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Abstract 17 

Our previous work demonstrated that CARD8 detects HIV-1 infection by sensing the enzymatic 18 

activity of the HIV protease, resulting in CARD8-dependent inflammasome activation 19 

(Kulsuptrakul et al., 2023). CARD8 harbors a motif in its N-terminus that functions as a HIV 20 

protease substrate mimic, permitting innate immune recognition of HIV-1 protease activity, 21 

which when cleaved by HIV protease triggers CARD8 inflammasome activation. Here, we 22 

sought to understand CARD8 responses in the context of HIV-1 cell-to-cell transmission via a 23 

viral synapse. We observed that cell-to-cell transmission of HIV-1 between infected T cells and 24 

primary human monocyte-derived macrophages induces CARD8 inflammasome activation in a 25 

manner that is dependent on viral protease activity and largely independent of the NLRP3 26 

inflammasome. Additionally, to further evaluate the viral determinants of CARD8 sensing, we 27 

tested a panel of HIV protease inhibitor resistant clones to establish how variation in HIV 28 

protease affects CARD8 activation. We identified mutant HIV-1 proteases that differentially 29 

cleave and activate CARD8 compared to wildtype HIV-1, thus indicating that natural variation in 30 

HIV protease affects not only the cleavage of the viral Gag-Pol polyprotein but also likely 31 

impacts innate sensing and inflammation.   32 
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INTRODUCTION 33 

HIV-1 disease progression is characterized by chronic inflammation, immune activation, 34 

CD4+ T cell depletion and eventual destruction of the immune system and susceptibility to 35 

opportunistic infections. The primary cellular targets of HIV-1 are activated CD4+ T helper cells, 36 

specialized CD4+ T cell subtypes such as Th17 cells (Brenchley et al., 2008; Gosselin et al., 37 

2009; Rodriguez-Garcia et al., 2014), central memory cells (Chun et al., 1997b, 1997a, 1995), 38 

and macrophages (Collman et al., 1990, 1989). Chronic immune activation is primarily caused 39 

by rapid depletion of mucosal Th17 cells responsible for maintaining gut epithelial barrier 40 

integrity (Brenchley et al., 2008, 2006). In addition to inflammation induced by circulating 41 

microbial ligands, inflammation can also originate from HIV-infected cells through activation of 42 

innate immune sensors that form cytosolic immune complexes known as inflammasomes. 43 

Inflammasome activation ultimately results in activation of pro-inflammatory caspases including 44 

caspase 1 (CASP1). Active CASP1 processes inflammatory cytokines and activates the pore-45 

forming protein gasdermin D (GSDMD), which forms small pores in the plasma membrane and 46 

initiates a lytic form of cell death known as pyroptosis and the release of mature inflammatory 47 

cytokines interleukin (IL)-1β and IL-18 (Broz and Dixit, 2016; Fink and Cookson, 2005). 48 

In prior work, we and others showed that the inflammasome-forming sensor CARD8 49 

senses HIV-1 infection through the detection of HIV-1 protease (HIVPR) activity (Clark et al., 50 

2022; Kulsuptrakul et al., 2023; Wang et al., 2021). While the canonical function of HIVPR is to 51 

cleave viral polyproteins during virion maturation, active HIVPR is also released into the host cell, 52 

which is sensed by CARD8 via HIVPR cleavage of its N-terminus and subsequent inflammasome 53 

activation. In this way, the CARD8 N-terminus functions as a “molecular tripwire” to recognize 54 

the enzymatic activity of HIVPR and other viral proteases (Castro and Daugherty, 2023; Nadkarni 55 

et al., 2022; Tsu et al., 2023). Moreover, HIVPR cleavage of CARD8 occurs rapidly after infection 56 

such that HIVPR inhibitors and fusion inhibitors, but not reverse transcriptase (RT) inhibitors can 57 

prevent CARD8 inflammasome activation, implying that CARD8 detects HIV-1 viral protease 58 
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activity of virion-packaged or “incoming” HIVPR upon virion fusion (Kulsuptrakul et al., 2023; 59 

Wang et al., 2024, 2021). Interestingly, CARD8 inflammasome activation in resting CD4+ T cells 60 

results in pyroptosis but not the release of pro-inflammatory cytokines IL-1β or IL-18 (Wang et 61 

al., 2024), suggesting that CARD8 inflammasome activation in T cells does not directly 62 

contribute to chronic inflammation. Here, we address whether or not CARD8 may influence HIV-63 

1 pathogenesis through the maturation and release of IL-1β from infected macrophages.  64 

HIV-1 can be transmitted from one cell to another via two main mechanisms: “cell-free” 65 

infection through binding of free HIV-1 virions to target cells, and cell-to-cell infection whereby 66 

infected cells directly transfer virus to an uninfected target cell via the formation of a transient 67 

viral synapse (Chen et al., 2007; Galloway et al., 2015; Iwami et al., 2015). Cell-to-cell 68 

transmission of HIV-1 has been reported between multiple HIV-1 target cell types including 69 

between active and resting CD4+ T cells (Agosto et al., 2018; Martin et al., 2010) and between 70 

CD4+ T cells and macrophages (Baxter et al., 2014; Dupont and Sattentau, 2020; Lopez et al., 71 

2019). Cell-to-cell transmission delivers a large influx of virus to target cells, resulting in a high 72 

multiplicity of infection (MOI) (Agosto et al., 2015; Del Portillo et al., 2011; Duncan et al., 2013; 73 

Russell et al., 2013), which has been proposed to enhance viral fitness by overwhelming host 74 

restriction factors including Tetherin/BST-2 (Jolly et al., 2010; Zhong et al., 2013), SAMHD1 (Xie 75 

et al., 2019), and TRIM5𝛼 (Richardson et al., 2008), and evading adaptive immune responses 76 

including broadly neutralizing antibodies (Abela et al., 2012; Dufloo et al., 2018). Cell-to-cell 77 

spread of HIV-1 is thus an important consideration in studying CARD8 inflammasome activation. 78 

Here, we investigated both host and viral determinants of CARD8 inflammasome 79 

activation upon HIV-1 infection. We evaluated CARD8 sensing of HIVPR during cell-to-cell 80 

transmission of HIV-1 from T cell lines to myeloid cells in both immortalized and primary cell 81 

models of infection. We found that CARD8 inflammasome activation occurs in the context of 82 

cell-to-cell transmission from both SUPT1 cells, a T cell lymphoma cell line, to THP-1 cells, an 83 

acute myeloid leukemia cell line, and from primary CD4+ T cells to primary monocyte-derived 84 
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macrophages. We also observed that HIV-triggered CARD8 inflammasome activation is largely 85 

independent of the NLRP3 inflammasome, which has previously been implicated in innate 86 

sensing of HIV-1 (Bandera et al., 2018; Chivero et al., 2017; Hernandez et al., 2013; Leal et al., 87 

2020; Mamik et al., 2017; Zhang et al., 2021). Our findings suggest that CARD8 sensing of 88 

HIVPR activity during cell-to-cell transmission of HIV-1 to macrophages, leading to robust 89 

secretion of IL-1β, may be a source of inflammatory cytokines that promote pathogenic chronic 90 

inflammation and disease progression. In addition, we also show that natural variation in HIVPR 91 

due to resistance to protease inhibitors also affects CARD8 cleavage and subsequent 92 

inflammasome activation. Our results extend the role of incoming HIVPR on CARD8-dependent 93 

inflammasome activation of inflammasome responses as a function of cell type, mode of 94 

transmission, and virus evolution in response to antiviral therapy. 95 

 96 
RESULTS 97 

Cell-to-cell transmission of HIV-1 induces CARD8 inflammasome activation  98 

Our previous work investigating HIV-dependent CARD8 inflammasome activation used 99 

the cationic polymer DEAE-dextran, which is a common reagent used to enhance viral infection 100 

in cell culture (Bailey et al., 1984). However, we found that DEAE-dextran could induce 101 

inflammasome activation in the absence of viral infection in some “wildtype” (WT) THP-1 cell 102 

stocks (see Supplemental Note). These results prompted us to establish other models of HIV-1 103 

infection and subsequent inflammasome activation that lack cationic polymers. Thus, we 104 

designed an in vitro coculture infection system to mimic HIV-1 cell-to-cell transmission by 105 

infecting SUPT1 cells, a T-cell lymphoma line (i.e., donor cells) and then mixing them with 106 

uninfected THP-1 cells (i.e., target cells). We opted for SUPT1 cells as the viral producer cell 107 

line because they are permissive to HIV-1 infection, and unlike THP-1 cells, SUPT1 cells do not 108 

respond to a known CARD8 inflammasome activator, ValboroPro (VbP), as assayed by both IL-109 

