web.archive.org/web/
20031205135123/http://neuron.prin
ceton.edu/∼moment/Organism/Do
cs/winners.html

Huang, G.-B., and Chen, L. (2008).
Enhanced random search based
incremental extreme learning
machine. Neurocomputing 71,
3460–3468. doi: 10.1016/j.neucom.
2007.10.008

Huang, G.-B., Zhu, Q.-Y., and Siew,
C.-K. (2006a). Extreme learning
machine: theory and applications.
Neurocomputing 70, 489–501. doi:
10.1016/j.neucom.2005.12.126

Huang, G.-B., Chen, L., and Siew, C.-
K. (2006b). Universal approxima-
tion using incremental constructive
feedforward networks with ran-
dom hidden nodes. IEEE Trans.
Neural Netw. 17, 879–892. doi:
10.1109/TNN.2006.875977

Hussein, S., Basu, A., Wang, M.,
and Hamilton, T. J. (2012).
“DELTRON: Neuromorphic
architectures for delay based
learning,” in 2012 IEEE Asia

Pacific Conference on Circuits and
Systems (APCCAS), 304–307. doi:
10.1109/APCCAS.2012.6419032

Indiveri, G. (2001). A current-mode
hysteretic winner-take-all network,
with excitatory and inhibitory
coupling. Analog Integr. Circuits
Signal Process. 28, 279–291. doi:
10.1023/A:1011208127849

Izhikevich, E. (2006). Polychronization:
computation with spikes. Neural
Comput. 18, 245–282. doi:
10.1162/089976606775093882

Jaeger, H. (2003). “Adaptive nonlinear
system identification with echo state
networks,” in Advances in Neural
Information Processing Systems 15,
eds S. Becker, S. Thrun, and K.
Obermayer (Cambridge, MA: MIT
Press), 593–600.

Kay, S. M., and Marple, S. L. Jr.
(1981). Spectrum Analysis: a mod-
ern perspective, Proc. IEEE Spectr.
69, 1380–1419.

Khan, M. M., Lester, D. R., Plana, L.
A., Rast, A., Jin, A. X., Painkras, E.,
et al. (2008). “SpiNNaker: mapping
neural networks onto a massively-
parallel chip multiprocessor,” in
Proceedings of the International
Joint Conference on Neural Networks
(ICJNN), (Hong Kong), 2849–2856.

Levy, W. B., and Baxter, R. A. (1996).
Energy efficient neural codes.
Neural Comput. 8, 531–543. doi:
10.1162/neco.1996.8.3.531

Maass, W., and Markram, H. (2004).
On the computational power of
recurrent circuits of spiking neu-
rons. J. Comput. Syst. Sci. 69,
593–616. doi: 10.1016/j.jcss.2004.
04.001

Maass, W., Natschläger, T., and
Markram, H. (2002). Real-time
computing without stable states:
a new framework for neural com-
putation based on perturbations.
Neural Comput. 14, 2531–2560. doi:
10.1162/089976602760407955

Maass, W., and Sontag, E. D. (2000).
Neural systems as nonlinear filters.
Neural Comput. 12, 1743–1772. doi:
10.1162/089976600300015123

Masquelier, T., Guyonneau, R., and
Thorpe, S. (2006). Spike timing
dependent plasticity finds the start
of repeating patterns in continuous
spike trains. PLoS ONE 1:e1377. doi:
10.1371/journal.pone.0001377

Masquelier, T., Guyonneau, R., and
Thorpe, S. (2009). Competitive
STDP-based spike pattern learning.
Neural Comput. 21, 1259–1276. doi:
10.1162/neco.2008.06-08-804

Masuda, N., and Aihara, K. (2003).
Duality of rate coding and tem-
poral coding in multilayered
feedforward networks. Neural
Comput. 15, 103–125. doi:
10.1162/089976603321043711

Mohemmed, A., Schliebs, S., Matsuda,
S., and Kasabov, N. (2012).
Span: spike pattern association
neuron for learning spatio-
temporal spike patterns. Int. J.
Neural Syst. 22, 1250012. doi:
10.1142/S0129065712500128

Paolicelli, R. C., Bolasco, G.,
Pagani, F., Maggi, L., Scianni,
M., Panzanelli, P., et al. (2011).
Pruning by microglia is necessary
for normal brain development.
Science 333, 1456–1458. doi:
10.1126/science.1202529

Ponulak, F., and Kasiñski, A. (2010).
Supervised learning in spiking
neural networks with resume:
sequence learning, classifica-
tion, and spike shifting. Neural
Comput. 22, 467–510. doi:
10.1162/neco.2009.11-08-901

Rahimi, A., and Recht, B. (2009).
“Weighted sums of random kitchen
sinks: Replacing minimization
with randomization in learning,”
in Advances in Neural Information
Processing Systems, Vol. 21. eds D.
Koller, D. Schuurmans, Y. Bengio,
and L. Bottou (Cambridge, MA:
MIT Press), 1313–1320.

Russell, A., Orchard, G., Dong, Y.,
Mihalas, S., Niebur, E., Tapson,
J., et al. (2010). Optimization
methods for spiking neurons
and networks. IEEE Trans.
Neural Netw. 21, 1950–1962.
doi: 10.1109/TNN.2010.2083685

Saxe, A., Koh, P., Chen, Z., Bhand, M.,
Suresh, B., and Ng, A. (2011). “On
random weights and unsupervised
feature learning,” in Proceedings of
the 28th International Conference on
Machine Learning, (Bellevue).

