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The wild Rubus species R. coreanus, which is widely distributed in southwest China, shows great promise as a genetic resource for
breeding. One of its outstanding properties is adaptation to high temperature and humidity. To facilitate its use in selection and
breeding programs, we assembled de novo 179,738,287 R. coreanus reads (125 bp in length) generated by RNA sequencing from
fruits at three representative developmental stages. We also used the recently released draft genome of R. occidentalis to perform
reference-guided assembly. We inferred a final 95,845-transcript reference for R. coreanus. Of these genetic resources, 66,597
(69.5%) were annotated. Based on these results, we carried out a comprehensive analysis of differentially expressed genes.
Flavonoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signal transduction, and cutin, suberin, and wax
biosynthesis pathways were significantly enriched throughout the ripening process. We identified 23 transcripts involved in the
flavonoid biosynthesis pathway whose expression perfectly paralleled changes in the metabolites. Additionally, we identified 119
nucleotide-binding site leucine-rich repeat (NBS-LRR) protein-coding genes, involved in pathogen resistance, of which 74 were
in the completely conserved domain. These results provide, for the first time, genome-wide genetic information for
understanding developmental regulation of R. coreanus fruits. They have the potential for use in breeding through functional
genetic approaches in the near future.

1. Introduction

The genus Rubus L. comprises 900–1000 species and has a
worldwide distribution (excluding Antarctica) with various
climatic adaptations [1]. Plants used in fruit production are
mainly from two subgenera, Rubus and Idaeobatus. Black-
berries and raspberries are the most commonly cultivated
fruits in these two subgenera. They are deemed functional
fruits, mainly due to being rich sources of health-
promoting antioxidant or “nutraceutical” compounds (i.e.,
anthocyanins, phenolics, and ellagic acid) in fresh fruits [2]
and anticancer properties in fruit extracts [3]. Historically,
they have been used in traditional Chinese medicine and
are mentioned in the Compendium of Materia Medica
(Bencao Gangmu) compiled by Li Shizhen (1518–1593)

during the Ming Dynasty. Chinese or Korean black raspberry
R. coreanus Miq., in the subgenus Idaeobatus, is named for
the dark red (or black) color of its fruits when mature.
Earlier investigations found that black raspberry fruits con-
tained higher concentrations of the nutritional ingredients
mentioned above than either red raspberry or blackberry
[4]. However, Chinese black raspberry is not as popular as
the other two species as much less effort is given to its cul-
tivation and there is only a limited choice of cultivars avail-
able. After a thorough investigation of the biochemical
components in fruit [5], researchers from South Korea pro-
vided the first transcriptome analysis of what they believed
to be R. coreanus [6]. Unfortunately, contrary to what is
reported in their paper [7], the species they studied was
the commercially grown North American black raspberry
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R. occidentalis, often confused with R. coreanus. In 2016, the
first draft genome for R. occidentalis, 243Mb in size, became
publicly available [8]. It is the most useful Rubus genetic
resource to date.

R. coreanus has been used as a valuable genetic donor
in several Rubus-breeding programs [9, 10] because of its
outstanding disease resistance and high productivity. R.
coreanus cultivars are also commercialized in South Korea
[11]. The lack of a genetic reference for R. coreanus has
become a barrier to application of modern breeding tech-
niques, such as marker-assisted selection and transgenic
strategies. Within the past ten years, we have made a com-
prehensive study of Rubus species in China, mostly those
endemic to the country, focusing especially on wild species
distributed in the south [12]. The relatively high tempera-
ture and humidity of the area may have led to the devel-
opment of unique disease resistance characteristics in
these Rubus species. Given that viral and fungal diseases
have become one of the main threats hindering the devel-
opment of commercial cultivation of Rubus [13], exploring
underlying mechanisms for disease resistance and finding
new candidate genetic resources could facilitate selection
and breeding.