1β secretion and cell death, indicating that SUPT1 cells do not have a functional CARD8 110 
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inflammasome pathway (Figure 1A). This allowed us to infer that inflammasome outputs (e.g. 111 

IL-1β secretion) in our coculture system occur upon cell-to-cell transmission of HIV-1 from 112 

Figure 1. HIV-1 cell-to-cell infection induces inflammasome activation. (A) SUPT1 or THP-1 cells 
were primed with Pam3CSK4 (500ng/mL) overnight then treated with 5µM ValboroPro (VbP) for 24 
hours then assessed for IL-1β secretion and cell death via propidium iodide (PI) uptake. %PI positive 
was normalized to mock control. (B) (left) Schematic illustrating experimental setup for SUPT1:THP-1 
cell coculture either with (bottom) or without (top) a transwell. (right) SUPT1 cell were either mock 
infected or infected with HIV-1LAI then cocultured with primed WT THP-1 cells 20 hours post infection. 
Mock- or HIV-1LAI-infected SUPT1 cells were either mixed with the THP-1 cells or put in a transwell 
with a virus-permeable membrane as shown in panel B (left). Supernatant in the cell-to-cell condition 
and in the supernatant outside of the transwell were sampled and measured for infectious HIV virions 
via reverse transcriptase (RT) assay or (C) IL-1β secretion 3 days after starting the coculture. Dotted 
line indicates limit of detection (LoD). Datasets represent mean ± SD (A: n=2; B,C n=4 biological 
replicates). One-way ANOVA with (B) Tukey’s or (C) Dunnett’s test using GraphPad Prism 10. ns = 
not significant, *p<0.05,**p<0.01, ***p<0.001, ****p<0.0001. 
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SUPT1 cells to the CARD8-competent THP-1 cells.  113 

We found that coculture of THP-1 cells with HIV-1LAI-infected SUPT1 cells (Figure 1B) 114 

but not mock-infected SUPT1 cells results in robust inflammasome activation as indicated by IL-115 

1β secretion, suggesting that our coculture system, which lacks DEAE-dextran, can induce HIV-116 

dependent inflammasome activation via cell-to-cell infection (Figure 1C). To further test this 117 

assumption, we prevented cell-to-cell contact using a virus-permeable transwell with a 0.4µm 118 

pore insert (Figure 1B, left). We verified that there were equivalent amounts of infectious virus 119 

in the cell-to-cell condition versus the lower chamber of the transwell condition by measuring RT 120 

activity in the supernatant (Figure 1B, right). Despite equivalent amounts of infectious virus in 121 

both conditions, we observed that HIV-1LAI-infected SUPT1 cells (upper chamber) cocultured 122 

with THP-1 cells (lower chamber) did not lead to detectable IL-1β secretion (Figure 1C). These 123 

data suggest that our SUPT1:THP-1 coculture system can trigger HIV-dependent 124 

inflammasome activation in a manner dependent on cell-to-cell contact.  125 

We next assessed the role of CARD8 and other inflammasome sensors during cell-to-126 

cell transmission of HIV-1. We cocultured mock- or HIV-1LAI-infected SUPT1 cells with either WT 127 

or CARD8 KO THP-1 cells and compared inflammasome activation by measuring levels of 128 

secreted IL-1β. HIV-1LAI-infected SUPT1 cells cocultured with WT but not CARD8 KO THP-1 129 

cells resulted in a significant increase in IL-1β (Figure 2A). These results suggest that CARD8 130 

is the primary sensor that drives inflammasome activation in HIV-1 cell-to-cell transmission to 131 

THP-1 cells. Since the NLRP3 inflammasome has previously been implicated in HIV-dependent 132 

inflammasome activation (Bandera et al., 2018; Chivero et al., 2017; Hernandez et al., 2013; 133 

Leal et al., 2020; Mamik et al., 2017; Zhang et al., 2021), we also assessed the effects of the 134 

NLRP3 inflammasome-specific inhibitor MCC950 (Coll et al., 2015; Primiano et al., 2016) on 135 

inflammasome activation in our coculture system. Treatment with MCC950 or the caspase 1 136 

(CASP1) inhibitor VX765 (Wannamaker et al., 2007) were sufficient to abrogate inflammasome 137 
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activation induced by the ionophore nigericin, a well-characterized NLRP3 agonist (Figure 2– 138 

figure supplement 1A). However, in the HIV-1 coculture system, MCC950 treatment had only 139 

a modest effect on inflammasome activation while VX765 and the HIVPR inhibitor lopinavir 140 

(LPV), which prevents CARD8 cleavage by HIV-1PR (Kulsuptrakul et al., 2023; Wang et al., 141 

2021), completely abrogated IL-1β secretion (Figure 2B). We observed similar results during 142 

HIV-1LAI and HIV-1LAI-VSVG cell-free infection of THP-1 cells in the presence of DEAE-dextran 143 

(Figure 2– figure supplement 1B). Taken together, these findings indicate that HIV-dependent 144 

Figure 2. HIV-1 cell-to-cell transmission induces CARD8-dependent activation largely 
independent of NLRP3. (A) SUPT1 cells were either mock-infected or infected with HIV-1LAI for 18-20 
hours prior to coculture with wildtype (WT) or CARD8 knockout (KO) THP-1 cells. The coculture was 
harvested 72 hours later to probe for IL-1β secretion in the coculture supernatant via IL-1R reporter 
assay. THP-1 cells were primed with Pam3CSK4 (500ng/mL) for 16-24 hours prior to coculture. 
SUPT1 cells were infected with HIV-1LAI such that 30% of the cells were positive for intracellular p24gag 
after 18-20 hours. (B) SUPT1 cells were either mock or HIV-1LAI-infected as in (A) for 18-20 hours 
then incubated in DMSO, lopinavir (LPV), MCC950, or VX765 at 0.01%, 5µM, 10µM, or 1µg/mL, 
respectively, for 15 minutes prior to coculturing with primed WT THP-1 cells. The coculture was 
assessed for subsequent inflammasome activation after 72 hours as in (A). Dotted line indicates limit 
of detection (LoD). Datasets represent mean ± SD (n=3 biological replicates). Two-way ANOVA with 
Dunnett’s test using GraphPad Prism 10. ns = not significant, *p<0.05,**p<0.01, ***p<0.001, 
****p<0.0001. 
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 9 

inflammasome activation via cell-to-cell transmission is CARD8-dependent and largely NLRP3-145 

independent.  146 

 147 

 148 

Figure 2– figure supplement 1. HIV-dependent inflammasome activation is largely NLRP3-
independent. (A) Wildtype THP-1 cells were pre-treated with either DMSO, lopinavir (LPV), MCC950, 
or VX765 at 0.01%, 5µM, 10µM, or 1µg/mL, respectively, for 15 minutes prior to 4-hour treatment with 
5µg/mL nigericin. Subsequent inflammasome activation was assessed via (A, left) IL-1β secretion via 
IL-1R reporter assay and (A, right) cell death via propidium iodide (PI) dye uptake. (B) Wildtype THP-1 
cells were pre-treated with indicated inhibitors as in (A) then infected with either HIV-1LAI or VSV-G 
pseudotyped HIV-1LAI (HIV-1LAI-VSVG) in the presence of 10µg/mL DEAE-dextran such that both HIV-
1LAI-infected and HIV-1LAI-VSVG -infected cells were ~30% positive for intracellular p24gag after 24 hours 
by flow cytometry. Subsequent inflammasome activation was assessed 24 hours post infection via IL-
1β secretion and cell death as in (A). Dotted line indicates limit of detection (LoD). Datasets represent 
mean ± SD (A: n=3, B: n=2 biological replicates). One-way (A) or Two-way (B) ANOVA with Dunnett’s 
test using GraphPad Prism 10. ns = not significant, *p<0.05,**p<0.01, ***p<0.001, ****p<0.0001. 
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CARD8, but not NLRP3, is required for inflammasome activation during HIV-1 cell-to-cell 149 

transmission into primary monocyte-derived macrophages 150 

We next examined inflammasome activation upon HIV-1 cell-to-cell transmission in 151 

primary human monocyte-derived macrophages (MDMs). Previously, we had observed that 152 

CARD8 could sense active HIV-1PR released into the host cytosol following viral fusion, which 153 

we refer to as “incoming” HIV-1PR in our cell-free infection system in THP-1 cells using DEAE-154 

dextran and spinoculation (Kulsuptrakul et al., 2023). Thus, we assessed the importance of viral 155 

entry by coculturing MDMs from three independent donors with mock-, HIV-1LAI-, or HIV-1NL4.3-156 