Schemmel, J., Bruederle, D., Gruebl, A.,
Hock, M., Meier, K., and Millner, S.
(2010). “A Wafer-Scale neuromor-
phic hardware system for large-scale
neural modeling,” in Proceedings
of the 2010 IEEE International
Symposium on Circuits and Systems
(ISCAS), (Paris), 1947–1950. doi:
10.1109/ISCAS.2010.5536970

Tapson, J., and van Schaik, A. (2013).
Learning the pseudoinverse solution
to network weights. Neural Netw.
45, 94–100. doi: 10.1016/j.neunet.
2013.02.008

Tapson, J., Jin, C., van Schaik, A., and
Etienne-Cummings, R. (2009).
A first-order nonhomogeneous
Markov model for the response
of spiking neurons stimulated
by small phase-continuous
signals. Neural Comput. 21,
1554–1588. doi: 10.1162/neco.
2009.06-07-548

TI46, 2013. The TI46 spoken digits cor-
pus is available from the Linguistic
Data Consortium. Available online
at: http://ccl.pku.edu.cn/doubtfire/

CorpusLinguistics/LDC_Corpus/ava
ilable_corpus_from_ldc.html#ti46

Torben-Nielsen, B., and Stiefel, K.
M. (2010). An inverse approach
for elucidating dendritic function.
Front. Comput. Neurosci. 4:128. doi:
10.3389/fncom.2010.00128

Van Rullen, R., and Thorpe, S. J.
(2001). Rate coding versus tem-
poral order coding: what the
retinal ganglion cells tell the
visual cortex. Neural Comput. 13,
1255–1283. doi:
10.1162/08997660152002852

Wills, S. (2004). Computation with
Spiking Neurons. PhD. thesis,
University of Cambridge. Available
online at http://www.inference.phy.
cam.ac.uk/saw27/thesis.pdf

Wills, S. (2001). Recognising Speech with
Biologically-Plausible Processors,
Cavendish Laboratory Report.
Cambridge: Cambridge University.

Zamarreño-Ramos, C., Linares-
Barranco, A., Serrano-Gotarredona,
T., and Linares-Barranco, B. (2013).
Multi-Casting Mesh AER: a scalable
assembly approach for reconfig-
urable neuromorphic structured
AER Systems. Application to
ConvNets. IEEE Trans. Biomed.
Circuits Syst. 7, 82–102. doi:
10.1109/TBCAS.2012.2195725

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 26 April 2013; accepted: 06
August 2013; published online: 30 August
2013.
Citation: Tapson JC, Cohen GK, Afshar
S, Stiefel KM, Buskila Y, Wang RM,
Hamilton TJ and van Schaik A (2013)
Synthesis of neural networks for spatio-
temporal spike pattern recognition and
processing. Front. Neurosci. 7:153. doi:
10.3389/fnins.2013.00153
This article was submitted to
Neuromorphic Engineering, a section of
the journal Frontiers in Neuroscience.
Copyright © 2013 Tapson, Cohen,
Afshar, Stiefel, Buskila, Wang, Hamilton
and van Schaik. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or repro-
duction in other forums is permitted,
provided the original author(s) or licen-
sor are credited and that the original
publication in this journal is cited, in
accordance with accepted academic prac-
tice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

www.frontiersin.org August 2013 | Volume 7 | Article 153 | 13

http://web.archive.org/web/20031205135123/http://neuron.princeton.edu/$\sim $moment/Organism/Docs/winners.html
http://web.archive.org/web/20031205135123/http://neuron.princeton.edu/$\sim $moment/Organism/Docs/winners.html
http://web.archive.org/web/20031205135123/http://neuron.princeton.edu/$\sim $moment/Organism/Docs/winners.html
http://web.archive.org/web/20031205135123/http://neuron.princeton.edu/$\sim $moment/Organism/Docs/winners.html
http://ccl.pku.edu.cn/doubtfire/CorpusLinguistics/LDC_Corpus/available_corpus_from_ldc.html#ti46.
http://ccl.pku.edu.cn/doubtfire/CorpusLinguistics/LDC_Corpus/available_corpus_from_ldc.html#ti46.
http://ccl.pku.edu.cn/doubtfire/CorpusLinguistics/LDC_Corpus/available_corpus_from_ldc.html#ti46.
http://www.inference.phy.cam.ac.uk/saw27/thesis.pdf
http://www.inference.phy.cam.ac.uk/saw27/thesis.pdf
http://dx.doi.org/10.3389/fnins.2013.00153
http://dx.doi.org/10.3389/fnins.2013.00153
http://dx.doi.org/10.3389/fnins.2013.00153
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

	Synthesis of neural networks for spatio-temporal spike pattern recognition and processing
	Introduction
	Methods
	The LSHDI Principle
	LSHDI for Spike Time Encoded Neural Representations—the SKIM Method
	Synaptic Kernels
	Analysis of the SKIM Method

	Results
	An Example of the SKIM Method
	Use of the SKIM Method on a Predefined Problem
	Results for the Mus silicium Problem
	Target Spike Implementation
	Errors and Capacity

	Discussion
	Comparison with Prior Methods
	Biological Plausibility of the SKIM Method
	Time Invariance And Jitter in the SKIM Method

	Acknowledgments
	References