Fruit maturation is a complex process involving genetic
regulation closely linked with environmental signaling of pal-
atability. Pigment deposition and the resulting color change,
and sugar accumulation, usually coupled with depletion of
titratable acid leading to formation of specific sensory traits,
are common signs of fruit ripeness [14]. Dissection of the
intrinsic genetic changes of fruit maturation could bring
new insights into understanding the consequences of appli-
cation of a particular agronomic practice at a particular time.
For example, Fragaria × ananassa has traditionally been clas-
sified as nonclimacteric because its ripening process is not
governed by ethylene. However, global analysis of tran-
scriptome data and the ethylene response factor (ERF) gene
family has identified involvement of ethylene in ripening of
the receptacle at specific tissue/developmental stages [15].
Moreover, unveiling the gene expression atlas of fruit matu-
ration could enable greater understanding of biosynthesis of
bioactive compounds, a necessary step toward breeding
new varieties for health benefits. Considerable effort has been
made in this regard for fruits such as grapes [16], blueberries
[17], and tomatoes [18]; in comparison, very little effort has
been made for Rubus species.

Therefore, as a first step towards understanding gene
expression during fruit ripening in R. coreanus, this study
presents results of a comprehensive analysis of transcriptome
data from fruits at three representative developmental stages.
Both de novo and reference-guided assembly were carried
out to maximize the possibility of finding potential tran-
scripts. We also investigated the genes for long noncoding
RNAs. Differentially expressed genes, specifically, (1) genes
leading to flavonoid biosynthesis and (2) plant nucleotide-
binding site leucine-rich repeat (NBS-LRR) genes, which
contribute to biotic and abiotic stress responses, were ana-
lyzed. It is hoped that exploration of the genetics of R. corea-
nus may prove to be a profitable endeavor by providing
valuable information for Rubus breeding.

2. Results and Discussion

2.1. Transcriptome Sequencing and Sequence Assembly.
Although Rubus species are some of the most popular func-
tional fruits in the world, it is only recently that genomic
resources have become available for the genus [8]. In Hyun
et al.’s study of R. occidentalis (which they mistook for R. cor-
eanus [6]) from the perspective of fruit morphology and phe-
nological traits [7], transcriptome analysis involved mRNA
isolated only from fruits sampled 20 days after anthesis at
an intermediate stage of ripening [6]. This may have under-
estimated the genetic information for the species. In the
present study, 179.74 million 125 bp paired-end raw reads
were generated from fruit libraries of three developmental
stages. After trimming adapter-related reads and filtering
low-quality reads, 65.27 million bases were subjected to error
correction. Finally, 174.79 million reads comprising 43.7
gigabases were used to assemble the reference. In total,
78.80 million bases were assembled into 95,845 transcripts,
with an N50 length of 1242 bp (Table 1). The generated
125 bp paired-end reads are available at NCBI Sequence Read
Archive SRR6001072 to SRR6001077 associated with Bio-
Project PRJNA401210.

To assess the quality of the assembly further, Bowtie
(v2.2.9) [19] was employed to align all reads back to the ref-
erence. Of the reads, 83.66% could be aligned, with 64.17%
aligning concordantly and uniquely to the final version of
the reference. In contrast, only 52.97% of the total reads
could be aligned to the genome-guided assembly, indicating
high divergence between R. coreanus and R. occidentalis. This
result may partly explain the previously observed phenome-
non that although these two species are easy to cross, the
F1 progenies are completely sterile [20]. Therefore, it is rea-
sonable that a proportion of our transcripts could not be
mapped to the reference. In addition, when evaluated against
the complete 1440 plant-specific orthologs in the Bench-
marking Universal Single-Copy Orthologs (BUSCO) data-
base [21], the largest proportion of the assembly (95.3%)
was complete, with only 27 (1.9%) fragmented and 41
(2.8%) missing orthologs. These results indicate high com-
pleteness of our assembly.

Taking expression values into consideration, we plotted
the transcripts per million (TPM) distribution patterns of
all transcripts (Figure 1(a)). Predominant portions of the
transcripts were at low abundance. If using three TPM as
a threshold, each fraction of 39,039 transcripts could be
viewed as from one genuine gene. This number is within
the range of gene numbers from the R. occidentalis genome
project [8]. Taking this read coverage information before
abundance filtering, the N50 value for the top Ex% tran-
scripts was calculated (Figure 1(b)). The maximum N50
value (2142 bp) was reached when taking 96% of the upper
expressed gene products.