BaL-infected SUPT1 cells expressing CCR5 (SUPT1-CCR5) and assayed for inflammasome 157 

activation (Figure 3A). HIV-1LAI is a CXCR4 tropic strain unable to infect macrophages whereas 158 

HIV-1NL4.3-BaL uses CCR5 as a co-receptor which is a requirement for infection of macrophages. 159 

We observed inflammasome activation, as measured by IL-1β secretion, in MDMs cocultured 160 

with HIV-1NL4.3-BaL-infected SUPT1 cells but not in MDMs cocultured with mock- or HIV-1LAI-161 

infected SUPT1-CCR5 cells (Figure 3A). This demonstrates that HIV-dependent inflammasome 162 

activation can occur in MDMs during cell-to-cell infection in a manner dependent on viral entry. 163 

To further ascertain if this inflammasome activation was CARD8-dependent and driven by 164 

incoming HIVPR during SUPT1:MDM cell-to-cell transmission, we investigated the effects of 165 

different inhibitors on inflammasome activation in MDM cocultures with HIV-1NL4.3-BaL-infected 166 

SUPT1s. We observed that IL-1β secretion was abrogated by treatment with lopinavir, an HIV-1 167 

protease inhibitor, and VX765, a CASP1 inhibitor, indicating that inflammasome activation in 168 

MDM cocultures is dependent on HIVPR and CASP1, respectively (Figure 3A). In addition, we 169 

used an RT inhibitor, nevirapine (NVP), to prevent synthesis of de novo translated HIVPR, and 170 

thus any CARD8-dependent IL-1β secretion would only be due to incoming HIVPR in the 171 

presence of NVP. Indeed, we observed HIV-dependent inflammasome activation in the 172 

presence of NVP that was added at the time of coculture, indicating that incoming HIVPR is 173 

sufficient to elicit an inflammasome response (Figure 3A). Lastly, MDM cocultures treated with 174 
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MCC950, an inhibitor of the NLRP3 inflammasome, had no effect on IL-1β secretion (Figure 175 

3A), and we observed similar inflammasome activation results regardless of whether the MDMs 176 

were primed with TLR1/2 agonist Pam3CSK4 versus TLR4 agonist lipopolysaccharide (LPS) 177 

(Figure 3– figure supplement 1A). Thus, cell-to-cell contact of infected cells with primary 178 

monocyte-derived macrophages can elicit an inflammasome response in a manner that is 179 

dependent on viral entry, CASP1, and incoming HIVPR, and independent from NLRP3.  180 

To further assess the timing of this inflammasome activation, we conducted a 181 

SUPT1:MDM time course coculture experiment with 3 additional donors, assaying IL-1β 182 

secretion at 4, 24, 48, and 72 hours post coculture in the presence and absence of NVP. We 183 

observed inflammasome activation as determined by IL-1β secretion by 24 hours post coculture 184 

in all donors that persisted at a similar level at 48 and 72 hours post coculture (Figure 3B). As 185 

expected, we observed donor-to-donor variation in the extent to which IL-1β secretion occurred 186 

following HIV-1 infection. However, per donor, HIV-1-driven IL-1β levels were comparable to 187 

that of VbP-induced inflammasome activation (Figure 3–figure supplement 1B). Moreover, 188 

adding NVP had no effect on IL-1β secretion in HIV-1 infected MDM cocultures (Figure 3B). To 189 

verify that NVP was functional, we assayed the supernatant of the mock and NVP-treated 190 

cocultures from Figure 3B at 48 hours post-coculture for infectious virions via an assay for RT 191 

activity and observed lower RT activity in NVP-treated MDM donors (Figure 3–figure 192 

supplement 1C). Unlike the ‘cell-free’ infection conditions in which we previously observed an 193 

increase in IL-1β levels 4h post-infection, we did not detect measurable differences in IL-1β 194 

secretion at this early timepoint following the establishment of SUPT1:MDM coculture. 195 

Nevertheless, the data are consistent with incoming HIVPR being responsible for inflammasome 196 

activation during cell-to-cell transmission of HIV because the induction of IL-1β persists in the 197 

presence of NVP which would block any de novo synthesis of new gag/pol products (Figure 3A 198 

and B). Taken together, these data suggest that in the context of cell-to-cell transmission, 199 
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CARD8 is likely the inflammasome-forming sensor that detects HIV-1 infection via incoming 200 

HIVPR activity in primary monocyte-derived macrophages. 201 

To specifically address the role of CARD8 in HIV-1 induced inflammasome activation in 202 

MDMs, we genetically edited MDMs by isolating monocytes from five donors and 203 

electroporating them with Cas9 RNPs complexed with three unique sgRNAs per gene targeting 204 

AAVS1, a safe harbor locus, CARD8 or NLRP3 (only 2 donors for NLRP3 KO). Edited MDMs 205 

were then differentiated for 6 days prior to evaluating KO efficiency and initiating cocultures with 206 

HIV-1-infected SUPT1 cells. To verify KO efficiency, we immunoblotted with an antibody that 207 

detects the CARD8 C-terminus in CARD8 KO MDMs relative to the AAVS1 KO control and 208 

observed a marked reduction of the full-length and FIIND-processed CARD8 protein in all 5 209 

donors (Figure 3C). In addition, we confirmed AAVS1, CARD8, and NLRP3 KO at the genetic 210 

level via Synthego ICE analysis (Conant et al., 2022), measuring >85% KO efficiency (Figure 211 

3C). We also observed robust inflammasome activation upon treatment with CARD8 212 

inflammasome activator VbP as measured by IL-1β secretion in AAVS1 KO MDMs from 2 of the 213 

3 donors, which was completely abrogated in CARD8 KO MDMs, confirming functional loss of 214 

CARD8 (Figure 3– figure supplement 1D). We then cocultured either AAVS1 KO, CARD8 KO, 215 

or NLRP3 KO MDMs with mock or HIV-1NL4.3-BaL-infected SUPT1-CCR5 cells at a 1:1 ratio and 216 

measured inflammasome activation via IL-1β secretion 48 hours post-coculture. In all 5 donors, 217 

we observed significant reduction in inflammasome activation in CARD8 KO cocultures relative 218 

to the AAVS1 KO control (Figure 3D). Consistent with our findings with SUPT1:THP-1 219 

coculture, we observed no difference in inflammasome activation when coculturing infected 220 

SUPT1 cells with AAVS1 KO vs NLRP3 KO MDMs, suggesting that the inflammasome 221 

activation was also largely NLRP3-independent (Figure 3D). Taken together, these data 222 

demonstrate that CARD8 is required for inflammasome activation in MDMs during HIV-1 cell-to 223 

cell transmission. 224 
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 225 

Figure 3. Cell-to-cell HIV infection induces CARD8-dependent inflammasome activation in 
monocyte-derived macrophages (MDMs). (A) MDMs from 3 independent donors were cocultured 
with SUPT1 cells expressing CCR5 (SUPT1-CCR5) that were mock-, HIV-1LAI- or HIV-1NL4.3-BaL-
infected then assayed for inflammasome activation 48 hours post-coculture for IL-1β secretion. Fifteen 
minutes before starting the coculture, SUPT1-CCR5 cells infected with HIV-1NL4.3-BaL were pre-treated 
with either DMSO, lopinavir (5µM), nevirapine (50µM), MCC950 (10µM ) or VX765 (1µg/mL), inhibiting 
HIV-1 protease (HIVPR), HIV-1 reverse transcriptase (HIVRT), NLRP3, or caspase 1 (CASP1), 
respectively. (B) MDMs from 3 independent donors were cocultured with SUPT1-CCR5 cells infected 
with HIV-1NL4.3-BaL in either the presence or absence of nevirapine (NVP). Supernatant was harvested 
at 4, 24, 48, or 72 hours to assay for IL-1β secretion. (C) MDMs from 5 independent donors were 
knocked out (KO) for AAVS1 CARD8, or NLRP3 using a Synthego gene KO kit then immunoblotted 
using an anti-CARD8 antibody or anti-vinculin. Full-length and FIIND-processed CARD8 intermediates 
are marked with a purple arrow. Table between CARD8 and vinculin blot shows Synthego gene KO% 
scores for each donor KO line. (D) AAVS1, CARD8 or NLRP3 KO MDM lines from (C) were primed 
with Pam3CSK4 (500ng/mL) overnight and then cocultured with SUPT1-CCR5 cells mock-, or HIV-
1NL4.3-BaL-infected then assayed for inflammasome activation 48 hours post-coculture for IL-1β 
secretion. For all SUPT1:MDM experiments, SUPT1-CCR5 cells were infected with HIV-1LAI or HIV-
1NL4.3-BaL such that 5-20% of cells were positive for intracellular p24gag after 20 hours. IL-1 levels shown 
were normalized to the SUPT1 mock-infected coculture control. Dotted line indicates limit of detection 
(LoD). Datasets represent mean ± SD (A: n=3 independent donors, B: n=2 biological replicates for 
each donor, D: n=3 technical replicates per donor). One-way ANOVA with (A)Tukey’s or (D) Sidak’s 
test or (B) two-way ANOVA with Tukey’s test using GraphPad Prism 10. ns = not significant, 
*p<0.05,**p<0.01, ***p<0.001, ****p<0.0001. 
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 227 

Figure 3– figure supplement 1: Cell-to-cell HIV infection induces CARD8-dependent activation 
in monocyte-derived macrophages (MDMs). (A) MDMs from donor 6 were primed with either 
500ng/mL Pam3CSK4 or 5μg/mL LPS then cocultured with SUPT1-CCR5 cells that had been infected 
with HIV-1NL4.3-BaL 24 hours prior to coculture. Each coculture was started in the presence of DMSO, 
nevirapine (NVP) or lopinavir (LPV). Supernatant was harvested 72 hours post coculture to assay for 
IL-1β secretion. (B) MDMs from the same 3 independent blood donors assayed in Figure 3B were 
primed overnight with Pam3CSK4 then treated with 10μM VbP for 24 hours before assaying for IL-1β 
secretion via IL-1 reporter assay. (C) Supernatant from SUPT1:MDM coculture experiment done in 
Figure 3B was harvested at 48 hours post coculture to assay for infectious virions via reverse 
transcriptase (RT) assay. (D) AAVS1 or CARD8 KO MDMs from donor 7-9 assayed in Figure 3C were 
primed and treated with VbP for 24 hours then assayed for IL-1β secretion. IL-1 levels from VbP 
treatment were normalized to untreated mock control. Dotted line indicates limit of detection (LoD). 
Datasets represent mean ± SD (A: n=2 biological replicates for one donor, B-C: n=2 technical 
replicates for each independent donor, D: n=3 technical replicates per donor). Two-way ANOVA with 
(A) Sidak’s or (C) Dunnett’s test (using GraphPad Prism 10. ns = not significant, *p<0.05,**p<0.01, 
***p<0.001, ****p<0.0001. 
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  228 

Figure 4. Primary CD4+ T cell:MDM coculture elicits CARD8-dependent inflammasome 
activation. (A) CD4+ T cells from a blood donor were isolated, activated, and either mock infected or 
infected with HIV-1NL4.3-BaL for 3 days such that ~10% of cells were positive for intracellular p24gag. 
MDMs were primed with Pam3CSK4 then cocultured with mock or HIV-1 infected primary CD4 T cells 
in the presence or absence of lopinavir (LPV), nevirapine (NVP), or VX765, inhibiting HIV protease, 
reverse transcriptase, or caspase 1, respectively. Supernatants were harvest 3 days post coculture to 
assay for IL-1β secretion via IL-1 reporter assay. (B) CD4+ T cells from donor 12 and MDMs from 
donor 14 were cocultured as in A in the presence or absence of LPV. Supernatant was harvested at 4, 
24 and 48 hours post coculture to probe for IL-1β secretion. (C) AAVS1 or CARD8 MDM KOs were 
immunoblotted using an anti-CARD8 antibody or anti-vinculin. Full-length and FIIND-processed 
CARD8 intermediates are marked with a purple arrow. (D) AAVS1 or CARD8 KO MDMs from (C) were 
cocultured with CD4+ T cells infected with HIV-1NL4.3-BaL then assayed for IL-1β secretion 48 hours 
post coculture. The donor 12 cocultures consisted of autologous CD4s and MDMs whereas the MDMs 
from donors 13-15 were cocultured with donor 12 CD4s. Dotted line indicates limit of detection (LoD). 
Datasets represent mean ± SD (A,D: n=2 technical replicates for each donor, B: n=3 technical 
replicates for one donor). (A) Two-way ANOVA with Tukey’s test (D) One-way ANOVA with Sidak’s 
test using GraphPad Prism 10. ns = not significant, *p<0.05,**p<0.01, ***p<0.001, ****p<0.0001. 
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Coculture of HIV-1 infected primary CD4+ T cells with primary MDMs elicits CARD8-229 

dependent inflammasome activation 230 

We next investigated inflammasome activation in the context of cell-to-cell infection 231 

using primary CD4+ T cells as donor cells, rather than SUPT1 cells, and primary MDMs as 232 

target cells. Mock or HIV-1NL4.3-BaL infected CD4+ T cells were cocultured with MDMs in the 233 

presence or absence of various inhibitors (as in Figure 3A). We assessed inflammasome 234 

activation via IL-1β secretion 72 hours post coculture and observed inflammasome activation 235 

when coculturing with HIV-infected T cells but not mock infected T cells or cocultures treated 236 

with LPV or VX765, demonstrating that inflammasome activation is driven by HIVPR and CASP1 237 

(Figure 4A) and consistent with our findings using the SUPT1:MDM coculture (Figure 3). We 238 

also observed that inflammasome activation persisted in NVP-treated cocultures, suggesting 239 

that incoming protease is also important for inflammasome activation in the context of cell-to-cell 240 

transmission of HIV-1 from primary CD4+ T cells to primary MDMs (Figure 4A). To confirm the 241 

potency of LPV and NVP, we assayed for infectious virions in the supernatant of these 242 

CD4:MDM cocultures and detected a dramatic decrease in RT activity in the presence of either 243 

of these drugs, indicating that these drugs were efficacious at this dose (Figure 4– figure 244 

supplement 1A). We also conducted a time course experiment with a CD4:MDM coculture from 245 

an independent donor in the presence or absence of LPV. Similar to the SUPT1:MDM time 246 

course (Figure 3B), we were able to detect elevated levels of IL-1β by 24 hours post coculture, 247 

which was again strictly dependent on the enzymatic activity of the viral protease as LPV 248 

treatment completely inhibited IL-1β secretion (Figure 4B).  249 

To interrogate the specific role of CARD8 in this primary CD4:MDM coculture system, 250 

we generated AAVS1 (as a control) or CARD8 KO MDMs and cocultured the MDMs with either 251 

mock or HIV-infected primary CD4+ T cells then assayed for inflammasome activation 48 hours 252 

post coculture. KO efficiency was confirmed via immunoblot and functional response to VbP (in 253 

one of the two donors) (Figure 4C, Figure 4–figure supplement 1B). We detected a significant 254 
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decrease in inflammasome activation when infected T cells were cocultured with CARD8 KO 255 

versus AAVS1 KO MDMs (Figure 4D), indicating that CARD8 is required for inflammasome 256 

activation in MDMs during HIV-1 transmission from primary CD4+ T cells to MDMs. Taken 257 

together, our data indicate that CARD8 plays a pivotal role in sensing and responding to HIV-1 258 

cell-to-cell infection between primary CD4 T cells and macrophages. 259 

 260 
Protease inhibitor resistant strains of HIV-1 differentially cleave and activate CARD8 261 

The consequences of CARD8 inflammasome activation on viral replication have been 262 

challenging to assess given that viral fitness is intrinsically linked to viral protease processing of 263 

the viral polyprotein such that inhibiting HIVPR also prevents viral replication. In an attempt to 264 

Figure 4– figure supplement 1. Primary CD4 T cell:MDM coculture elicits CARD8-dependent 
inflammasome activation. (A) Supernatant was harvested 72 hours post coculture from coculture 
described in Figure 4A then assayed for infectious virions via (RT) transcriptase assay. (B) AAVS1 or 
CARD8 KO MDMs from donor 12 were primed with Pam3CSK4 then treated with VbP for 24 hours 
and probed for IL-1β secretion. (n=2 technical replicates for each donor). (A) Two-way ANOVA with 
Tukey’s test (B) One-way ANOVA with Sidak’s test using GraphPad Prism 10. ns = not significant, 
*p<0.05,**p<0.01, ***p<0.001, ****p<0.0001. 
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circumvent this issue, we surveyed a panel of multi-HIVPR inhibitor-resistant (PI-R) infectious 265 

molecular clones of HIV-1 (Varghese et al., 2013). This panel of PI-R molecular clones vary in 266 

resistance to HIV protease inhibitors including nelfinavir (NFV), fosamprenavir (FPV), saquinavir 267 

(SQV), indinavir (IDV), atazanavir (ATV), lopinavir (LPV), tipranavir (TPV), and darunavir (DRV). 268 

Each molecular clone encodes 4 to 11 mutations in HIVPR as well as various compensatory 269 

HIVgag mutations (Varghese et al., 2013) (Table S1). 270 

 We initially tested if PI-R HIV-1 proviruses differentially cleave CARD8 by co-transfecting 271 

HEK293T cells with an expression plasmid encoding an N-terminal mCherry tagged human 272 