2.2. FunctionalAnnotations for theR. coreanusTranscriptome.
Annocript pipeline [22] was employed to annotate tran-
scripts and coding peptides. Searches for homologous coun-
terparts in the manually annotated, nonredundant protein
sequence database Swiss-Prot (SP) and the subset UniProt
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Reference Clusters Uniref90 (UF90) database by the blastx
algorithm resulted in 47,090 (49.99%) of the raw transcripts
generating hits in SP and 66,520 (69.40%) of the transcripts
with homologs in UF90. More specifically, 15.60% of the
SP hits and 25.43% of the UF90 hits were covered over
80% by the enquiry sequences. In the case of gene ontology
(GO) assignment, 51,520 (53.758%) transcripts could be
classified into Biological Process (28,547), Cellular Compo-
nent (31,728), or Molecular Function (41,971) categories.
Searches in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) Orthology (KO) database against related plants
resulted in KO identifiers of 42,769 of the transcripts being
assigned to the corresponding pathways. Through POR-
TRAIT noncoding potential evaluation using a new support
vector machine-based algorithm [23], 2178 long noncoding
RNA- (lncRNA-) coding genes were also discovered. Taken
together, these results suggest that the de novo assembled
reference covered a wide range of Rubus genetic informa-
tion, which provides a valuable resource for facilitating

the discovery of novel genes involved in specific physiolog-
ical and developmental processes.

2.3. Analysis of Differential Gene Expression across the Three
Developmental Stages of R. coreanus Fruit. We mapped all
reads from each fruit developmental stage and estimated
transcript counts against the reference using the RSEM
method [24]. Transcripts with less than three TPM across
the three stages were filtered in the subsequent differentially
expressed gene (DEG) assay based on the above analysis.
Three different expression analysis packages were used for
DEG detection: (1) DESeq2 [25], which uses a Wald test;
(2) edgeR [26], which uses a likelihood ratio test; and (3)
limma-voom [27], which uses a moderated t-test, to compare
expression differences between fruit stages. In the consensus
results, 211 transcripts were expressed differentially in red
fruits compared to green fruits. Among these genes, 49 were
downregulated and 162 were upregulated. Between black
(mature) and red fruit stages, 1141 genes were upregulated

Table 1: Overview of the assembly.

Rubus occidentalis genome guided De novo Final reference

Total number of transcripts 47,239 296,591 95,845

Total nucleotides 80,446,066 214,031,901 78,800,996

Average length (bp) 1703 813 822

Minimum length (bp) 102 201 102

Maximum length (bp) 21,369 14,054 17,356

N50 (bp) 2496 1603 1242
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Figure 1: Expression statistics for all transcripts (a) and ExN50 distribution of the assembly (b). Neg min TPM in (a) indicates the negative
value of a given minimum expression level as transcripts per million (TPM) reads. Ex indicates that x% of the assembled transcript
nucleotides can be found in contigs that are at least of ExN50 length.
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and 1423 downregulated. Variation in expression was
observed in 2363 genes between black and green fruits.
Although the strict criteria we used in this analysis may over-
look other gene products, they can be viewed as generating
the most reliable DEGs.

GO and KO enrichment analyses were carried out to con-
sider more closely these differentially expressing genes.
When testing for GO terms detected from differentially
expressed genes in green versus red, red versus black, and
green versus black fruits, no significantly enriched genes were
found by GOEAST (http://omicslab.genetics.ac.cn/GOEAS
T/tools.php). However, several biological pathways were
found to be significantly perturbed. Sixteen pathways were
enriched across the whole fruit developmental process,
including those of genes involved in flavonoid biosynthesis,
phenylpropanoid biosynthesis, plant hormone signal trans-
duction, and cutin, suberin, and wax biosynthesis, among
others (Figures 2–4). In addition to these commonly
impacted pathways, alterations in “degradation of aromatic
compounds” and “MAPK signaling pathway - plant” were
detected specifically in the early stages (change from small
green to red fruit). In contrast, “bisphenol degradation” and
“polycyclic aromatic hydrocarbon degradation” pathways
were affected in the later stages (change from red to fully ripe
black fruit). Fruit ripening is a process of highly coordinated
and genetically programed physiological, biochemical, and
organoleptic changes in the reproductive organs. In Rubus
fruits, predominant changes in ripening include (1) depoly-
merization of carbohydrates, specifically, degradation of
starches into sucrose and then into glucose and fructose; (2)
decrease in organic acids, including amino acids; (3) produc-
tion of volatile compounds, such as alcohols and aldehydes;
and (4) accumulation of anthocyanins but depletion of cin-
namic, ferulic, protocatechuic, and vanillic acids and epicate-
chin [5]. These changes may be evident in the metabolic
pathway profiling in our study. The starch and sucrose
metabolism pathway, significantly enriched in the two early
stages of fruit ripening, adding to the degradation of aromatic
compounds, can lead to the formation of special flavor and
aroma of ripening Rubus fruits. A mixture of compounds,
including ketones, alcohols, esters, and mainly terpenoids,
constitutes the volatile flavor of most, if not all, fruits [28].
Some Rubus species have a special aroma to their fruit, but
some do not [29]. Degradation of aromatic compounds could
have a partial impact on these aroma volatiles. Another
obvious sign of maturation of soft fruits is the decrease in
firmness, which is the result of degradation of cell wall com-
ponents and/or loss of integrity of the cell cuticular/wax layer
[30, 31]. In strawberries, cell wall disassembly is character-
ized by solubilization of pectins, slight depolymerization of
covalently bound pectins, and loss of galactose and arabinose,
as well as a reduction in hemicellulose content [32]. Pectin
content of mature fruit reduced dramatically in two rasp-
berry cultivars, “Glen Clova” and “Glen Prosen” [33]. Further
examination of R. idaeus cell wall fraction indicated that fruit
ripening was associated with increased solubilization of pec-
tin first and then depolymerization at the last stage [34]. In
support of this, DEGs for cutin, suberin, and wax biosynthe-
sis were found to be significantly enriched across the three

fruit-ripening stages in our study. Only two DEGs (omega-
hydroxypalmitate O-feruloyl transferase and peroxygenase)
were common to all three stages. Progressive modulation of
these particular genes may be the molecular basis of pro-
graming of the fruit-softening process.

2.4. Flavonoid Biosynthesis Genes and Their Expression.
Anthocyanin, the most important metabolite in flavonoid
production, is an essential nutritional component in rasp-
berry fruits and their products [35, 36]. In R. coreanus, cyani-
din-3-glucoside, cyanidin-3-rutinoside, and pelargonidin-3-
glucoside have been recognized as the major anthocyanins
[35]. Anthocyanins are first detected in green-red fruit but
increase at the greatest rate to the highest amount in the last
developmental stage [5]. The same trend has been observed
for flavonols such as quercetin-glucuronide and quercetin-
3-O-rutinoside. In contrast, flavanols and proanthocyanidins
are accumulated at the very beginning of fruit set [5]. All
these compounds are final products typical of the flavonoid
biosynthesis, anthocyanin, and flavonol synthesis pathways.
In our study, both flavonoid and anthocyanin pathways were
significantly enriched during fruit development. This is in
accordance with findings for other fruits such as grapes
[16] and bayberries [37]. Confirming our prediction from
the KEGG pathway enrichment above, we were able to
manually identify 23 transcripts involved in the flavonoid
biosynthesis pathway leading to flavonols, anthocyanins, or
proanthocyanidins. The expression of most of these tran-
scripts perfectly parallels the changes in the metabolites
(Figure 5). Among these genes, five have alternative tran-
scripts/multigene members including two phenylalanine
ammonia-lyases (PAL), six 4-coumarate:CoA ligases (4CL),
three chalcone synthases (CHS), two flavonol synthases
(FLS), and two dihydroflavonol 4-reductases (DFR). Major
players among the transcripts from the same gene/multigene
could be identified from expression patterns. For example,
among the six 4CL transcripts, transcript_52752 may be the
key actor, whose abundance increased highly in parallel with
fruit maturation. In comparison, although their roles could
not be ruled out, most other transcripts of 4CL exhibited very
low levels of expression throughout the three fruit develop-
mental stages. Functional diversification could be deduced
from the results if multigene copies existed. Examples include
PAL (transcript_21400 and transcript_22918) and DFR
(transcript_1703 and transcript_61515). One member of
PAL or DFR had a completely opposite expression mode
compared to the other (Figure 5). In strawberries, the two
copies of DFR have different substrate affinities, exerted at
different stages for producing different types of anthocyanin
[38]. Therefore, the function of the DFRs isolated in R. corea-
nus needs further investigation. Also noteworthy is the
absence of the F3′5′H gene in the transcriptome, which
implies that the synthesis of delphinidin-derived anthocya-
nins is blocked in R. coreanus fruits.