CARD8 and either wildtype HIV-1LAI or PI-R HIV-1 proviruses. HIV-1LAI protease cleaves CARD8 273 

between phenylalanine (F) 59 and F60 (Wang et al 2021), resulting in a ~33kDa product 274 

(Figure 5A, top). By quantifying the 33kDa CARD8 cleavage product with each HIV-1 provirus, 275 

we identified a PI-R clone that exhibited similar efficiency at cleaving CARD8 to HIV-1LAI (i.e., PI-276 

R1), PI-R clones that were markedly less efficient at cleaving CARD8 than HIV-1LAI (i.e., PI-R2, 277 

PI-R3, PI-R5, PI-R9, and PI-R10) and two PI-R clones, PI-R12 and PI-R13, that were more 278 

efficient at cleaving CARD8 than HIV-1LAI (Figure 5A, top, Table S1). Of note, all PI-R 279 

proviruses had similar levels of HIVPR activity for HIVgagpol polyprotein processing from p55gag to 280 

p24gag as indicated by the ratio of p24gag/p55gag quantified from the anti-p24gag immunoblot 281 

(Figure 5A, middle). These results indicate that naturally occurring HIV-1 protease mutations 282 

can influence host targets like CARD8. 283 

We next assessed if PI-R clones exhibiting reduced (PI-R2 and -9) or increased (PI-R12 284 

and -13) cleavage of CARD8 relative to HIV-1LAI (Figure 5A and B, and Table S1) resulted in 285 

differential inflammasome activation. HEK293T cells endogenously express CARD8 but lack the 286 

downstream components (i.e., CASP1, GSDMD, and IL-1β/IL18) of the inflammasome pathway. 287 

Thus, we reconstituted the inflammasome pathway in HEK293T cells by co-transfection of 288 

human caspase 1, human pro-IL-1β, and either empty vector, HIV-1LAI or representative PI-R 289 

proviruses then quantified CASP1-dependent processing of pro-IL-1β as a readout of CARD8 290 
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inflammasome activation as in (Tsu et al., 2023). Consistent with the observed differences in 291 

CARD8 cleavage by PI-R clones (Figure 5A), we found that PI-R2 and PI-R9, which exhibited 292 

less CARD8 cleavage than HIV-1LAI, also induced lower IL-1β levels than HIV-1LAI (Figure 5B). 293 

Similarly, PI-R12 and PI-R13, which demonstrated enhanced CARD8 cleavage, elicited higher 294 

IL-1β levels than HIV-1LAI (Figure 5B). However, these PI-R clones, relative to the LAI strain, 295 

may have distinct protease substrate specificity, variable efficiency/kinetics in viral assembly, 296 

gag dimerization, and other factors which may also influence CARD8 inflammasome activation. 297 

We next assessed inflammasome activation by the PI-R clones in a cell-to-cell transmission 298 

model using HEK293T cells as donor cells rather than SUPT1 cells and either WT or CARD8 299 

KO THP-1 cells as the target line at a 1:1 ratio. We opted to overexpress the HIV-1LAI or the PI-300 

R proviruses in HEK293T cells rather than infecting SUPT1 cells due to dramatic variability in 301 

replication kinetics between PI-R strains. In these HEK293T:THP-1 cocultures, we observed 302 

that cell-to-cell transmission of PI-R2 and PI-R9 resulted in lower IL-1β levels while PI-R12 and 303 

PI-R13 resulted in higher IL-1β levels compared to HIV-1LAI, respectively (Figure 5C), 304 

consistent with our findings from CARD8 cleavage (Figure 5A) and reconstituted inflammasome 305 

assays (Figure 5B). Our findings suggest that HIV-dependent inflammasome activation is under 306 

genetic control of the viral protease in a manner that can be increased or decreased with 307 

naturally occurring mutations induced by drug resistance.  308 
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  309 

Figure 5. Protease inhibitor resistant strains of HIV-1 differentially cleave and activate CARD8. 
(A) HEK293T cells were transfected with a construct encoding CARD8 with an N-terminal mCherry tag 
(mCherry-CARD8) and indicated HIV-1 proviral constructs. Protease inhibitor-resistant (PI-R) clones 
of HIV-1 are a subset of a panel expressing prototypical multidrug resistant HIV-1 protease (HIVPR) in 
an NL4.3 backbone (Table S1). Top: Immunoblotting using anti-mCherry antibody to detect mCherry-
CARD8. The full-length (mC-CARD8) and FIIND-processed bands are indicated as well as the HIVPR 
cut product. The band at ~45 kDa is the result of cleavage by the 20S proteasome (Hsiao et al., 2022). 
% CARD8 cleavage was calculated by quantifying the HIVPR cut band relative to the HIV-1LAI control 
using BioRad Image Lab 6. Middle: Immunoblotting with an anti-p24gag antibody showing HIV-1gag 
cleavage products p41gag and p24gag, and/or full-length HIV-1gag, p55gag. %p24/p55 was calculated 
from the ratio of p24gag versus p55gag product by quantifying the volume of the p24gag bands versus the 
p55gag band relative to the HIV-1LAI control using BioRad Image lab 6. Bottom: Immunoblotting with an 
anti-vinculin antibody to detect vinculin as a loading control. (B) HEK293T cells were transfected with 
human caspase 1 and human pro-IL-1β, and either carrier vector or indicated HIV-1 proviruses then 
probed for IL-1β secretion 24 hours post-transfection via IL-1R reporter assay. (C) HEK293T cells 
were transfected with indicated HIV-1 proviruses (300ng). 24 hours post-transfection either wildtype 
(WT) or CARD8 knockout (KO) THP-1s were overlayed on the transfected HEK293T cells in a 1:1 
ratio. THP-1s were primed with Pam3CSK4 overnight prior to coculture. Supernatants were harvested 
24 hours post coculture to assay for IL-1β secretion as in (B). Dotted line indicates limit of detection 
(LoD). Datasets represent mean ± SD (n=4 biological replicates). p-Values were determined by two-
way ANOVA with Dunnett’s test using GraphPad Prism 10. ns = not significant, *p<0.05,**p<0.01, 
***p<0.001, ****p<0.0001. 
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Table S1: Protease inhibitor resistance mutations and relative CARD8 cleavage. 310 

Clone name 

Reported PI-
resistance  

mutations in 
HIVPR 

HIVgag mutation Strongest 
PI-R1 

% CARD8 
cleavage 

(relative to 
HIVLAI) 

Additional amino 
acid changes in 
HIVPR relative to 

NL4.3 

HIV-1LAI wildtype wildtype wildtype 100 37S 

CA126802 
(PI-R1) 

11I, 32I, 33F, 
46I, 47V, 54M, 
58E, 73S, 84V, 

89V, 90M 

431V (NC/p1) 
437N (NC/p1) 
453LF (p1/p6) 

FPV, LPV, 
TPV, DRV 51 

10I, 12K, 13V, 20V, 
35G, 36I, 37D, 57K, 
63P, 64V, 66V, 7IV 

CA122805 
(PI-R2) 

10F, 33F, 43T, 
46L, 54V, 82A, 

84V, 90M 
431V (NC/p1) 
532S (p1/p6) SQV 7 

16A,19I, 20R, 35D, 
36L, 37D, 55R, 57K, 
60E, 62V, 63P, 71V, 

93L 

CA126805 
(PI-R3) 

33F, 43T, 46I, 
48V, 50V, 54S, 

82A 

437N (NC/p1) 
449VF (p1/p6) 
PTAP insertion 

(p6) 

SQV, IDV, 
LPV 8 not determined* 

CA96457 
(PI-R5) 

48V, 53L, 54V, 
82A, 90M 

436R 
(NC/p1) SQV 11 10I, 37D, 63P, 71T, 

77I, 93L 

CA96458 
(PI-R9) 

10F, 30N, 33F, 
43T, 84V, 88D, 

90M 
431V (NC/p1) NFV, SQV 24 15V, 35D, 36L, 37E, 

60E, 62V, 63P 

CA50834-1 
(PI-R10) 

24I, 46L, 54V, 
76V, 82A 431V (NC/p1) IDV, LPV 38 10I, 14R, 35D, 36I, 

37E, 63P,71V 

CA96451 
(PI-R12) 

32I, 33F, 43T, 
46I, 47V, 54M, 
73S, 82A, 89V, 

90M 

437N (NC/p1) 
PTAP insertion 

(p6) 
FPV, LPV 192 

10V, 12V, 13V, 15V, 
20M, 60E, 61N, 62V, 
63P, 67Y, 69K, 71I, 

72L, 77I 

CA20392-1 
(PI-R13) 