2.5. Identification and Abundance Estimation of NBS-LRR-
Encoding Genes. Fungal and viral diseases are two worldwide
threats to commercial cultivation of Rubus. Given the
requirement for reducing pesticide use, cultivars with robust
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disease resistance become increasingly important. Fungal
pathogens attack every part of Rubus, including the roots,
canes, leaves, and fruits. Several fungal diseases can cause
pre- or postharvest fruit rot in raspberries, leading to a short
shelf life and limited sales of fresh fruit to distant markets.
Gray mold (Botrytis cinerea Pers.:Fr.) is the most serious
pathogen of fruit. Variation in susceptibility to it has been
observed in fruits from different raspberry cultivars [39]. It
is well documented that R. coreanus derivatives have strong
resistance to cane diseases caused by Elsinoë veneta, Didy-
mella applanata, and B. cinerea [40]. R. coreanus has also
been recommended as a resource for promoting fruit rot
resistance [10, 41, 42]. Proteins that contain a nucleotide-
binding site and leucine-rich repeat (NBS-LRR) domains
consist of the largest class of known plant resistance (R) gene
products, conferring resistance to a diverse spectrum of

pathogens [43, 44]. Recent advances have revealed that
NBS-LRR R proteins are able to inhibit B. cinerea develop-
ment [45]. In the family Rosaceae, NBS-LRR-coding genes
form a large proportion of the genome, from 1.05% in straw-
berries to 1.52% in peaches [46]. However, except of a few
studies, the availability of R gene resources in Rubus species
is limited. Samuelian et al. [47] characterized 75 LRR genes
from R. idaeus using degenerate primers designed from other
Rosaceae species. Afanador-Kafuri and colleagues [48]
obtained 47 LRR proteins using a similar strategy from
Colombian Rubus genotypes. In a further exploration of
our transcriptome data, initial screening via hmmsearch of
the new reference uncovered 411 candidate NBS-encoding
transcripts. Thereafter, through domain hunting, 119 NBS-
LRR-domain-coding transcripts were identified, among
which 74 had hits in the completely conserved NBS domain
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Figure 2: Pathway enrichment of differentially expressed genes between green and red Rubus coreanus fruits.
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(Supplementary Table 1). We believe our resources greatly
enrich the genetic information for Rubus breeding. Most of
these plant resistance protein-coding genes have low
abundance (less than five) estimated as trimmed mean of M
values (TMM). This appears reasonable because a very high
expression of R proteins could bring lethal effects to plant
cells [49]. Twenty-four NBS transcripts are presented in
Figure 6. Two of the transcripts show relatively high
expression values (transcript_24284 and transcript_72010)
in fruits at almost all three stages. Transcript_47133, with
the highest abundance, functions mainly in the last stage,
when fruits are fully ripe and are more vulnerable to
pathogen attack. Closer examination of this resistance gene
found that it is in the class of NBS-LRR (NL) proteins
lacking additional N-terminal domains. Its closest ortholog
in R. occidentalis is the gene Bras_G19818, which shares

62.58% sequence identity. Some of the NBS-LRR genes have
tissue-specific expression properties [50] and can even
confer different resistance reactions with different alleles
from the same gene [51]. These three highly expressed or
stage-specific factors could be interesting candidates for
more detailed investigation in the future.

2.6. Cloning and Real-Time Quantitative PCR (RT-qPCR)
Validation of Representative Genetic Information. Seven rep-
resentative genes (ANR, CER, CHI, CYP86B1, DFR, GPAT,
and MYB44), which encode key enzymes or regulators
involved in anthocyanin/proanthocyanidin biosynthesis,
amino acid metabolism, or plant cell wall wax formation,
were successfully cloned and validated by sequencing. All
these gene sequences corresponding to the full length of cod-
ing sequence with various lengths of 5′ or 3′ untranslated
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Figure 3: Pathway enrichment of differentially expressed genes between red and black Rubus coreanus fruits.
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region (UTR) were identical to those deduced from the RNA-
seq results. Similar expression patterns between RNA-seq
and RT-qPCR were also observed (Figure 7), thus further val-
idating the RNA-seq expression data.