24I, 46L, 54V, 
82A 431V (NC/p1) LPV 206 10I, 14R, 35D, 36I, 

37E, 63P, 71V 

Table S1 shows the protease inhibitor-resistant (PI-R) clones assayed in Figure 5 with corresponding 311 
mutations in HIV protease (HIVPR) and HIVgag. 1These clones were previously cloned and assayed for PI-312 
R in (Varghese et al., 2013). The PI-R subset used in Figure 5B are bolded and highlighted in red or 313 
green and denote either hypo- or hyper-active CARD8 cleavage, respectively. The last column reports 314 
additional amino acid changes in the PI-R clones that were observed via whole plasmid Oxford Nanopore 315 
sequencing. *We were unable to sequence verify PI-R3 due to poor plasmid quality. NFV-nelfinavir; FPV- 316 
fosamprenavir; SQV- saquinavir; IDV- indinavir; LPV- lopinavir; TPV- tipranavir; DRV- darunavir. The 317 
consensus subtype B sequence can be found on the Stanford HIV Drug Resistance Database (HIVDB) 318 
(“Stanford - HIV Drug Resistance Database,” n.d.). Relative CARD8 cleavage was determined by 319 
quantifying band volume of the CARD8 cleavage product in BioRad Image Lab 6 and comparing to 320 
cleavage with HIV-1LAI. 321 
 322 
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DISCUSSION 323 

We demonstrate that cell-to-cell transmission of HIV-1 from T cells to myeloid cells in both 324 

immortalized and primary cell coculture models of infection yields CARD8-dependent 325 

inflammasome activation via incoming HIVPR. This inflammasome activation occurs in a largely 326 

NLRP3-independent manner. In addition, we identified protease inhibitor resistant strains of 327 

HIV-1 that differentially cleave and activate the CARD8 inflammasome. Thus, HIVPR mutants 328 

selected for their resistance to different protease inhibitors also affect their ability to cleave host 329 

proteins including the inflammasome-forming sensor CARD8.  330 

 331 

CARD8 is the primary inflammasome-forming sensor of HIV-1 infection 332 

Previously, both the NLRP3 and IFI16 inflammasomes have been implicated as innate 333 

sensors of HIV-1 infection and drivers of CD4+ T cell depletion using blood and lymphoid-334 

derived CD4+ T cells, respectively, and cell-to-cell transmission was reported to be crucial for 335 

IFI16 sensing of abortive HIV transcripts (Doitsh et al., 2014; Galloway et al., 2015; Monroe et 336 

al., 2014; Zhang et al., 2021). However, the mechanism of NLRP3 inflammasome activation in 337 

response to HIV-1 remains elusive. Similarly, there have been reports that IFI16 is not an 338 

inflammasome-forming sensor, and instead a nuclear transcriptional regulator of antiviral genes 339 

including type I interferons and RIG-I (Hornung et al., 2009; Jiang et al., 2021; Thompson et al., 340 

2014), suggesting that there may be other mechanisms of CD4+ T cell depletion and HIV-341 

dependent inflammasome activation at play. Indeed, CARD8, which is expressed and functional 342 

in naïve and memory CD4+ and CD8+ T cells (Linder et al., 2020), was recently shown to be 343 

required for pyroptosis in primary human blood- and lymphoid-derived CD4+ T cells and 344 

humanized mouse models (Wang et al., 2024), implicating CARD8 as a major driver of CD4+ T 345 

cell depletion during HIV-1 infection. In this study and our prior work (Kulsuptrakul et al., 2023), 346 

we demonstrate that CARD8 is also the primary innate sensor during HIV-1 infection in myeloid 347 

cell types during cell-to-cell transmission. However, our present study does not rule out the 348 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2025. ; https://doi.org/10.1101/2024.08.21.608981doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.21.608981
http://creativecommons.org/licenses/by/4.0/


 23 

possibility that under certain conditions or in certain cell types, NLRP3 inflammasome activation 349 

may occur, for example following GSDMD pore formation following CARD8 inflammasome 350 

activation and play a more profound role in promoting HIV-dependent inflammation. 351 

Nonetheless, these data along with other recent work (Wang et al., 2024) strongly suggest that 352 

CARD8 is a major innate sensor of HIV-1 infection. 353 

 354 

Protease inhibitor resistance mutations and inflammatory disease 355 

Given the important role of HIVPR in replication, early combination antiretroviral therapy for 356 

people living with HIV (PLWH) included protease inhibitors along with RT inhibitors. However, 357 

resistance mutations to protease inhibitors quickly arose in PLWH through mutations around the 358 

HIVPR active site allowing for polyprotein processing and viral maturation while avoiding drug 359 

inhibition. Despite typically having poor overall viral fitness due to less efficient polyprotein 360 

processing and replication relative to wildtype HIV-1 in the absence of protease inhibitors, these 361 

mutant drug-resistant HIV-1 strains can persist in PLWH on antiviral therapy, posing a major 362 

threat to controlling disease progression (De Luca, 2006; Martinez-Picado et al., 1999; Prado et 363 

al., 2002; Resch et al., 2002). To compensate for mutations in HIVPR that change its substrate 364 

specificity, HIVgag sometimes evolves mutations around HIVPR cleavage sites to permit proper 365 

polyprotein processing (Varghese et al., 2013). Here, we identified multiple HIVPR inhibitor-366 

resistant strains of HIV-1 that can differentially cleave and activate the CARD8 inflammasome 367 

(Figure 5, Table S1). As the degree of inflammation is a better predictor of disease progression 368 

in untreated individuals than viral load (Deeks et al., 2004; Giorgi et al., 1999), we speculate that 369 

differential CARD8 inflammasome activation could influence disease progression for PLWH 370 

harboring HIVPR resistance mutations that cleave CARD8 more or less efficiently. More broadly, 371 

we suggest that host targets of viral proteases like CARD8 may influence the selection of viral 372 

variants during treatment with antiviral protease inhibitor monotherapies. 373 

 374 
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Viral protease influx activates the CARD8 inflammasome 375 

In this study, we found that HIV-dependent CARD8 inflammasome activation during cell-376 

free infection requires a cationic polymer like DEAE-dextran to facilitate efficient viral infection 377 

(see Supplemental Note). Despite being infected with the same amount of virus and exhibiting 378 

similar percent infection 24 hours post-infection, as measured by intracellular p24gag, with and 379 

without DEAE-dextran, we hypothesize that DEAE-dextran during cell-free infection may 380 

increase the total viral dose that enters cells consisting of both infectious particles and non-381 

infectious particles that may nonetheless contain active protease, leading to more efficient viral 382 

protease influx to trigger CARD8 sensing. Hence, the percentage of p24gag positive cells after 24 383 

hours may be an underestimate of total amount of viral entry in the DEAE-dextran condition. We 384 

speculate that a considerable influx of incoming HIVPR may be necessary to induce CARD8 385 

inflammasome activation.  386 

We also observed that DEAE-dextran can trigger inflammasome activation in some THP-1 387 

cell lines (see Supplemental Note), prompting us to assay for inflammasome activation upon 388 

HIV-1 cell-to-cell transmission with target cells at a 1:1 ratio in the absence of cationic polymer. 389 

We found that inflammasome activation following cell-to-cell transmission of HIV-1 could be 390 

detected by 24 hours (Figure 3B), which is delayed relative to our detection of CARD8 391 

inflammasome activation 2 hours post cell-free HIV-1 infection in the presence of DEAE-dextran 392 

(Kulsuptrakul et al., 2023). Nonetheless, we still hypothesize that this inflammasome activation 393 

is driven by active incoming viral protease because treatment with an RT inhibitor has no effect 394 

on inflammasome activation, which implies that de novo protease production is not necessary 395 

(Figure 3A and B, Figure 4A and B). Similarly, we observed that IL-1β levels do not increase 396 

after plateauing 24 hours after establishing the coculture (Figure 3B, Figure 4B), suggesting 397 

that secondary infection does not further amplify inflammasome activation. We infer that this is 398 

also likely a product of the efficiency of viral entry and the necessity for multiple virions infecting 399 

at the same time to deliver a sufficient amount of active HIVPR for cytosolic CARD8 sensing. We 400 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2025. ; https://doi.org/10.1101/2024.08.21.608981doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.21.608981
http://creativecommons.org/licenses/by/4.0/


 25 

postulate that under certain physiological conditions, cell-to-cell transmission can cause CARD8 401 

inflammasome activation when there is an influx of active incoming HIVPR across the viral 402 

synapse. Taken together, we speculate that both cell-free infection facilitated by cationic 403 

polymer or cell-to-cell transmission can achieve sufficient levels of active HIVPR influx to activate 404 

the CARD8 inflammasome.  405 

Macrophages have been reported to be primarily infected through phagocytosis of 406 

infected CD4+ T cells or cell-to-cell transmission (Dupont and Sattentau, 2020; Martínez-407 