3. Conclusions

This is the first transcriptomic profile, through RNA-seq
investigation of sequence and transcript abundance, for
R. coreanus. The transcriptomic analysis provides, for the
first time, a 95,845-transcript reference for the species. Of
these genetic resources, 69.5% were annotated. Differen-
tially expressed genes in fruit developmental stages were
mainly involved in flavonoid biosynthesis, plant cell wall
formation, and aroma compound degradation. We identi-
fied 23 transcripts involved in the flavonoid biosynthesis

pathway whose expression perfectly paralleled changes in
the metabolites. Additionally, we identified 119 nucleotide-
binding site leucine-rich repeat (NBS-LRR) protein-coding
genes, involved in pathogen resistance, of which 74 were in
the completely conserved domain. We believe that our study
provides useful genetic information for Rubus breeding.

4. Materials and Methods

4.1. Sample Collection and RNA Preparation. Fruits of R. cor-
eanus (2n=2x=14) [12] were collected from the wild at
Ya’an city, Sichuan province (29°58′24.5″N, 103°00′18.7″E).
Fruit set occurs in April and fruits mature in mid-June in this
area. Fruits of three representative stages of ripening (green,
red, and mature black) were harvested in 2015. For each
stage, a total of about 30 fruits from nomore than three canes
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Figure 4: Pathway enrichment of differentially expressed genes between green and black Rubus coreanus fruits.
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were collected in order to decrease background variation.
They were frozen immediately in liquid nitrogen on collec-
tion and stored at −80°C until use. Two biological replicated
samples were collected for each stage due to the limited yield
of fruits.

Total RNA was isolated by using a modified cetyltri-
methylammonium bromide method [52]. Genomic DNA
was eliminated by using RNase-free DNase I (TaKaRa,
Dalian, China). After monitoring RNA integrity and purity
on 1% agarose gels and NanoPhotometer spectrophotometer
(Implen, CA, USA), the Agilent 2100 Bioanalyzer system
(Agilent Technologies, CA, USA), supplemented with RNA
6000 Nano Kit, was used to confirm the results. RNA concen-
tration was measured using Qubit RNA Assay Kit in Qubit
2.0 Fluorometer (Life Technologies, CA, USA).

4.2. cDNA Synthesis, Library Construction, and Sequencing.
As input material, 3μg of RNA per sample was used.
Sequencing libraries were generated using NEBNext Ultra
Directional RNA Library Prep Kit for Illumina (NEB, USA)
according to the manufacturer’s instructions. Briefly, mRNA
was purified from total RNA using poly(T) oligo-attached
magnetic beads. Fragmentation was carried out using

divalent cations under elevated temperature in NEBNext
First Strand Synthesis reaction buffer (5x). First-strand
cDNA was synthesized with random hexamer primer and
M-MuLV Reverse Transcriptase (RNase H). Second-strand
cDNA was synthesized by DNA polymerase I and RNase
H. Remaining overhangs were blunted via exonuclease/poly-
merase activities. After adenylation of 3′ ends of DNA frag-
ments, NEBNext Adaptors with a hairpin loop structure
were ligated. AMPure XP system (Beckman Coulter, Beverly,
USA) was used to purify cDNA fragments selectively at the
correct size. Then, 3μl of USER Enzyme (NEB, USA) was
used with size-selected, adaptor-ligated cDNA at 37°C for
15min followed by 5min at 95°C. PCR was then performed
with Phusion High-Fidelity DNA Polymerase, universal
PCR primers, and index primers. Finally, the products were
purified (AMPure XP system) and library quality was
assessed on the Agilent 2100 Bioanalyzer system. Clustering
and sequencing were carried out with the prepared libraries
by Novogene (Beijing, China) using the Illumina HiSeq
2500 platform.

4.3. Transcriptome Assembly, Annotation, and Differential
Expression and Enrichment Analysis. The raw reads were
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Figure 5: Flavonoid-synthesis-associated transcripts and their expression patterns during fruit ripening. Expression values are presented
as log2-transformed trimmed mean of M value (TMM) derived from edgeR analysis. PAL: phenylalanine ammonia-lyase; 4CL:
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cleaned by removing adapter sequences and ambiguous reads
(with “N”> 10%). Low-quality bases were trimmed, and
reads that were too short were filtered through Trimmo-
matic (LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
MINLEN:50) [53], as were the corresponding read pairs.
After trimming/filtering low-quality reads, SEECER (v0.1.3)
[54] was used for error correction. All downstream analyses
were based on high-quality clean data.

To facilitate the use of the recently published North
American black raspberry genome information, we adopted
the strategies of genome-guided transcript expression analy-
sis by using the protocol of Trapnell et al. [55]. All reads were
first mapped to the R. occidentalis genome (v1.0) with
TopHat2 (allowing two bases of mispairing and multiple
hits≤ 20) and then assembled by using the Cufflinks suite
with default parameters.

To evaluate divergence between R. coreanus and R. occi-
dentalis, we also carried out de novo assembly of transcripts.

Trinity (v2.2.0) [56] was used with default parameters except
that the minimum contig length was set to 200 bp, reads
were first normalized with maximum coverage 50 before
putting in the assembly pipeline, and k-mer coverage was
set to a minimum level of two. Redundancy in the de
novo transcriptome was minimized with CD-HIT-EST
(v4.6.4) [57] using an identity cutoff at 0.99. Evidential-
Gene tr2aacds pipeline [58] was used to combine both
genome-guided and de novo assemblies. Nonredundant
transcripts were also obtained. To evaluate the quality of
the reference, all assemblies were searched against BUSCO
for plants [21].

All reads in each sample were mapped back to the tran-
scriptome using Bowtie 2 [19] (default parameters used, but
end to end, allowing two bases of mispairing and multiple
hits≤ 20) and then used to estimate expression values for
each transcript by RSEM [24]. Given that many of the very
lowly expressed transcripts could be questionable due to
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Figure 6: Heat map of the top 24 NBS-LRR genes expressed in Rubus coreanus. Normalized expression values are presented as trimmedmean
of M value (TMM) derived from the edgeR package.

9International Journal of Genomics



our very high deep-sequencing coverage (exceeding 100x),
we filtered the transcripts by setting transcripts per million
(TPM) lower than three before conducting differential gene
expression analysis.

Gene annotations were carried out according to the
Annocript (v1.1.3) pipeline [21] using all assembled tran-
scripts. We performed similarity searches through blastx
against UniRef90 and Swiss-Prot (v201706, word_size = 4;
e-value = 0.00001), rpsblast against the Conserved Domain
Database (CDD) profiles (ftp://ftp.ncbi.nih.gov/pub/mmdb/
cdd/little_endian/Cdd_LE.tar.gz, e-value = 0.00001, num_-
descriptions = 20, and num_alignments = 20), and blastn
against Rfam and rRNAs (e-value = 0.00001, num_descrip-
tions = 1, num_alignments = 1, and num_threads = 4). For
each sequence, the best hit, if any, was chosen. For gene
ontology (GO) functional classification, Enzyme Commis-
sion IDs were associated to the corresponding matches.
KEGG Orthology (KO) assistant pathway assignment was
implemented via KOBAS 3.0 [59] using the default parame-
ters. The dna2pep tool implemented in the Annocript pack-
age [21] was used to identify the longest open reading
frame (ORF) of each transcript. PORTRAIT software [23],
which was developed for detecting noncoding RNA from
poorly characterized species, was used to identify the non-
coding potential of each query sequence by using a new sup-
port vector machine-based algorithm.