Méndez et al., 2017; Orenstein, 2000). We demonstrate that unlike CD4+ T cells, which are 408 

rapidly depleted by HIV-1 infection and do not release IL-1β or IL-18 (Linder et al., 2020), 409 

primary macrophages release pro-inflammatory cytokines in response to HIVPR during cell-to-410 

cell infection from primary CD4+ T cells and T cell lines (Figure 3, Figure 4), thus representing 411 

a potential source of sustained IL-1β and subsequent chronic immune activation. In addition to 412 

promoting chronic immune activation, HIV-dependent IL-1β release from macrophages may 413 

also contribute to HIV-1 pathogenesis by activating nearby CD4+ T cells, rendering them 414 

susceptible to becoming infected with HIV-1, and thus indirectly promoting CD4+ T cell 415 

depletion. Collectively with our prior work (Kulsuptrakul et al., 2023), our findings provide further 416 

evidence that CARD8 inflammasome activation is driven by incoming HIVPR under conditions 417 

where multiple virions may enter cells, and thus could be a potential driver of HIV-1 418 

pathogenesis by promoting chronic immune activation. 419 

 420 

METHODS 421 

Plasmids and Reagents 422 

pMD2.G used for HIV-1LAI-VSVG production was a gift from Didier Trono (Addgene). HIV-1LAI has 423 

been previously described (Peden et al., 1991). The following reagents were obtained through 424 

the NIH HIV Reagent Program, Division of AIDS, NIAID, NIH: lopinavir (LPV), nevirapine (NVP), 425 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2025. ; https://doi.org/10.1101/2024.08.21.608981doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.21.608981
http://creativecommons.org/licenses/by/4.0/


 26 

Human Immunodeficiency Virus 1 (HIV-1) NL4-3 BaL Infectious Molecular Clone (p20-36) (HIV-426 

1NL4.3-BaL), ARP-11442, contributed by Dr. Bruce Chesebro (Chesebro et al., 1992, 1991; Toohey 427 

et al., 1995; Walter et al., 2005), and Panel of Multi-Protease Inhibitor Resistant Infectious 428 

Molecular Clones, HRP-12740, contributed by Dr. Robert Shafer (Varghese et al., 2013). Mutant 429 

HIVPR sequences were amplified from clinically-derived viral cDNA encoding protease genes 430 

with resistance to multiple PRis then cloned into an NL4.3 backbone with overhangs including 431 

the 3’ end of gag with the gag cleavage site and the 5’ end of RT as previously described 432 

(Varghese et al., 2013). CARD8 variant constructs were cloned as previously described 433 

(Kulsuptrakul et al., 2023). VX765 and MCC950 were sourced from Invivogen (cat: inh-vx765i-1 434 

and inh-mcc, respectively). 435 

 436 

Cell culture 437 

SUPT1 (ATCC) and THP-1 cells (JK and ATCC) were cultured in RPMI (Invitrogen) with 10% 438 

FBS, 1% penicillin/streptomycin antibiotics, 10 mM HEPES, 0.11 g/L sodium pyruvate, 4.5 g/L 439 

D-glucose and 1% Glutamax. JK THP-1 cells were used for all experiments in this manuscript 440 

and our previous work unless explicitly stated (see Supplemental Note) (Kulsuptrakul et al., 441 

2023). Primary monocytes were cultured in RPMI (Invitrogen) with 10% FBS, and 1% 442 

penicillin/streptomycin antibiotics and differentiated in the presence of 20ng/mL GM-CSF 443 

(Peprotech cat: 300-03) and 20ng/mL M-CSF (Peprotech cat: 300-25). Primary CD4+ T cells 444 

were cultured in RPMI (Invitrogen) with 10% FBS, 1% penicillin/streptomycin antibitiocs and 445 

100U/mL IL-2. HEK293T (ATCC) lines were cultured in DMEM (Invitrogen) with 10% FBS and 446 

1% penicillin/streptomycin antibiotics. All lines routinely tested negative for mycoplasma bacteria 447 

(Fred Hutch Specimen Processing & Research Cell Bank). SUPT1 and THP-1 cell lines were 448 

authenticated by STR profiling analysis (Fred Hutch Genomics core and TransnetYX, Inc.) (see 449 

Supplemental Note). 450 

 451 
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HIV-1LAI, HIV-1LAI-VSVG, and HIV-1NL4.3-BaL production 452 

293T cells were seeded at 2-3×105 cells/well in six-well plates the day before transfection using 453 

TransIT-LT1 reagent (Mirus Bio LLC) at 3 µL transfection reagent/well as previously described 454 

(OhAinle et al., 2018). For HIV-1 production, 293Ts were transfected with 1 µg/well HIVLAI or 455 

HIV-1NL4.3-BaL proviral DNA or 1 µg/well HIVLAI Δenv DNA and 500 ng/well pMD2.G for HIV-1LAI, 456 

HIV-1NL4.3-BaL, and HIV-1LAI-VSVG, respectively. One day post-transfection, media was replaced. 457 

Two days post-transfection, viral supernatants were collected and filtered through a 20 μm filter 458 

and aliquots were frozen at –80°C. HIV-1LAI, HIV-1NL4.3-BaL and HIV-1LAI-VSVG proviruses were 459 

previously described (Bartz and Vodicka, 1997; Gummuluru et al., 2003; Peden et al., 1991).  460 

 461 

Cell-free and cell-to-cell coculture HIV-1 infection 462 

Cell-free infections with HIV-1LAI-VSVG were done as previously described (Kulsuptrakul et al., 463 

2023). Subsequent cell death was assessed by incubating in media containing propidium iodide 464 

dye (10μg/mL) for 5 minutes at room temperature then washed once with PBS before fixing with 465 

BD CytoFix/Cytoperm (cat:BDB554714) and staining for intracellular p24gag (Beckman Coulter 466 

cat#: 6604665) for flow cytometry. In the HIV-1 cell-to-cell transmission system, SUPT1 467 

expressing CCR5 (SUPT1-CCR5) cells were spinoculated at 1100g for 30min with either HIV-468 

1LAI or HIV-1NL4.3-BaL in the presence of 10µg/mL DEAE-dextran. SUPT1-CCR5 cells were 469 

lentiviral transduced to express CCR5 (Dingens et al., 2017). After 24 hours, mock or HIV-1 470 

infected SUPT1-CCR5 cells were washed three times in PBS such that DEAE-dextran and cell-471 

free virus were removed before starting coculture with THP-1 cells or MDMs. THP-1 cells and 472 

MDMs were seeded at 5 x 105 cells/well and primed with 500ng/mL Pam3CSK4 (Invivogen) for 473 

16-24 hours before coculture. Mock or infected SUPT1 cells were seeded at 5 x 105 cells/well. 474 

Cultured supernatants from coculture were harvested 48 hours after starting the coculture for 475 

the IL-1R reporter assay, which was previously described (Kulsuptrakul et al., 2023). 476 

 477 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2025. ; https://doi.org/10.1101/2024.08.21.608981doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.21.608981
http://creativecommons.org/licenses/by/4.0/


 28 

Transwell coculture HIV-1 infection 478 

SUPT1 cells were spinoculated at 1100g for 30min with HIV-1LAI in the presence of 10μg/mL 479 

DEAE-dextran. After 24 hours, mock or HIV-1 infected SUPT1 cells were washed 3 times in 480 

PBS and either mixed in a 24-well with THP-1 cells or placed in a transwell insert above target 481 

THP-1 cells at a concentration of 5 x 105 infected SUPT1 cells and 2.5 x 105 THP-1 cells per 482 

well. THP-1 cells were primed overnight with 500ng/mL Pam3CSK4 before starting coculture. 483 

The transwell insert has a 0.4µm membrane at the bottom of the well (ThinCert™ Tissue 484 

Culture Inserts, Sterile, Greiner Bio-One cat:665640), allowing virus to pass out of the transwell 485 

but not the infected cell. Reverse transcriptase (RT) activity in viral supernatants was measured 486 

using the RT activity assay as previously described (Roesch et al., 2018; Vermeire et al., 2012). 487 

A stock of HIV-1LAI virus was titered multiple times, aliquoted at −80°C and used as the standard 488 

curve in all assays. 489 

 490 

Monocyte-derived macrophage isolation, differentiation, and editing 491 

Primary monocytes were isolated via negative selection using the EasySep™ Human Monocyte 492 

Isolation Kit (Easy Sep, 1x10^9) (Stem Cell Technologies) according to the manufacturer’s 493 

protocols from PBMCs collected from blood donors. Upon isolation, monocytes were seeded at 494 