To investigate differential expression (DE) of transcripts,
we used DESeq2 [25], which uses a Wald test; edgeR [26],
which uses a likelihood ratio test; and limma-voom [27],
which uses a moderated t-test to conduct pairwise compari-
son of the three fruit-ripening stages. Each of the compari-
sons was based on different statistical models. Differentially
expressed genes were selected using log2FC≥ 1 or logFC≤−1
and FDR (false discovery rate)< 0.01 in the three methods.
Consensus DE results were obtained by comparing the

outcomes of the three methods, which were used to present
the most reliable differentially expressed transcripts. These
transcripts associated with their corresponding GO or KO
annotations were tested against the whole transcriptome as
background gene sets for enrichment analysis. GO categories
were checked using GOEAST (http://omicslab.genetics.ac.
cn/GOEAST/tools.php) with an FDR (Benjamini–Yekutieli
method) value of ≤0.05 as the cutoff to identify enriched
terms by the hypergeometric test. Transcripts with a KO
number were also tested by hypergeometric statistics to find
significantly overperturbed pathways through a Perl in-
house script.

4.4. Expression Patterns of Genes Involved in Flavonoid
Synthesis. From the gene differential expression analysis, fla-
vonoid biosynthesis pathway genes appeared to be extremely
perturbed in both green versus red fruits and red versus black
fruits. We identified all genes involved in the pathway from
the assembled reference and manually curated by blasting
against the nonredundant protein database at the National
Center for Biotechnology Information site, coupling the
annotation from Annocript described above. Afterwards,
expression patterns of these genes were presented as heat
maps after log2 transformation of the among-sample nor-
malized count values by using edgeR.

4.5. NBS-Encoding Gene Retrieval and Expression Analysis.
Based on the Annocript-deduced peptide collection, we iden-
tified potential NBS-encoding genes using the procedures
described by Arya et al. [60]. Specifically, the hidden Markov
model (HMM)profile for theNBS domain (http://pfam.xfam.
org/family/PF00931) was used to search against the complete
set of the predicted R. coreanus proteins using hmmsearch in
HMMER (v3.1b) [61] with e-value< 0.00001. All the protein
sequences identified were further subjected to CDD detection
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Figure 7: Similarities in expression patterns of seven genes between RNA-seq (heat map) and RT-qPCR (bar plot). ANR: anthocyanidin
reductase; CER: ECERIFERUM; CHI: chalcone flavanone isomerase; CYP: cytochrome P450; DFR: dihydroflavonol 4-reductase,
(transcript_61515 was chosen for DFR); GPAT: glycerol-3-phosphate acyltransferases. MYB44 is the transcript most resembling
AtMYB44 in Arabidopsis thaliana.
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(https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi)
using 0.01 as a cutoff value to confirm the presence of NBS
domains. Expression pattern analysis was carried out the
same way as for flavonoid genes.

4.6. Cloning and RT-qPCR for Validation of Gene Expression
Patterns. To verify the validity of the genetic information
obtained, we selected seven representative genes (ANR,
CER1, CHI, CYP, DFR, GPAT, and MYB44), which encode
key enzymes involved in anthocyanin/proanthocyanidin bio-
synthesis, amino acid metabolism, plant cell wall wax forma-
tion, or stress response regulators. The deduced full coding
sequences were cloned experimentally, and their expression
values were determined using RT-qPCR. All the candidate
sequences were amplified in a 20μl reaction mixture, con-
taining 10 ng first-strand cDNA, 10pmol each primer
(Supplementary Table 2), and 10μl 2x PrimeSTAR HS
premix (TaKaRa, Dalian, China). Following one cycle of 20
seconds at 98°C, 35 PCR cycles of 10 s at 98°C, 10 s at 60°C,
and 90 s at 72°C were performed in the thermal cycler PTC-
200 (Bio-Rad, Hercules, CA). Amplified products were
purified using E.Z.N.A. Gel Extraction Kit (Omega, GA,
USA). The enriched PCR product was cloned into pEASY-
Blunt vectors (TransGen, Beijing, China) and transformed
into JM109 competent Escherichia coli cells. Finally, positive
clones were sequenced using the BigDye Terminator Cycle
Sequencing Kit on an ABI PRISM 3730 automated DNA
sequencer (Applied Biosystems, Foster City, CA, USA). For
quantitative PCR, 10μl reaction mixture is composed of 5μl
2x SYBR Green mixture (TaKaRa, Dalian, China), 1μl
diluted cDNA, and 1μl specific forward and reverse primer
for each gene (Supplementary Table 1). The reaction was
conducted on a CFX96 Real-Time PCR Detection System
(Bio-Rad, US). Expression values were expressed as 2−ΔΔCT

using beta-actin [52] as an internal control.
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