1 x 106 cell/mL and differentiated for 5 days in the presence of media containing 20ng/mL GM-495 

CSF (Peprotech cat: 300-03) and 20ng/mL M-CSF (Peprotech cat: 300-25), changing media 496 

every other day. For edited MDMs, isolated monocytes were electroporated in cuvettes (100µL) 497 

with 2.5-5 x 106 cells/nucleofection in the presence of pre-complexed Cas9-RNPs (300pmol 498 

sgRNA: 100pmol Cas9) in Lonza P2 buffer using pulse code DK-100. RNPs were complexed 499 

with sgRNA from the Synthego gene KO kit, which includes 3 sgRNAs per gene. Thus, each 500 

sgRNA was present at a 1:1 ratio with Cas9 (QB3 MacroLab or Synthego SpCas9 2NLS 501 

Nuclease). A table of sgRNAs used for AAVS1, CARD8, or NLRP3 KO can be found in Table 502 

S2 below. After nucleofection, cells were supplemented with 900µL of prewarmed media and 503 
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allowed to recover for 30 minutes at 37°C before counting and seeding at ~1-1.5x106 cells/mL 504 

for differentiation. Media was changed 24 hours post nucleofection then differentiated for 5 more 505 

days before characterizing knockout efficiency and conducting coculture experiments. 506 

Table S2: 507 
sgRNA Sequence 
CARD8 sgRNA1 CUCUGCAGUGACAUCAAACA 
CARD8 sgRNA2 UGACGAUUGCGUUUGGUUCC 
CARD8 sgRNA3 AGCGUUUGGUUCCCCACUGC 
AAVS1 sgRNA 1 GUUAAUGUGGCUCUGGUUCU 
AAVS1 sgRNA 2 ACCCCACAGUGGGGCCACUA 
AAVS1 sgRNA 3 CCUUCCUAGUCUCCUGAUAU 
NLRP3 sgRNA 1 GCUCAGAAUGCUCAUCAUCG 
NLRP3 sgRNA 2 GAUGAUGUUGGACUGGGCAU 
NLRP3 sgRNA 3 CAAGGCUCACCUCCCGACAG 

 508 

CD4+ T cell isolation, infection, and coculture 509 

Primary CD4+ T cells were isolated via positive selection using the EasySepTM Release Human 510 

CD4 Positive selection kit (Stem Cell Technologies Cat: 17752) according to the manufacturer’s 511 

instructions from PBMCs collected from blood donors and seeded at 2.5x106 cells/mL in the 512 

presence of 100U/mL IL-2. T cells were activated 24 hours post-isolation with CD3/CD28 513 

activation beads (Miltenyi Biotech Cat: 130-091-441). Activation beads were removed according 514 

to the manufacturer’s protocols 24 hours later for infection. For infection, T cells were 515 

suspended at 1-1.5x106 cells/mL in 15mL conical tubes containing 8μg/mL polybrene, 100U/mL 516 

IL-2, and HIV-1NL4.3-BaL then spinoculated at 1100g at 30°C for 90 min. Three days post-infection, 517 

CD4s were assessed for intracellular p24gag via flow cytometry (~10% infected) then washed 518 

thrice with PBS before coculturing with MDMs. CD4:MDM coculture RPMI media was 519 

supplemented with 100U/mL IL-2, 20ng/mL GM-CSF, 20ng/mL M-CSF, and 500ng/mL 520 

Pam3CSK4. 521 

 522 
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CARD8 cleavage assay 523 

HEK293T cells were seeded at 1–1.5 × 105 cells/well in 24-well plates the day before 524 

transfection using TransIT-LT1 reagent at 1.5 µL transfection reagent/well (Mirus Bio LLC). One 525 

hundred ng of indicated constructs encoding an N-terminal mCherry-tagged CARD8 were co-526 

transfected into HEK293T cells with empty vector (‘–’), HIVLAI or PI-R provirus. To normalize 527 

HIVgag expression between HIV-1LAI and the PI-R clones, which are in a different vector 528 

backbone, 400ng of HIV-1LAI and 200ng of all PI-R clones were transfected. All conditions were 529 

normalized with empty vector to contain the same amount of DNA. Cytoplasmic lysates were 530 

harvested 24 hours post-transfection and immunoblotted as previously described (Kulsuptrakul 531 

et al., 2023). 532 

 533 

HEK reconstitution assay 534 

HEK293T cells, which endogenously express CARD8, were seeded at 2.25 x 105 cell/well in 24-535 

well plates the day before transfection using TransIT-LT1 reagent at 1.5uL transfection 536 

reagent/well (Mirus Bio LLC). Functional inflammasomes were reconstituted by transfecting in 537 

5ng human CASP1 and 100ng human IL-1β. To assess the effects of different viral proteases 538 

on inflammasome activation, HIV-1LAI or PI-R clones were co-transfected in with CASP1 and IL-539 

1β. As with the CARD8 cleavage assay, a higher amount of 250ng HIV-1LAI was added relative 540 

to the PI-R clones, which were all added at 125ng, to normalize HIVgag expression between the 541 

different vector backbones. All conditions were normalized with empty vector to contain the 542 

same amount of DNA. Cultured supernatant was harvested 24 hours post-transfection to assay 543 

for IL-1β secretion via IL-1R reporter assay.  544 

 545 
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Supplemental Note 824 
 825 

There have been 4 different sublines of THP-1 cells previously characterized (Kasai et 826 

al., 2022). Using short tandem repeat (STR) profiling, we were able to distinguish the WT THP-1 827 

cell stocks that were used as the parental line for knockouts and complemented knockouts in 828 

this work and our prior work (Kulsuptrakul et al., 2023), as distinct from WT THP-1 cells sourced 829 

from ATCC at 3 different loci (Figure A1A). Of note, unlike the THP-1 cells used here (referred 830 

to as JK THP-1), ATCC THP-1 cells elicited IL-1β secretion in the absence of HIV-1 infection in 831 

the presence of 20μg/mL DEAE-dextran (Figure A1B). Unless otherwise specified, any mention 832 

of “THP-1 cells” are referring to our JK THP-1 cells, not ATCC THP-1 cells. Nonetheless, given 833 

the sensitivity of some THP-1 sublines to elicit an inflammasome response in the presence of 834 

DEAE-dextran, we assessed whether or not we could establish systems to measure HIV-1 835 

induced CARD8-dependent inflammasome activation in the absence of DEAE-dextran. Thus, 836 

we infected either wildtype (WT) or CARD8 knockout (KO) THP-1 cells with wildtype HIV-1LAI in 837 

either the presence or absence of DEAE-dextran and measured cell death and IL-1β secretion 838 

24 hours post-infection as readouts of inflammasome activation. We found that despite 839 

achieving similar levels of infection (20-30%) as measured by intracellular p24gag after 840 

spinoculation with and without DEAE-dextran (Figure A1C, left), we detected robust CARD8-841 

dependent inflammasome activation in WT THP-1 cells infected only in the presence of DEAE-842 

dextran (Figure A1C, middle and right). These data suggest that cationic polymer is necessary 843 

to observe HIV-dependent CARD8 inflammasome activation in our cell-free system.  844 
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 845 
Figure A1. Characterization of THP-1 cells. (A) Promega GenePrint® 24 system STR analysis 846 
summary of our JK THP-1 cells versus ATCC THP-1 cells. Cell line authentication was done by 847 
TransnetYX, Inc. by following the protocol described in ANSI/ATCC ASN-0002-2011. The STR alleles 848 
were searched on the ATCC Database and the Expasy best match cell numbers for each cell line had a 849 
100% database match. Distinguishing loci are highlighted in yellow and distinguishing alleles are in red. 850 
(B) JK and ATCC THP-1 cells were primed with Pam3CSK4 overnight then treated with increasing doses 851 
of DEAE-dextran for 24 hours before probing for IL-1β secretion. (C) Wildtype (WT) or CARD8 knockout 852 
(KO) THP-1 cells were infected with wildtype HIV-1LAI at the same MOI in the presence or absence of 853 
DEAE-dextran (10µg/mL) then harvested after 24 hours and assayed for: left) percent infection via 854 
intracellular p24gag, middle) inflammasome activation by IL-1β secretion via IL-1R reporter assay, and 855 
right) cell death via propidium iodide (PI) dye uptake using flow cytometry. %PI positive and IL-1 levels 856 
are normalized to mock control. Dotted line indicates limit of detection (LoD). Datasets represent mean ± 857 
SD (n=2 biological replicates). Two-way ANOVA with (B) Sidak’s or (C) Tukey’s test using GraphPad 858 
Prism 10. ns = not significant, *p<0.05,**p<0.01, ***p<0.001, ****p<0.0001. 859 
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